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Abstract. We improve the algorithms of Lauder-Wan [LW08] and Harvey [Har15] to com-
pute the zeta function of a system of m polynomial equations in n variables, over the q
element finite field Fq, for large m. The dependence on m in the original algorithms was
exponential in m. Our main result is a reduction of the dependence on m from exponen-
tial to polynomial. As an application, we speed up a doubly exponential algorithm from a
recent software verification paper [BJK20] (on universal equivalence of programs over finite
fields) to singly exponential time. One key new ingredient is an effective, finite field version
of the classical Kronecker theorem which (set-theoretically) reduces the number of defining
equations for a polynomial system over Fq when q is suitably large.

1. Introduction

Let Fq be the finite field of cardinality q with characteristic p. Let F be a polynomial
system with m equations and n variables over Fq:

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where each fi ∈ Fq[x1, . . . , xn] has total degree at most d. Note that the total number of digits

needed to write down the monomial term expansions in such a system is O
(
m
(
d+n
n

)
log q

)
. So

it is natural to use m
(
d+n
n

)
log q as a measure of input size for F when discussing algorithmic

efficiency.
One could refine the input size further — to take sparsity into account — by replacing

the m
(
d+n
n

)
factor with a quantity closer to the number of monomial terms of F . (See, e.g.,

[vzGKS97, BCR16] where various NP-hardness and #P-hardness results are proved relative
to this potentially smaller measure.) However, for applications like software verification,
there is no reason to expect that the F one encounters will have few monomial terms. So we
will stick with m

(
d+n
n

)
log q as our measure of size. For our purposes here, and for reasons to

be made clear shortly, we will call the polynomial system F large if the number of equations
m is at least n+ 2.

A basic algorithmic problem in number theory is to compute the number of solutions,
Nq(F ), of the polynomial system F = (0, . . . , 0) over Fq. More precisely, we let Nq(F )
denote the cardinality of

{
(x1, . . . , xn) ∈ Fnq

∣∣ F (x1, . . . , xn) = (0, . . . , 0)
}

. The special case
(m,n)=(1, 2) already plays a huge role in cryptography, since curves with a specified number
of points are crucial to the design of many cryptosystems (see, e.g., [CFADLNV06]).

An even deeper problem is to consider all extension fields of Fq at once and compute the
full sequence Nq(F ), Nq2(F ), . . . , Nqk(F ), . . . or, equivalently, the generating zeta function

Z(F, T ) = exp

(
∞∑
k=1

Nqk(F )

k
T k

)
.

Understanding this generating function occupied a good portion of 20th century algebraic
and arithmetic geometry. Interestingly, this generating function has found a recent applica-
tion to software engineering, specifically, in program equivalence [BJK20]. (We clarify this
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in the next section.) It is not at all obvious from the definition that this zeta function is
effectively computable, so let us briefly recall how it actually is.

A deep and celebrated theorem of Dwork from 1960 says that the zeta function is a rational
function in T . A theorem of Bombieri [Bom88] from 1988 says that the total degree of the
zeta function is effectively boundable. It then follows, from basic manipulation of power
series, that the zeta function is effectively computable, although practical efficiency is far
more subtle: See [Wan08] for a survey on algorithms for computing zeta functions. A general
deterministic algorithm to compute Z(F, T ) was constructed in Lauder-Wan [LW08] with
running time

2m(pmndn log q)O(n).

One should note that the case d=1 is easily handled by linear algebra, leading to a complexity
bound of O

(
(max3{m,n} log2 q

)
via any reasonable implementation of Gaussian elimination

and finite field arithmetic, without invoking sub-cubic matrix multiplication or Fast Fourier
Transform multiplication in Fq.

For small characteristic p, the general algorithm from [LW08] remains the best so far.
However, for large characteristic p, the dependence on p has been improved by Harvey
[Har15], who constructed an algorithm with running time

2mp(mndn log q)O(n),

for d ≥ 2. (There is also a variant in [Har15] with time complexity linear in
√
p instead,

but at the expense of increasing the space complexity to roughly the same order as the time
complexity.) The algorithms from [LW08] and [Har15] are, however, fully exponential in m,
even for fixed n.

