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Abstract

This expository paper is based on my lecture at the Borel memory

conference. Our main purpose was to explore possible mirror relations

between the arithmetic of a Calabi-Yau hypersurface and the arith-

metic of its mirror. Through the study of some concrete examples, we

discover that there are at least two types of mirror relations between

the zeta function of a Calabi-Yau variety and the zeta function of its

mirror. The aim of this note is to explain these relations.

1 Mirror symmetry

Definition 1.1 Let n be a positive integer and let K be a field. A smooth
projective variety over K of dimension n is called Calabi-Yau (CY) if the
following two conditions hold.

(i) The canonical bundle Ωn
X is trivial.

(ii) The coherent sheaf cohomology H i(X,OX) vanishes for all 1 ≤ i ≤ n−1.

In particular, a CY is connected. As an example, let X be a smooth
projective hypersurface in P

n+1 of degree d defined by the vanishing of a
homogeneous polynomial f(x0, · · · , xn+1) of degree d. Then, X is a Calabi-
Yau hypersurface if and only if d = n + 2. In the case n = 1, this gives a
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cubic curve (elliptic curve). In the case n = 2, this gives a quartic surface
(K3-surface). In the case n = 3, this gives a quintic 3-fold (quintic CY).

Sometimes, X has a mirror X◦ which is another smooth projective CY
of dimension n. A basic question in mirror symmetry is to determine when
a given pair (X,Y ) of n-dimensional CY varieties over K forms a mirror
pair. A necessary condition (the topological mirror test) for X and Y to be
a mirror pair is that their Hodge numbers satisfy the Hodge symmetry:

hi,j(X) = hn−i,j(Y ), 0 ≤ i, j ≤ n. (1)

In particular, their Euler characteristics are related by

e(X) = (−1)ne(Y ). (2)

In general, there is no known rigorous algebraic geometric definition for a
mirror pair, although many examples of mirror pairs are known at least
conjecturally. Furthermore, it does not make sense to speak of “the mirror”
of X as the mirror variety usually comes in a family. In some cases, the mirror
does not exist. This is the case for rigid Calabi-Yau 3-folds X, since the rigid
condition h2,1(X) = 0 would imply that h1,1(Y ) = 0 which is impossible.

We shall assume that X and Y are a given mirror pair in some sense and
are defined over a finite field. We are interested in how the zeta function of
X is related to the zeta function of Y . Since there is no algebraic geometric
definition for X and Y to be a mirror pair, it is difficult to study the possible
symmetry between their zeta functions in full generality. On the other hand,
there are many explicit examples and constructions which at least conjec-
turally give a mirror pair, most notably in the toric hypersurface setting as
constructed by Batyrev [1]. Thus, we shall first examine an explicit example
and see what kind of relations can be proved for their zeta functions in this
case. This would then suggest what to expect in general.

2 An example of mirror pairs

Let n ≥ 1 be a positive integer. We consider the universal family of Calabi-
Yau complex hypersurfaces of degree n + 2 in the projective space P

n+1. Its
mirror family is a one-parameter family of toric hypersurfaces. To construct
the mirror family, we consider the one-parameter subfamily Xλ of complex
projective hypersurfaces of degree n + 2 in P

n+1 defined by

f(x0, · · · , xn+1) = xn+2
0 + · · · + xn+2

n+1 + λx0 · · ·xn+1 = 0,
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where λ ∈ C is the parameter. The variety Xλ is a Calabi-Yau manifold
when Xλ is smooth. Let µn+2 denote the group of (n + 2)-th roots of unity.
Let

G = {(ζ0, · · · , ζn+1)|ζ
n+2
i = 1, ζ0 · · · ζn+1 = 1}/µn+2

∼= (Z/(n + 2)Z)n,

where µn+2 is embedded in G via the diagonal embedding. The finite group
G acts on Xλ by

(ζ0, · · · , ζn+1)(x0, · · · , xn+1) = (ζ0x0, · · · , ζn+1xn+1).

