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Abstract—In this paper, we obtain new results on the covering
radius and deep holes for projective Reed-Solomon (PRS) codes.

I. INTRODUCTION

A. Notations and the Main Results

Let Fn
q be the n-dimensional vector space over the finite

field Fq of q elements with characteristic p. For any vector
(also, called word) x = (x1, x2, · · · , xn) ∈ Fn

q , the Hamming
weight Wt(x) of x is defined to be the number of non-zero
coordinates, i.e., Wt(x) = # {i | 1 6 i 6 n, xi 6= 0} . For
integers 0 ≤ k ≤ n, a linear [n, k] code C is a k-dimensional
linear subspace of Fn

q . The minimum distance d(C) of C is the
minimum Hamming weight among all non-zero vectors in C,
i.e., d(C) = min{Wt(c) | c ∈ C \ {0}}. A linear [n, k] code
C ⊆ Fn

q is called a [n, k, d] linear code if C has minimum
distance d. A well-known trade-off between the parameters of
a linear [n, k, d] code is the Singleton bound which states that
d 6 n−k+1. An [n, k, d] code is called a maximum distance
separable (MDS) code if d = n − k + 1. An important class
of MDS codes are affine Reed-Solomon codes and projective
Reed-Solomon codes, which will be our main object of study
in this paper.

Let C be an [n, k, d] linear code over Fq . The error distance
of any word u ∈ Fn

q to C is defined to be

d(u,C) = min{d(u, v) | v ∈ C},

where
d(u, v) = #{i |ui 6= vi, 1 ≤ i ≤ n}

is the Hamming distance between words u and v. The error
distance plays an important role in the decoding of the code.
The maximum error distance

ρ(C) = max{d(u, C) |u ∈ Fn
q }

is called the covering radius of C.
Covering radius of codes was studied extensively [7], [8],

[12], [13], [19], [21]. For MDS codes, the covering radius is
known to be either d − 1 or d − 2 [10]. For a general MDS
code, determining the exact covering radius is difficult. We
shall see below that affine Reed-Solomon codes have covering
radius d−1. In contrast, the covering radius of projective Reed-
Solomon codes is unknown in general but is conjectured to be
d− 2. We now recall the definition of Reed-Solomon codes.

Fix a subset D = {x1, . . . , xn} ⊆ Fq , which is called the
evaluation set. For integer 0 < k < n, the affine RS code
C = RS(D, k) of length n and dimension k over Fq is defined
to be

RS(D, k) = {(f(x1), . . . , f(xn)) ∈ Fn
q | f(x) ∈ Fq[x],

deg f(x) ≤ k − 1}.

It is easy to check that the minimal distance of this code is
n − k + 1, and thus RS(D, k) is a MDS code. For D = Fq ,
we write RS(q, k) for short.

For any word u ∈ Fn
q , by the Lagrange interpolation, there

is a unique polynomial f of degree ≤ n− 1 such that

u = uf = (f(x1), f(x2), · · · , f(xn)).

Clearly, uf ∈ RS(D, k) if and only if deg(f) ≤ k − 1. We
also say that uf is defined by the polynomial f(x). One can
easily show (see [15]): for any k 6 deg(f) 6 n− 1, we have
the inequality

n− deg(f) 6 d(uf , RS(D, k)) 6 n− k.

It follows that if deg(f) = k, then d(uf , RS(D, k)) = n− k.
One deduces the following

Proposition 1.1: The covering radius of RS codes with
parameters [n, k, d = n− k + 1] is n− k = d− 1.

If the distance from a word to the code achieves the covering
radius of the code, then the word is called a deep hole of the
code. Deciding deep holes of a given code is much harder
than the covering radius problem, even for RS codes. The
deep hole problem for RS codes was studied in [4], [5],
[14], [15], [17], [18], [24], [25], [26]. As noted above, words
uf with deg(f) = k are deep hole of RS(D, k). Based on
numerical computations, Cheng and Murray [5] conjectured
that the converse is also true if D = Fq .