To improve the dependence on m, we briefly explain how the exponential factor 2m arises in
the algorithms of [LW08] and [Har15]: Both algorithms, in the case m = 1 (the hypersurface
case), are obtained via p-adic trace formulas (meaning linear algebra with large matrices
over the polynomial ring (Z/pλZ)[t], arising after some cohomological calculations). The
case m > 1 is then reduced to the case m = 1 via an inclusion-exclusion trick [Wan08] to
compute the zeta function for each of the 2m hypersurfaces defined by fS =

∏
i∈S fi, where

S runs through all subsets of {1, . . . ,m} and deg(fS) ≤ |S|d ≤ md.
In this paper, we improve the Lauder-Wan algorithm and the Harvey algorithm by em-

ploying an additional algebraic trick to reduce the exponential factor from 2m to m. A key
new idea is to prove an effective, finite field version of Kronecker’s theorem that enables us
to reduce the number of defining equations, m, to min{m,n+ 1} when q is sufficiently large:
See Section 3 below.

Our main result is the following:

Theorem 1.1. There is an explicit deterministic algorithm which computes the zeta function
Z(F, T ) of the system F over Fq (with m equations, n variables, and total degree at most d
for each equation) in time mp(nndn log q)O(n).

We prove Theorem 1.1 in Section 4.
We will see in the next section how our theorem enables us to speed up a doubly exponen-

tial time algorithm (from [BJK20]) for program equivalence to singly exponential time. In
particular, we will now briefly review some of the background on programs over finite fields.



COMPUTING ZETA FUNCTIONS OF LARGE POLYNOMIAL SYSTEMS 3

2. Programs, Their Equivalence, and Zeta Functions

2.1. Background on Program Equivalence. A basic and difficult problem from the the-
ory of programming languages is determining when two programs always yield the same
output, without trying all possible inputs. This problem — a special case of program equiv-
alence — also has an obvious parallel in cryptography: A fundamental problem there is to
decide whether a putative key for an unknown stream cipher (that one has spent much time
deducing) is correct or not, without trying all possible inputs. In full generality, program
equivalence is known to be undecidable in the classical Turing model of computation. How-
ever, program equivalence (and formal verification, in greater generality [LMSU18]) remains
an important problem in software engineering and cryptography. It is then natural to ask
these questions in a more limited setting.

For instance, Barthe, Jacomme, and Kremer (in [BJK20]) describe a programming lan-
guage which enables a broad family of calculations (and verifications thereof) involving poly-
nomials over finite fields. They proved that program equivalence in their setting is decidable,
and gave an algorithm with doubly exponential complexity. We now briefly review their ter-
minology (from [BJK20, Sec. 2.2]), and explain how their algorithm requires a non-trivial
use of zeta functions.

To be more precise, in their restricted setting, a program is a sequence of logical/polynomial
expressions over a finite field. To define this rigorously, one first fixes a set I of input variables
and a set R of random variables. Then all possible expressions making up a program can be
defined recursively (building up from (1) and (2) below) as follows:

(1) a polynomial P ∈ Fq[I, R];
(2) the failure statement ⊥;
(3) an “if” statement of the following form:

if b then e1 else e2

where e1 and e2 are expressions, and b is a propositional logic formula, whose atoms
are of the form Q = 0 for some Q ∈ Fq[I, R].

Remark 2.1. Programs in [BJK20] are written using semi-colons as delimiters, similar to
some real-world program languages such as C or Java.�

The size of a program is defined to be the number of characters in a program. The
presence of random variables enables our programs to use randomization, and give answers
with a certain probability of failure. We denote the set of all such programs by Pq(I, R).
Polynomials in a program are represented by arithmetic formulas, so the degree of any
polynomial in the program is bounded from above by the size of the program. Note that
programs in this core language do not have loops. If a program has neither “if” statements
nor failure statements then we call the program an arithmetic program. The set of all
arithmetic programs is denoted by P̄q(I, R).

The number of expressions at the top level of a program P — denoted by |P| — is simply
the length of the sequence defining P. (In a real-world programming language, the “top
level” of a program simply means one ignores subroutines and, e.g., statements inside of an
“if” statement.) Note also that since our programs can use random variables, our programs

thus send input values in F|I|
qk

to a probability distribution over F|P|
qk

, for any positive integer

k. Here we assume that for every input assignment, the program does not fail (i.e., there is
no evaluation of ⊥ that halts the program) for at least one random assignment. A program
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can thus be viewed as a map from inputs to real-valued functions: F|I|
qk
→ (F|P|

qk
→ [0, 1]).