The quotient Xλ/G is a projective toric hypersurface Yλ in the toric variety
P∆, where P∆ is the simplex in R

n+1 with vertices {e1, · · · , en+1,−(e1 + · · ·+
en+1)} and the ei’s are the standard coordinate vectors in R

n+1. Explicitly,
the variety Yλ is the projective closure in P∆ of the affine toric hypersurface
in G

n+1
m defined by

g(x1, · · · , xn+1) = x1 + · · · + xn+1 +
1

x1 · · ·xn+1

+ λ = 0.

Assume that Xλ is smooth. Then, Yλ is a (singular) mirror of Xλ. It is an
orbifold. If Wλ is a smooth crepant resolution of Yλ, then the pair (Xλ,Wλ)
is called a mirror pair of Calabi-Yau manifolds. Such a resolution exists for
this example but not unique if n ≥ 2. In fact, let ∆∗ be the dual polytope
of ∆. One checks that ∆∗ is the simplex in R

n+1 with the vertices

(n + 2)ei −
n+1∑

j=1

ej (i = 1, ..., n + 1), −
n+1∑

j=1

ej.

This is the (n+2)-multiple of a basic (regular) simplex in R
n+1. In particular,

the codimension 1 faces of ∆∗ are (n + 2)-multiples of a basic simplex in
R

n. By the parallel hyperplane decomposition in [4], one deduces that the
codimension 1 faces of ∆∗ have a triangulation into basic simplices. Any such
a triangulation produces a smooth crepant resolution φ : Wλ → Yλ.

The number of rational points and the zeta function are independent of
the choice of the crepant resolution. We are interested in understanding how
the arithmetic of Xλ is related to the arithmetic of Wλ, in particular how the
zeta function of Xλ is related to the zeta function of Wλ. Our main concern
in this paper is to consider Calabi-Yau manifolds over finite fields.
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In this example, we see two types of mirror pairs. The first one is the
generic mirror pair {XΛ,Wλ}, where XΛ is the generic member in the moduli
space of smooth projective Calabi-Yau hypersurfaces of degree (n+2) in P

n+1

and Wλ is the generic member in the above one-parameter family of mirror
Calabi-Yau manifolds. Note that XΛ and Yλ are parametrized by different
parameter spaces (of different dimensions). The possible zeta symmetry in
this case would then have to be a relation between certain generic property of
their zeta functions. Later, we shall see that there is such a generic symmetry
for the slope zeta function, which is a p-adic quantum version of the usual
zeta function.

The second type of mirror pairs is the one-parameter family of mirror
pairs {Xλ,Wλ} parametrized by the same parameter λ. This is a stronger
type of mirror pair than the first type. For λ ∈ C, we say that Wλ is a strong
mirror of Xλ. For such a strong mirror pair {Xλ,Wλ}, we can really ask for
the relation between the zeta function of Xλ and the zeta function of Wλ.
We shall see that there is indeed a close relation between the zeta function
of Xλ and the zeta function of its strong mirror Wλ.

If λ1 6= λ2, Wλ1
would not be called a strong mirror for Xλ2

, although
they would be an usual weak mirror pair. In this case, we cannot expect
a close relation between their zeta functions as the zeta function Z(Xλ, T )
depends in an essential way on the algebraic parameter λ.

Apparently, we do not have a definition for a strong mirror pair in general,
as there is not even a definition for a generic or weak mirror pair in general.