Conjecture 1.2 ([5]): For 0 < k < q, a word uf is a deep
hole of RS(q, k) if and only if deg(f) = k.

This conjecture remains open, but has been proved in [28] if
either k+1 ≤ p or 3 ≤ q−p+1 ≤ k+1 ≤ q−2. In particular,
the conjecture is true for prime fields. The aim of this paper is
to try to extend the above results and conjecture to projective
Reed-Solomon codes. This turns out to be more difficult, as
the covering radius is already unknown. For simplicity, we
shall assume that q is odd.



Recall that the Projective Reed-Solomon (PRS) code is
defined to be

PRS(q + 1, k) = {(f(α1), · · · , f(αq), ck−1(f)) | f(x) ∈ Fq,

deg(f(x)) < k}

where Fq = {α1, α2, · · · , αq = 0} and ck−1(f) is the
coefficient of the term of degree k−1 of f(x). In other words,
PRS(q + 1, k) has one generator matrix of the form

1 1 · · · 1 0
α1 α2 · · · αq 0
...

...
. . .

...
...

αk−2
1 αk−2

2 · · · αk−2
q 0

αk−1
1 αk−1

2 · · · αk−1
q 1

 .

It is easy to check that the PRS code has minimum distance
q + 2− k and thus it is also an MDS code.

For the case k = 1, the PRS code PRS(q+1, 1) is nothing
but the repeating code generated by (1, 1, · · · , 1). In this case,
one can easily show that the covering radius is d− 2 = q− 1
and the deep holes are permutations of Fq∪{α}, where α ∈ Fq

is arbitrary.
For the case k = q − 1, the proof of Theorem 1.6 in the

next section shows that the covering radius of PRS(q+1, k)
is d−2 = 1 and the deep holes are (a, · · · , a, 0, v)+PRS(q+
1, k), where a, v ∈ Fq are arbitrary with a 6= 0.

For the case k = q, one can show that the covering radius
of PRS(q + 1, k) is d − 1 = 1 and the deep holes are w +
PRS(q + 1, k) for all w ∈ Fq+1

q of weight 1.
With the boundary cases removed, we can then assume that

2 ≤ k ≤ q − 2.
Although the covering radius of RS codes is always d−1, it

seems a little surprising that the covering radius of PRS codes
is unknown in general. The example in [7] is one PRS code
C over F5 with generator matrix

1 1 1 1 1 0
1 2 3 4 0 0
1 22 32 42 0 0
1 23 33 43 0 1

 .

The code C has minimum distance 3 and covering radius
1. This example suggests PRS(q + 1, k) may have covering
radius q−k, two smaller than the minimum distance q+2−k.
This leads to

Conjecture 1.3 (Covering radius for PRS codes): For odd
q, the covering radius of the projective Reed-Solomon code
PRS(q + 1, k) is d− 2 = q − k.

In [9], Dür proved
Proposition 1.4 ([9]): Let q be odd. If 2 ≤ k <

√
q

4 + 39
16

or 6
√
q ln q − 2 ≤ k ≤ q − 2, then the covering radius of

PRS(q + 1, k) is

ρ(PRS(q + 1, k)) = q − k.

Our first result is to improve Proposition 1.4 in the cases
q = p and q = p2. Using recent results of Ball [1] and Ball-De
Beule [2] on Conjecture 1.12, we prove

Theorem 1.5: Let Fq be a finite field of q elements and of
odd characteristic p.

1) If q = p, for any 2 ≤ k ≤ p− 2, the covering radius of
PRS(p+ 1, k) is

ρ(PRS(p+ 1, k)) = p− k.

2) If q = p2, for 2 ≤ k ≤ 2p − 3, the covering radius of
PRS(q + 1, k) is

ρ(PRS(q + 1, k)) = q − k.

The first part shows that the covering radius conjecture is
true in the case q = p, solving the open case (q = 13, k = 4)
proposed in [9].