The following example reveals how understanding the semantics of a program (i.e., what the
program does) in fact requires counting solutions of polynomial systems over finite fields.

Example 2.2. Fixing I = ∅ and R={x}, the program
x ∗ x ; x ∗ x ∗ x

outputs the square, and the cube, of a uniformly random element of Fq.1 Let N(α, β) denote
the number of solutions in Fqk of (x2, x3)=(α, β). The output of the program thus exhibits a
random variable on F2

qk
, with probability mass function taking the value N(α, β)/qk at (α, β). �

Example 2.3. Let I = {x} and R = {y, z}. The following program P1 is in P(I, R):

if ¬(x = 0) then y + 1 else y + 2; z ∗ z

The program P1 yields the probability distribution on F2
qk

corresponding to the first coordinate
being uniformly random in Fqk and the second coordinate a uniformly random square in Fqk . �

To calculate the distribution, the sample space consists of the assignments to random
variables so that the program does not fail. Recall that we assume that for every input
assignment, the program does not fail for at least one random assignment. For example, the
following program (I = {x} and R = {y}) computes the inverse of x with probability 1:

if x = 0 then 0 else if x ∗ y = 1 then y else ⊥

Given two programs, we would like to check whether they produce the same distribution
for any input. More generally, let P1,Q1 be programs and P2,Q2 be arithmetic programs.
We write P1|P2 ≈ Q1|Q2 if, taking any input c under the condition that P2 = ~0, P1 outputs

the same distribution as Q1 taking c as input under the condition Q2 = ~0. To calculate the
distribution, we only need to consider the random values such that none of P1 and Q1 output ⊥.

Remark 2.4. Observe that the set of inputs yielding a fixed sequence of outputs is nothing
more than a constructible set over Fqk , i.e., a boolean combination of algebraic sets over Fqk .
In particular, the set of inputs making two programs differ is also a constructible set over a
finite field. �

The question of equivalence can be raised for a fixed k, or for all positive integers k. The
latter case is called universal equivalence, which is most relevant to our discussion here. For
example, let Q1 be the program defined by:

y; 7 ∗ (z + 1) ∗ (z + 1).

If 7 is a nonzero square in Fq then the program P1 (from Example 2.3) is universally equivalent
to Q1, i.e., P1|0 ≈ Q1|0. Otherwise, P1|0 and Q1|0 are not equivalent over Fq, and hence not
universally equivalent.

1The value of x is fixed once the first instance has taken place. Note also that we use x ∗ x in place of
x2, since polynomials are represented by arithmetic formulas and thus arbitrary exponentiation requires a
varying number of gates.
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2.2. An Improved Reduction from General to Arithmetic Programs. Note that
in greater generality, checking universal equivalence means checking if a sequence of con-
structible sets consists solely of empty sets (per Remark 2.4 above). As observed in [BJK20],
this can be done by a single zeta function computation. This is, in essence, how [BJK20]
proved that universal equivalence for arithmetic programs can be done in singly exponential
time. For universal equivalence of conditional programs, the same ideas apply, but [BJK20]
proved a doubly exponential complexity upper bound. More precisely, for general programs
P1,Q1 and arithmetic programs P2,Q2 , they defined a reduction, to obtain four arithmetic
programs P′1,P′2,Q′1 and Q′2 so that

P1|P2 ≈ Q1|Q2 if and only if P′1|P′2 ≈ Q′1|Q′2.

One can reduce general program equivalence to deciding P′1|P′2 ≈ Q′1|Q′2, where P′1,P′2,Q′1
and Q′2 are each arithmetic programs. More precisely, if ` is the input size of the original
programs (i.e., the sum of the sizes of P1,P2,Q1 and Q2), then we can build the new arith-
metic programs P′i and Q′i so that they have size 2O(`), consist of 2O(`) many polynomials,
but involve just `O(1) many variables. Furthermore, the total degree of each polynomial in
the new programs is at most 2O(`).

We outline this reduction below, but first let us state an immediate consequence of applying
our improved zeta function algorithm to this reduction: We improve the main complexity
bound of [BJK20] from doubly exponential to singly exponential.