3 Arithmetic mirror symmetry

Let Fq be a finite field of q elements, where q = pr and p is a prime. For
a scheme X of finite type of dimension n over Fq, let #X(Fq) denote the
number of Fq-rational points on X. Let

Z(X,T ) = exp(
∞∑

k=1

T k

k
#X(Fqk)) ∈ 1 + TZ[[T ]]

be the zeta function of X. It is well known that Z(X,T ) is a rational function
in T whose reciprocal zeros and reciprocal poles are Weil q-integers. Factor
Z(X,T ) over the p-adic numbers Cp and write

Z(X,T ) =
∏

i

(1 − αiT )±1
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in reduced form, where the algebraic integers αi ∈ Cp. One knows that the
slope ordq(αi) is a rational number in the interval [0, n]. For two real numbers
s1 ≤ s2, we define the slope [s1, s2] part of Z(X,T ) to be the partial product

Z[s1,s2](X,T ) =
∏

s1≤ordq(αi)≤s2

(1 − αiT )±1. (3)

For a half open and half closed interval [s1, s2), Z[s1,s2)(X,T ) is defined in a
similar way. These are rational functions with coefficients in Zp by the p-adic
Weierstrass factorization. It is clear that we have the decomposition

Z(X,T ) =
n∏

i=0

Z[i,i+1)(X,T ).

Question 3.1 Let (X,X◦) be a mirror pair of CY over Fq.

(i) How is #X(Fq) related to #X◦(Fq)?

(ii) How is Z(X,T ) related to Z(X◦, T )?

We propose

Conjecture 3.2 (Congruence mirror conjecture) Suppose that we are
given a strong mirror pair (X,X◦) of CY over Fq.

(i) For each positive integer k, we have

#X(Fqk) ≡ #X◦(Fqk)(mod qk).

(ii) Equivalently, we have

Z[0,1)(X,T ) = Z[0,1)(X
◦, T ).

Part of the problem in the conjecture is that we do not know a general
definition of strong mirror pairs. For the example in the previous section,
we can indeed prove that the conjecture is true. This gives the following
arithmetic mirror theorem.

Theorem 3.3 (Wan [9]) Assume that λ ∈ Fq such that (Xλ,Wλ) is a
strong mirror pair of Calabi-Yau manifolds over Fq.

(i) For every positive integer k, we have the congruence formula

#Xλ(Fqk) ≡ #Yλ(Fqk) ≡ #Wλ(Fqk) (mod qk).
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(ii) Equivalently, the slope [0, 1) part of the zeta function is the same for the
mirror varieties {Xλ, Yλ,Wλ}:

Z[0,1)(Xλ, T ) = Z[0,1)(Yλ, T ) = Z[0,1)(Wλ, T ).

As an immediate corollary, we obtain

Corollary 3.4 Under the assumption of the previous theorem, there is a
rational function Rn(λ, T ) ∈ 1 + TZ[[T ]] which is pure of weight n − 2 and

degree (n+1)((n+1)n+1−(−1)n+1)
(n+2)

− (n + 1) such that

(
Z(Xλ, T )

Z(Yλ, T )
)(−1)n+1

= Rn(λ, qT ).

We conjecture that Rn(λ, T ) is actually a polynomial. This is known [9]
to be true in the case that either (n + 2)|(q − 1) or (n + 2, q − 1) = 1. In
particular, the integrality of Rn(λ, T ) is true if n + 2 is a prime. In the case
n + 2 = 5, the polynomial R3(λ, T ) with integer coefficients has degree 200.
In [2], This degree 200 polynomial has empirically been shown to be the
numerator of the zeta function of several genus 4 curves over Fq.

The above mirror example was obtained via a quotient construction.
More generally, in a joint work with Lei Fu, using the theory of crystalline
cohomology and Mazur’s result [6], we have proved the following partial gen-
eralization for the congruence mirror theorem.

Theorem 3.5 (Fu-Wan [3]) Let X be a smooth Calabi-Yau scheme defined
over the ring W (Fq) of Witt vectors of Fq. Let G be a finite group of W (Fq)-
morphisms acting on X. Assume that G fixes the non-zero global section of
the canonical bundle of X. Then, for each positive integer k, we have the
congruence formula

#(X ⊗ Fq)(Fqk) ≡ #(X/G ⊗ Fq)(Fqk)(mod qk).