Our second result is on deep holes of PRS codes. To
describe it, we need to introduce more definitions. As the first
q coordinates of PRS(q + 1, k) corresponds to an affine part
of the projective line, we represent a vector in Fq+1

q by (uf , v)
where uf ∈ Fq

q is defined by a polynomial f of degree ≤ q−1:

uf = (f(α1), · · · , f(αq))

and v ∈ Fq is arbitrary. It is easy to see that (uf , v) ∈ Fq+1
q

represents a codeword of PRS(q + 1, k) if and only if

deg(f) ≤ k − 1 and v = ck−1(f).

Theorem 1.6: Let q be odd. Assume that Conjecture 1.2
is true. The covering radius of PRS(q + 1, k) is q − k, and
the words {(uf , v) | deg(f) = k, v ∈ Fq} are deep holes of
PRS(q + 1, k).

This first part shows that the covering radius conjecture is
a consequence of the conjecture on deep holes of RS(q, k),
providing an additional evidence to the covering radius con-
jecture. Since Conjecture 1.2 is known to be true if k+1 ≤ p
or 3 ≤ q − p+ 1 ≤ k + 1 ≤ q − 2, we deduce

Corollary 1.7: Let q be odd. Assume 3 ≤ k + 1 ≤ p or
3 ≤ q − p + 1 ≤ k + 1 ≤ q − 2. The covering radius of
PRS(q + 1, k) is q − k, and the words {(uf , v) | deg(f) =
k, v ∈ Fq} are deep holes of PRS(q + 1, k).

A further question is to classify all deep holes of the PRS
codes. In this direction, we propose

Conjecture 1.8: Let q be odd. For 2 ≤ k ≤ q − 2, the
set {(uf , v) | deg(f) = k, v ∈ Fq} are all the deep holes of
PRS(q + 1, k).

This conjecture is stronger than the covering radius conjec-
ture. As a positive evidence, we prove

Theorem 1.9: If deg f ≥ k+1, denote s = deg(f)−k+1.
There are positive constants c1 and c2 such that if

s < c1
√
q,
(s
2
+ 2
)
log2(q) < k < c2q,

then for any v ∈ Fq , (uf , v) is not a deep hole of PRS(q +
1, k).

Remark. From the results on covering radii of RS codes,
PRS codes and MDS codes, one may expect that there is some
relationship between the covering radius and the minimum
distance for general codes. The example below shows that
there does not exist such a relationship in general.



Example 1.10: Let RS(n, k) be an RS code over Fq . For
any word u ∈ Fn

q \RS(n, k), let Cu = Fqu⊕RS(n, k). Then
the minimum distance d(Cu) is d(Cu) = d(u,RS(n, k)). If
we take u to be the vector defined by xk, we obtain Cu =
RS(n, k + 1). So the covering radius of Cu = d(Cu) − 1 =
n − k − 1. However, if we take u to be any 1-error vector,
e.g. u = (1, 0, 0, · · · , 0), we obtain a code Cu with minimum
distance 1. However, Cu has large covering radius

≥ ρ(RS(n, k))−M(RS(n, k), RS(n, k + 1)) = n− k − 1,

by the following proposition.
Proposition 1.11 ([7]): Let C1 ⊂ C2 and denote

M(C1, C2) = max{d(c, C1) | c ∈ C2}.

Then
ρ(C1) ≤ ρ(C2) +M(C1, C2).

B. Extension: Covering Radius of the longest MDS Codes

We first recall the MDS conjecture.
Conjecture 1.12 (MDS Conjecture): For every linear [n, k]

MDS code over Fq , if 1 < k < q, then n ≤ q+1, except when
q is even and k = 3 or k = q − 1, in which cases n ≤ q + 2.

In [9], Dür proved that the covering radius of PRS(q+1, k)
is q − k if and only if the normal rational curve is com-
plete (see [23] for improvements) in the projective geometry
PG(q− k, q). From this, he deduced that the covering radius
conjecture for PRS codes is a consequence of the MDS
conjecture. The covering radius of MDS codes constructed
from elliptic curves was studied in [21]. Recently, authors
in [3] used elliptic curves to construct infinite families of MDS
codes with covering radius d − 2, but of length < q + 1.
Actually, the length of most MDS codes constructed from
elliptic curves is automatically < q + 1 from [16], [20].