Theorem 2.5. Universal equivalence of programs can be checked in time singly exponential
in the size. �

Since our main focus is speeding up zeta function computation, we will now briefly out-
line, through some representative examples, how to reduce general programs to arithmetic
programs. See [BJK20] for the full, formal treatment of their original reduction.

First, it is clear that we need to be able to remove failure statements (⊥) and “if”
statements from P1 and Q1. We may assume that there is at most one occurrence of the
failure statement in P1, since we can collect the conditions for failure together. For example,
the following program:

if A1 then ⊥ else P1; if A2 then P2 else if A2 then ⊥ else P3

is equivalent to

if A1 ∨ (¬A2 ∧ A2) then ⊥ else P1; if A2 then P2 else P3

The new program has size polynomial in the size of the old program, since the number of
⊥ in the input program is bounded from above by the size of the input. Without loss of
generality, suppose then that P1 has the form

if b then P1 else ⊥; P̄1

where ⊥ occurs only once in the program and P̄1 has no failure statements. If the condition b
is a disjunction of literals2 then we can find a single polynomial B whose vanishing represents
b. For example, if b is (P2 = 0) ∨ ¬(P3 = 0) ∨ ¬(P4 = 0), then we build the polynomial

2A disjunction is simply a boolean “OR” applied to several propositions. A literal is simply a variable, or
the negation thereof.
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B =P2(t3P3 − 1)(t4P4 − 1). The new programs then become

P′1 = P1; P̄1

P′2 = P2;B; t3(t3P3 − 1);P3(t3P3 − 1); t4(t4P4 − 1);P4(t4P4 − 1)

Q′1 = Q1

Q′2 = Q2;B; t3(t3P3 − 1);P3(t3P3 − 1); t4(t4P4 − 1);P4(t4P4 − 1)

Here t3 and t4 are new random variables but they are uniquely determined by P3 and P4

under the constraints. Namely if P3 = 0, then t3 = 0, otherwise t3 = 1/P3. For a more
general proposition formula b, we first convert it to a CNF formula,3 which may result in
a conjunction of exponentially many disjunctions, hence exponentially many polynomials
B1, B2, · · · , Bm, in addition to polynomials like ti(tiPi − 1) and Pi(tiPi − 1) etc. The new
equivalence is then

P1; P̄1|P2, B1, B2, . . . ≈ Q1|Q2, B1, B2, . . .

Nevertheless, we have only introduced polynomially many new variables, since we need at
most one new variable for each polynomial in the original program. Also, while the program
P′2 may be exponentially long, the program P′1 is actually shorter than the original P1.

Observe that we may also assume that all the inputs to conditional statements are literals.
For example we can replace

if A1 ∨ A2 then P1 else P2.

by
if A1 then P1 else if A2 then P1 else P2.

Then, to remove “if” in a conditional statement such as

· · · ; if ¬(B = 0) then P1 else P2; · · · |P2

we can use classical tricks such as replacing disequalities by equalities with an extra variable
to obtain

· · · ;P2 + (tB)(P1 − P2); · · · |P2;B(Bt− 1); t(Bt− 1)

Note that this step may increase the size exponentially, but the number of variables grows
only polynomially.

The reduction we have just outlined is similar to the reduction [BJK20] used to derive
their doubly exponential algorithm to solve the general universal equivalence. Our version
is slightly better since we do not introduce as many new variables.

Let us at last detail the key trick behind our improved zeta function algorithm.

3. Effective Kronecker theorem over Finite Fields

A classical theorem of Kronecker [Kro82] says that any affine algebraic set defined by a
system of m (>n) polynomials in n variables over an algebraically closed field K can be set-
theoretically defined by a system of n+ 1 polynomials in n variables over the same field K.
Kronecker stated his theorem without a detailed proof; see [Per43] for a self-contained proof.
The theorem, as stated, is actually true for any infinite field K, not necessarily algebraically
closed. But it fails for certain finite fields (depending on the underlying polynomial system),
which is our main concern here. Here we follow the ideas in [Per43] to show that Kronecker’s

3Conjunctive Normal Form, meaning “an AND of ORs”. . .
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theorem remains true for a finite field Fq, if q is suitably large, and tailor our version to our
algorithmic applications.

Recall that if I is an ideal in the commutative ring Fq[x1, . . . , xn], then its radical ideal is

defined as
√
I = {f ∈ Fq[x1, . . . , xn] | f i ∈ I for some i ≥ 1}. It is then clear that the two

ideals I and
√
I have the same set of Fqk-rational points for every k. In particular, they have

the same zeta function.