This theorem can also be proved using rigid cohomology and DeRham-
Witt cohomology as shown by Esnault-Bloch.
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4 Slope zeta functions

Assume that {X,Y } forms a mirror pair, not necessarily a strong mirror
pair. A different type of arithmetic mirror symmetry reflecting the Hodge
symmetry, which is discrete and hence generic in nature, is to look for a
suitable quantum version ZQ(X,T ) of the zeta function such that

ZQ(X,T ) = ZQ(Y, T )(−1)n

,

where {X,Y } is a mirror pair of Calabi-Yau manifolds over Fq of dimension
n. This relation cannot hold for the usual zeta function Z(X,T ) for obvious
reasons, even for a strong mirror pair as it contradicts with the congruence
mirror conjecture for odd n. No non-trivial candidate for ZQ(X,T ) has been
found. Here we propose a p-adic quantum version which would have the
conjectural properties for most (and hence generic) mirror pairs. We will
call our new zeta function to be the slope zeta function as it is based on the
slopes of the zeros and poles.

Definition 4.1 For a scheme X of finite type over Fq, write as before

Z(X,T ) =
∏

i

(1 − αiT )±1

in reduced form, where αi ∈ Cp. Define the slope zeta function of X to be
the two variable function

Sp(X, u, T ) =
∏

i

(1 − uordq(αi)T )±1. (4)

Note that
αi = qordq(αi)βi,

where βi is a p-adic unit. Thus, the slope zeta function Sp(X, u, T ) is obtained
from the p-adic factorization of Z(X,T ) by dropping the p-adic unit parts
of the roots and replacing q by the variable u. This is not always a rational
function in u and T . It is rational if all slopes are integers. Note that the
definition of the slope zeta function is independent of the choice of the ground
field Fq where X is defined. It depends only on X ⊗ F̄q and thus is also a
geometric invariant. It would be interesting to see if there is a diophantine
interpretation of the slope zeta function. If we have a smooth proper family
of varieties, the Grothendieck specialization theorem implies that the generic

7



Newton polygon on each cohomology exists and hence the generic slope zeta
function exists as well.

The slope zeta function satisfies a functional equation [9]. This follows
from the usual functional equation which in turn is a consequence of the
Poincare duality for ℓ-adic cohomology. Precisely, we have

Proposition 4.2 Let X be a connected smooth projective variety of dimen-
sion n over Fq. Then the slope zeta function Sp(X, u, T ) satisfies the following
functional equation

Sp(X, u,
1

unT
) = Sp(X, u, T )(−un/2T )e(X), (5)

where e(X) denotes the the ℓ-adic Euler characteristic of X.

Suppose that X and Y form a mirror pair of n-dimensional Calabi-Yau
manifolds over Fq. For simplicity and for comparison with Hodge theory, we
always assume in this paper that X and Y can be lifted to characteristic zero
(to the Witt ring of Fq). In this good reduction case, the modulo p Hodge
numbers equal the characteristic zero Hodge numbers. Taking u = 1 in the
definition of the slope zeta function, we see that the specialization Sp(X, 1, T )
already satisfies the desired relation

Sp(X, 1, T ) = (1 − T )−e(X) = (1 − T )−(−1)ne(Y ) = Sp(Y, 1, T )(−1)n

.

This suggests that there is a chance that the slope zeta function might satisfy
the desired slope mirror symmetry

Sp(X, u, T ) = Sp(Y, u, T )(−1)n

. (6)

If n ≤ 2, the congruence mirror conjecture implies that the slope zeta
function does satisfy the expected slope mirror symmetry for a strong mirror
pair {X,Y }, whether X and Y are ordinary or not. For n ≥ 3, we believe
that the slope zeta function is still a little bit too strong for the expected
symmetry to hold in general, even if {X,Y } forms a strong mirror pair. And
it should not be too hard to find a counter-example although we have not
done so. However, we believe that the expected slope mirror symmetry holds
for a generic mirror pair of 3-dimensional Calabi-Yau manifolds.
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Conjecture 4.3 (Slope mirror conjecture) Suppose that we are given a
generic mirror pair {X,Y } of 3-dimensional Calabi-Yau manifolds defined
over Fq. Then, we have the slope mirror symmetry for their generic slope
zeta functions:

Sp(X, u, T ) =
1

Sp(Y, u, T )
. (7)

A main point of this conjecture is that it holds for all prime numbers
p. For arbitrary n ≥ 4, the corresponding slope mirror conjecture might
be false for some prime numbers p, but it should be true for all primes
p ≡ 1 (mod D) for some positive integer D depending on the mirror family,
if the family comes from the reduction modulo p of a family defined over a
number field. In the case n ≤ 3, one could take D = 1 and hence get the
above conjecture.