Assumption: For simplicity, from now on, we assume that
the size q of the finite field Fq is odd.

One reason is that deep holes of RS codes over finite fields
of even characteristic may be more complex [26]. Another
reason is that in the odd q case, q+1 corresponds to the longest
length of MDS codes over Fq according to MDS conjecture.

In this paper, we only consider MDS codes of the longest
length derived from MDS conjecture. Could we say something
more about the structure on the longest MDS codes, i.e., n =
q+1? From Subsection A, we saw that the PRS code PRS(q+
1, k) is an MDS code of length q + 1. Conversely, do PRS
codes of length q+1 form all the MDS codes of length q+1?
This is related to a problem about the structure of (q+1)-arc
in finite geometry proposed by Segre in [22].

Proposition 1.13 ([1]): For k ≤ p or 3 ≤ q − p+ 1 ≤ k ≤
q−2, the length of MDS codes over Fq can not exceed q+1.
Moreover, for the range of k above, if the length n of an MDS
code C [n, k] over Fq achieves q + 1, then C is equivalent to
the PRS code PRS(q + 1, k).

By Propositions 1.13 and the above results on covering
radius of PRS codes, we obtain

Theorem 1.14: Let q be odd. For 3 ≤ k + 1 ≤ p or 3 ≤
q − p+ 1 ≤ k + 1 ≤ q − 2, the covering radius of any MDS
code C with parameters [q + 1, k] is

ρ(C) = q − k.

In particular, we have
Corollary 1.15: Let p be a prime. For 2 ≤ k ≤ p − 2, the

covering radius of any MDS code C with parameters [p+1, k]
is

ρ(C) = p− k.

Similar to Conjecture 1.8, we propose
Conjecture 1.16: [General covering radius conjecture] Let

q be odd. For 2 ≤ k ≤ q−2, the covering radius of any MDS
code C with parameters [q + 1, k] is

ρ(C) = q − k.

Remark. If all the MDS codes of length q + 1 over the
finite field Fq (q odd) are equivalent to the PRS codes of
length q + 1, then Conjecture 1.16 immediately follows from
Conjecture 1.3. However, there is an MDS code of length 10
over F9 discovered by Glynn [11] which is not equivalent to
the PRS code PRS(10, 5). This is the only one MDS code
known so far which is not equivalent to PRS codes. This MDS
code has a generator matrix

1 1 · · · 1 0
α1 α2 · · · α9 0

α2
1 + wα6

1 α2
2 + wα6

2 · · · α2
9 + wα6

9 0
α3
1 α3

2 · · · α3
9 0

α4
1 α4

2 · · · α4
9 1

 ,

where F9 = {α1, α2, · · · , α9} and w is any fixed element in
F9 such that w4 + 1 6= 0. Using mathematical softwares, one
can check the code has covering radius 4 which also satisfies
Conjecture 1.16.

II. PROOFS OF THEOREMS 1.5, 1.6 AND 1.9

A. Deep Holes of RS(q, k) and Proof of Theorem 1.6

We first review some results about error distances and
deep holes of RS codes RS(q, k) which will help us prove
Theorem 1.6.

Recall that all deep holes of RS(q, k) were conjectured to
be defined by polynomials of degree k (Conjecture 1.2). The
same conjecture is false for general evaluation set D, see [25],
[26]. To prove Conjecture 1.2, the easiest case is to determine
whether a polynomial of degree k + 1 defines a deep hole
of RS(q, k). Li and Wan [15] interpreted it as a subset sum
problem (SSP). Let G be a finite abelian group and D a subset
of G. The k-SSP over D consists in determining for any g ∈
G, if there is a subset S ⊂ D such that |S| = k and

∑
s∈S s =

g. For general D, solving k-SSP is an NP-hard problem. But
in our case, we only care D = G = Fq where the k-SSP is
easy.

Proposition 2.1 ([15]): If D = G = Fq , then for any g ∈
Fq and for any 1 ≤ k ≤ q − 1, the k-SSP over D always has
solutions.