Theorem 3.1. [Affine version] Let fi ∈ Fq[x1, . . . , xn] with deg(fi) ≤ d for all i∈{1, . . . ,m}.
Assume that q > (n + 1)dn. Then there is a deterministic algorithm with running time
m(ndn)O(n) log2 q or O(max3{m,n} log2 q), according as d ≥ 2 or d = 1, which finds n + 1
polynomials gj ∈ Fq[x1, . . . , xn] with deg(gj) ≤ d for all j ∈ {1, . . . , n + 1} such that their

radical ideals are the same:
√

(f1, . . . , fm) =
√

(g1, . . . , gn+1).

We prove Theorem 3.1 after first proving the following homogeneous version:

Theorem 3.2. [Homogeneous version] Let fi ∈ Fq[x1, . . . , xn] be homogeneous polynomials
of degree d for all i ∈ {1, . . . ,m} and assume q > ndn−1. Then there is a deterministic
algorithm, running in time m(ndn)O(n) log2 q or O(max3{m,n} log2 q), according as d ≥ 2
or d = 1, which finds n homogeneous polynomials gj ∈ Fq[x1, . . . , xn] of degree d for all

j∈{1, . . . , n} such that their radical ideals are the same:
√

(f1, . . . , fm) =
√

(g1, . . . , gn).

Proof of Theorem 3.2: If m ≤ n then the theorem is trivial as we can just take gj = fj for
j ≤ m and gj = f1 for j > m. So we assume m > n henceforth. By induction, it is enough
to prove the case m = n+ 1. The case d=1 is immediate from Gaussian Elimination, so let
us also assume d≥2.

Now, the n+ 1 polynomials {f1, . . . , fn+1} in n variables are algebraically dependent over
Fq. That is, there is a non-zero homogeneous polynomial AM(y1, . . . , yn+1) of some positive
degree M in Fq[y1, . . . , yn+1] such that

AM(f1, . . . , fn+1) =
∑

k1+···+kn+1=M

Ak1,...,kn+1f
k1
1 · · · f

kn+1

n+1 = 0.

This polynomial relation gives a homogeneous linear system over Fq with
(
M+n
n

)
variables

Ak1,...,kn+1 and
(
Md+n−1
n−1

)
equations (one equation for each monomial of degree dM in the

variables x1, . . . , xn). If
(
M+n
n

)
>
(
Md+n−1
n−1

)
then the homogeneous linear system must have

a non-trivial solution. So let us choose M = ndn−1: Clearly Md+ i ≤ d(M + i) for all i ≥ 0
and (

M+n
n

)(
Md+n−1
n−1

) =
M + n

n

n−1∏
i=1

M + i

Md+ i
≥ M + n

n

(
1

d

)n−1
> 1.

Solving our linear system takes time at most

O

((
M + n

n

)ω
log2 q

)
= MO(n) log2 q = (ndn)O(n) log2 q,

(with ω < 2.373 the matrix multiplication complexity exponent [V-W19]). So we can then
clearly find a non-trivial solution involving Ak1,...,kn+1 ∈ Fq with k1 + · · ·+ kn+1 = M .

Next, we would like to make an invertible Fq-linear transformation

yu =
n+1∑
v=1

bu,vzv, bu,v ∈ Fq, u∈{1, . . . , n+ 1}
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such that when AM(y1, . . . , yn+1) is expanded as a polynomial in z1, . . . , zn+1 under the
above linear tranformation, the coefficient of zMn+1 is non-zero. Such an invertible linear
transformation may not exist if q is small. We shall prove that it does exist if q>M=ndn−1:
Expand and write

AM(y1, . . . , yn+1) =
∑

k1+···+kn+1=M

Bk1,...,kn+1z
k1
1 · · · z

kn+1

n+1 .