Again the condition in the slope mirror conjecture is vague as it is not
presently known an algebraic geometric definition of a mirror family, although
many examples are known in the toric setting. In a future paper, using the
results in [7][8], we shall prove that the slope mirror conjecture holds in the
toric hypersurface case if n ≤ 3. For example, if X is a generic quintic
hypersurface, then X is ordinary by the results in [5][7] for every p and thus
one finds

Sp(X ⊗ Fp, u, T ) =
(1 − T )(1 − uT )101(1 − u2T )101(1 − u3T )

(1 − T )(1 − uT )(1 − u2T )(1 − u3T )
.

This is independent of p. Note that we do not know if the one-parameter
subfamily Xλ is generically ordinary for every p. The ordinary property for
every p was established only for the universal family of hypersurfaces, not
for a one-parameter subfamily of hypersurfaces such as Xλ. If Y denotes the
generic mirror of X, then by the results in [7] [8], Y is ordinary for every p
and thus we obtain

Sp(Y ⊗ Fp, u, T ) =
(1 − T )(1 − uT )(1 − u2T )(1 − u3T )

(1 − T )(1 − uT )101(1 − u2T )101(1 − u3T )
.

Again, it is independent of p. The slope mirror conjecture holds in this
example.

Remark: The slope zeta function is completely determined by the New-
ton polygon of the Frobenius acting on cohomologies of the variety in ques-
tion. The converse is not true, as there may be cancellations coming from
different cohomology dimensions in the slope zeta function.
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From now on, we assume that X is a smooth projective scheme over
W (Fq). Assume that the reduction X⊗Fq is ordinary, i.e., the p-adic Newton
polygon coincides with the Hodge polygon [6]. In this case, one gets the
explicit formula

Sp(X ⊗ Fq, u, T ) =
n∏

j=0

(1 − ujT )ej(X), (8)

where

ej(X) = (−1)j
n∑

i=0

(−1)i−1hj,i(X). (9)

If X and Y form a mirror pair over the Witt ring W (Fq), the Hodge symmetry
hj,i(X) = hj,n−i(Y ) implies for each j,

ej(X) = (−1)j
n∑

i=0

(−1)i−1hj,n−i(Y ) = (−1)nej(Y ).

We obtain the following result.

Proposition 4.4 Let X and Y be a mirror pair of n-dimensional smooth
projective Calabi-Yau schemes over W (Fq). Assume that both X ⊗ Fq and
Y ⊗ Fq are ordinary. Then, we have the following symmetry for the slope
zeta function:

Sp(X ⊗ Fq, u, T ) = Sp(Y ⊗ Fq, u, T )(−1)n

.

The converse of this proposition may not be always true. The slope mirror
conjecture follows from the following slightly stronger

Conjecture 4.5 (Generically ordinary conjecture) Let n ≤ 3. Sup-
pose that {X,Y } form a generic mirror pair of n-dimensional smooth pro-
jective Calabi-Yau schemes over W (Fq). Then, both X ⊗ Fq and Y ⊗ Fq are
generically ordinary.

For n ≤ 3, it is possible to prove this conjecture in the toric hypersurface
case using the results in [7][8]. For n ≥ 4, we expect that the same conjecture
holds if p ≡ 1 (mod D) for some positive integer D. This should again be
provable in the toric hypersurface case using the results in [7]. But we do
not know if we can always take D = 1, even in the toric hypersurface case if
n ≥ 4.
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