The above proposition is applied to decide deep holes of
RS(q, k).

Proposition 2.2 ([15]): For any 1 ≤ k ≤ q− 2, the vectors
defined by polynomials of degree k+1 are not deep holes of
RS(q, k).

For general degrees, the authors in [5] got the first result
by reducing the conjecture to the existence of rational points
on a hypersurface over Fq . Following a similar approach of
Cheng-Wan [6], Li and Wan [24] improved the result in [5]
with Weil’s character sum estimate. Later, Cafure et.al. [4]
improved the result in [24] a little bit by using tools of
algebraic geometry.

Liao [18] gave a tighter estimation of error distance, which
was improved by Zhu and Wan [27].

Proposition 2.3 ([27]): Let uf ∈ Fq
q such that 1 ≤ r ≤ d =

deg(f)− k < q − 1− k. There are positive constants c1 and
c2 such that if

d < c1
√
q, ((d+ r)/2 + 1) log2(q) < k < c2q,

then d(uf , RS(q, k)) ≤ q − k − r.
A major progress in proving Conjecture 1.2 is the recent

result:
Proposition 2.4 ([28]): If k + 1 ≤ p or 3 ≤ q − p + 1 ≤

k + 1 ≤ q − 2, Conjecture 1.2 is true.

Proof of Theorem 1.6.

Our task is to compute the maximal error distance
d((uf , v), PRS(q + 1, k)) for all vectors (uf , v) ∈ Fq+1

q .
1) If deg(f) ≤ k − 1, it is easy to see that

d((uf , v), PRS(q + 1, k)) ≤ 1.
2) If deg(f) = k, without loss of generality, assume

f(x) = xk + axk−1, since the terms of degree ≤
k − 2 could be killed by codewords in (RS(q, k −
1), 0) ⊂ PRS(q + 1, k). To compute the error distance
d((uf , v), PRS(q + 1, k)), it is equivalent to finding
some codeword (ug, ck−1(g)) ∈ Fq+1

q maximizing the
number of zeros in the error vector (uf − ug, v −
ck−1(g)) = (uf−g, v − ck−1(g)). On one hand, the
number of zeros in the vector (uf−g, v − ck−1(g)) is
≤ k + 1, as f − g which is a polynomial of degree k
has at most k zeros. On the other hand, we next show
that k + 1 is achievable. This forces ck−1(g) = v and
f −g has k zeros in Fq . In other words, we need to find
a polynomial h ∈ Fq[x] of degree ≤ k − 2 such that
f − vxk−1 − h = xk − (v − a)xk−1 − h has k zeros.
This is equivalent to the following k-SSP

S ⊂ Fq, subject to |S| = k and
∑
s∈S

s = v − a,

having solutions. By Proposition 2.1, this k-SSP always
has solutions. So there exists a polynomial g of degree
at most k − 1 such that ck−1(g) = v and f − g has k
zeros in Fq . In conclusion, if deg(f) = k, then

d((uf , v), PRS(q + 1, k)) = q − k.

3) If deg(f) ≥ k + 1, we have

d((uf , v), PRS(q + 1, k)) ≤ d(uf , RS(q, k)) + 1.

By Conjecture 1.2, we have

d(uf , RS(q, k)) ≤ q − k − 1.

It follows that

d((uf , v), PRS(q + 1, k)) ≤ q − k − 1 + 1 = q − k.

Putting the above three cases together, we obtain the covering
radius of PRS(q + 1, k)

ρ = max{d((uf , v), PRS(q+1, k)) | (uf , v) ∈ Fq+1
q } = q−k.

In addition, for any polynomial f of degree k and any v ∈ Fq ,
the vector (uf , v) is a deep hole of PRS(q + 1, k).

B. Proof of Theorem 1.5

For all vectors (uf , v) ∈ Fq+1
q , the error distance

d((uf , v), PRS(q+1, k)) ≤ d(uf , RS(q, k))+1 ≤ q−k+1.

In addition, if deg(f) = k, then

d((uf , v), PRS(q + 1, k)) = q − k.