One easily checks that the coefficient of zMn+1 is

B(b1,n+1, . . . , bn+1,n+1) :=B0,...,0,M =
∑

k1+···+kn+1=M

Ak1,...,kn+1b
k1
1,n+1 · · · b

kn+1

n+1,n+1,

and is an (n + 1)-variate homogeneous polynomial in Fq[b1,n+1, . . . , bn+1,n+1]\{0} of degree
M . Since we assume M < q, the polynomial B is not the zero function on Fn+1

q .
Now, since we have solved for the coefficients Ak1,...,kn+1 of AM(y1, . . . , yn+1) already, we

know the monomial term expansion for the homogeneous polynomial Bn∈Fq[b1,n+1, . . . , bn,n+1]

that satisfies B=Bn(b1,n+1, . . . , bn,n+1)b
dn+1

n+1,n+1 + o(b
dn+1

n+1,n+1) where dn+1 is the degree of B in
bn+1,n+1, Bn is not the zero polynomial, and the second term means a sum of terms of degree
strictly lower than dn+1 with respect to bn+1,n+1. In particular, if n=1, we can simply pick
b1,2 to be any nonzero element of Fq, and try ≤d2 + 1≤M + 1 elements of Fq until we find
a b2,2 making B(b1,2, b2,2) nonzero as desired.

Otherwise, if n≥2, we similarly determine the monomial term expansion for the homoge-
neous polynomial Bn−1∈Fq[b1,n+1, . . . , bn−1,n+1] that satisfies

Bn=Bn−1(b1,n+1, . . . , bn−1,n+1)b
dn
n,n+1 + o(bdnn,n+1),

and so on, to define successive leading coefficient polynomials Bn−2, . . . ,B1 in fewer and
fewer variables. We then see that upon picking any nonzero element of Fq for b1,n+1, and
then checking ≤M + 1 possible values for b2,n+1, and ≤M + 1 possible values for b3,n+1, etc.,
we can make B(b1,n+1, . . . , bn+1,n+1) nonzero after (M + 1)n polynomial evaluations.

Recall that powers like ak in Fq can be evaluated via the binary method using O(log k) mul-
tiplications in Fq. Recall also that multiplications in Fq can be done within time O(log2 q),
and even faster if Fast Fourier Transforms are used. (See, e.g., [BS96].) Observe then
that each evaluation of AM(z1, . . . , zn+1) at a choice of (b1,n+1, . . . , bn+1,n+1) thus takes time

O(
(
M+n
n

)
n log(M) log2 q)=(ndn−1)O(n)n log(ndn−1) log2 q=nO(n)dO(n2) log2 q. So then, multi-

plying our last bound by (M + 1)n= (ndn−1 + 1)n, we see that finding our desired vector

(b1,n+1, . . . , bn+1,n+1) takes overall time nO(n)dO(n2) log2 q.
The non-zero vector (b1,n+1, . . . , bn+1,n+1) can be easily extended to an invertible square

matrix (bu,v) ∈ GLn+1(Fq). For instance, if bn+1,n+1 6= 0, then we can simply take bu,v = 0
for u 6= v and v ∈{1, . . . , n}, and bu,v = 1 if u = v ≤ n. More generally, we can simply do
the same construction (up to a permutation of indices) if bn+1,n+1 =0 and we find some other
bi,n+1 that is nonzero. In this way, we obtain the desired invertible transformation.

To conclude, we substitute fi :=
∑n+1

j=1 bi,jgj (thus actually defining the gj as linear com-

binations of the fi, since the matrix [bi,j] is invertible by construction) and rewrite our
established polynomial relation in the form

AM(f1, . . . , fn+1) = cgMn+1 +G1(g1, . . . , gn)gM−1n+1 + · · ·+GM(g1, . . . , gn) = 0,

where c was our constructed nonzero value for B(b1,n+1, . . . , bn+1,n+1) and Gi(g1, . . . , gn) is a
homogeneous polynomial in (g1, . . . , gn) of degree i for i∈{1, . . . ,M}. Since c 6=0 we deduce
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that gMn+1 ∈ (g1, . . . , gn). It follows that√
(f1, . . . , fn+1) =

√
(g1, . . . , gn+1) =

√
(g1, . . . , gn)

so we have proved the case m=n+ 1. Our general complexity bound can be attained simply
by repeating the preceding argument on the new system (g1, . . . , gn, fn+2) and proceeding
inductively. In other words, our final overall complexity bound is no more than m times
(ndn)O(n) log2 q. �

Proof of Theorem 3.1: We first homogenize the polynomials f1, . . . , fm to obtain a homo-
geneous polynomial Fi(x0, x1, . . . , xn) :=xd0fi(x1/x0, . . . , xn/x0) of degree exactly d for each
i∈{1, . . . ,m}. Note that Fi(1, x1, . . . , xn)=fi(x1, . . . , xn) for all i.