So the covering radius of PRS(q + 1, k) satisfies

q − k ≤ ρ(PRS(q + 1, k)) ≤ q − k + 1.

If ρ(PRS(q + 1, k)) = q − k + 1, then there is some vector
w = (w1, · · · , wq, wq+1) ∈ Fq+1

q such that

d(w, PRS(q + 1, k)) = q − k + 1.

In this case, the new code

Cw = Fqw ⊕ PRS(q + 1, k)

is an MDS code which has a generator matrix
1 1 · · · 1 0
α1 α2 · · · αq 0
...

...
. . .

...
...

αk−1
1 αk−1

2 · · · αk−1
q 1

w1 w2 · · · wq wq+1


where Fq = {α1, α2, · · · , αq}. So one can easily check that
the following matrix

1 1 · · · 1 0 0
α1 α2 · · · αq 0 0
...

...
. . .

...
...

...
αk−1
1 αk−1

2 · · · αk−1
q 1 0

w1 w2 · · · wq wq+1 1


generates a [q + 2, k + 1] MDS code.

1) By Proposition 1.13, when q = p is a prime, for all
k + 1 ≤ p, there is no MDS code with parameters
[q + 2, k + 1], which contradicts to our assumption
ρ(PRS(q + 1, k)) = q − k + 1. So the first part of
Theorem 1.5 is proved.



2) For general q = pa (a ≥ 2), Ball-De Beule [2] improved
the result in [1]: for all k+1 ≤ 2p−2, there is no MDS
code with parameters [q+2, k+1]. So we get the second
part of Theorem 1.5.

C. Discussion: Deep Holes of PRS(q + 1, k)

From the proof of Theorem 1.6 above, we have seen that
1) polynomials f of degree < k never define any deep hole

of PRS(q + 1, k);
2) polynomials f of degree k define deep holes (uf , v) of

PRS(q + 1, k).
So we only need to investigate whether a polynomial f of
degree ≥ k + 1 and v ∈ Fq define a deep hole (uf , v) of
PRS(q + 1, k).

From the case 3) in Proof of Theorem 1.6, a polynomial f
of degree ≥ k + 1 and v ∈ Fq define a deep hole (uf , v) of
PRS(q + 1, k) if and only if

d(uf , RS(q, k)) = q−k−1, (provided that Conjecture 1.2 holds)

and for any polynomial g ∈ Fq[x] of degree ≤ k−1 such that
d(uf , ug) = q−k−1, we have ck−1(g) 6= v. So to prove any
polynomial f of degree ≥ k + 1 and v ∈ Fq do not define a
deep hole, one can follow this idea to construct a polynomial
g ∈ Fq[x] of degree ≤ k− 1 such that d(uf , ug) = q− k− 1,
but ck−1(g) = v.

On the contrary, we will directly start from the following
inequality:

d((uf , v), PRS(q + 1, k))
= min{d((uf , v), (ug, ck−1(g))) | deg(g) ≤ k − 1}
≤ min{d((uf , v), (ug, v)) | deg(g) = k − 1, ck−1(g) = v}
= d(uf−vxk−1 , RS(q, k − 1)).

Even if Conjecture 1.2 holds, then

d(uf−vxk−1 , RS(q, k − 1)) ≤ q − (k − 1)− 1 = q − k,

but we still can not exclude such a (uf , v) as a deep hole.
Here, we need more accurate information of the error distance
d(uf−vxk−1 , RS(q, k − 1)). Even a little bit more, which
ensures d(uf−vxk−1 , RS(q, k − 1)) ≤ q − k − 1, is enough!
Taking r = 2 and s = deg(f)−k+1 in Proposition 2.3, there
are positive constants c1 and c2 such that if

s < c1
√
q, (

s

2
+ 2) log2(q) < k < c2q,

then d(uf , RS(q, k − 1)) ≤ q − k − 1. So in this case,

d((uf , v), PRS(q + 1, k)) ≤ d(uf−vxk−1 , RS(q, k − 1))

≤ q − k − 1,

and hence, we obtain Theorem 1.9.
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