Now applying Theorem 3.2 to {F1, . . . , Fm} we obtain a homogeneous polynomial
Gj(x0, x1, . . . , xn) of degree d, for each j ∈ {1, . . . , n + 1}, such that√

(F1, . . . , Fm) =
√

(G1, . . . , Gn+1). Setting x0 = 1 in the last equality one obtains√
(f1, . . . , fm) =

√
(g1, . . . , gn+1) where we define gi(x1, . . . , xn) :=Gi(1, x1, . . . , xn). �

4. The Computation of Zeta Functions: Proving Theorem 1.1

Let F be the following polynomial system with m equations and n variables over Fq:

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where each fi ∈ Fq[x1, . . . , xn] has total degree at most d. To compute the zeta function
Z(F, T ), we need the following explicit degree bound of Bombieri:

Lemma 4.1. [Bom88] The total degree (the sum of the degrees of the numerator and
denominator) of the zeta function Z(F, T ) is no greater than (4d+ 5)2n+1. �

Note that this total degree bound is independent ofm. This already suggests the possibility
of improving the dependence on m in earlier algorithms for computing zeta functions. By
applying our effective Kronecker theorem (Theorem 3.1), we are now ready to prove our
main result.

Proof of Theorem 1.1: If q > (n+ 1)dn then we can apply the affine effective Kronecker
theorem in the previous section to replace the large polynomial system F by a smaller
polynomial system G = (g1(x1, . . . , xn), . . . , gn+1(x1, . . . , xn)), where each gj ∈ Fq[x1, . . . , xn]
has total degree at most d. The smaller system G can be constructed in time

m(ndn)O(n) log2 q,

thanks to Theorem 3.1. The two systems F and G have the same number of solutions
over every extension field Fqk . In particular, their zeta functions are the same, namely,
Z(F, T ) = Z(G, T ). Now, by the algorithms in [Har15], the zeta function Z(G, T ) can be
computed in time

2n+1p((n+ 1)ndn log q)O(n) = p(nndn log q)O(n).

Thus, the zeta function Z(F, T ) can be computed in time

m(ndn)O(n) log2(q) + p(nndn log q)O(n) =dO(n2)(mnO(n) log2(q) + p(nn log q)O(n)).

If q ≤ (n + 1)dn then we cannot apply our effective Kronecker theorem directly. So we
use a somewhat different argument instead: Let B = (4d + 5)2n+1 be the upper bound in



10 QI CHENG, J. MAURICE ROJAS, AND DAQING WAN

Bombieri’s lemma. By Corollary 2.7 and its proof in [Wan08], it is enough to compute the
following B numbers

Nqk(F ); k∈{1, . . . , B}.
If qk ≤ (n + 1)dn, namely, k ≤ log((n + 1)dn)/ log q, then we simply use exhaustive search
to compute Nqk(F ). For each such k this takes time

qknm(dn log q)O(1) ≤ ((n+ 1)dn)nm(dn log q)O(1) = m(n+ 1)ndO(n2)(log q)O(1).

If qk > (n+ 1)dn, namely, log((n+ 1)dn)/ log q < k ≤ B, then we can apply Theorem 3.1 to
the system over the extension field Fqk to produce a new system

Gk = (gk,1(x1, . . . , xn), . . . , gk,n+1(x1, . . . , xn)),

where each gk,j ∈ Fqk [x1, . . . , xn] has total degree at most d. Note that this takes time

m(ndn)O(n) log2(qk) = mk2(ndn)O(n) log2 q ≤ mB2(ndn)O(n) log2 q = mdO(n)(ndn)O(n) log2 q
=m(ndn)O(n) log2 q. Now,

Nqk(F ) = Nqk(Gk).

The system has only n + 1 equations and thus the number Nqk(Gk) (in fact the full zeta
function of Gk over Fqk) can be computed by [Har15] in time

2n+1p(k(n+ 1)ndn log q)O(n) = p(Bnndn log q)O(n) = p(nndn log q)O(n).

Thus, the total time to compute Z(F, T ) is bounded from above by

m(ndn)O(n) logO(1)(q) +Bmp(nndn log q)O(n) = dO(n2)(mnO(n) logO(1)(q) + p(nn log q)O(n)). �
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