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Abstract—Projective Reed-Solomon (PRS) codes are Reed-
Solomon codes of the maximum possible length ¢ + 1. The
classification of deep holes -received words with maximum
possible error distance— for PRS codes is an important and
difficult problem. In this paper, we use algebraic methods to
explicitly construct three classes of deep holes for PRS codes. We
show that these three classes completely classify all deep holes
of PRS codes with redundancy four. Previously, the deep hole
classification was only known for PRS codes with redundancy at
most three by the work [9].

I. INTRODUCTION

Let ¥, denote the finite field of size g and characteristic
a prime number p. Let Fj denote the vector space of row-
vectors or words x = (21, %2, ,x,). The Hamming metric
on Fy is the metric obtained by defining the distance between
two words x and y to be the number of coordinates in which
x and y differ:

d(z,y) = {ilzi # yi}].

A linear [n, k] code C is a k-dimensional linear subspace of
[y with the induced metric. The minimum distance d(C') of

C is
d(C) = min{d(z,y) | z and y are distinct elements of C'}.
The error distance of any word u € F to C'is defined to be
d(u,C) = min{d(u,v)|v € C}.
The maximum error distance
p(C) = max{d(u, C) |u € Fy},

is called the covering radius of C, and the words achieving
maximum error distance are called deep holes of the code.
The problem of determining the set of deep holes of a code,
or of deciding whether a given word is a deep hole, are in
general hard problems. These problems are also important
from the perspective of the decoding problem for the code.
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When C' is a Reed-Solomon code, the problem of deter-
mining the deep-holes of C' is an interesting and difficult
combinatorial problem. This problem has received significant
attention in recent literature, for example in the works [4] [5]
and [9] [11] [12] [17] [18]. In this work, by a Reed-Solomon
code we mean the following code:

Definition L.1. Ler D = (z1,...,x,) be an ordered set of n
distinct elements of FqUoo. The Reed-Solomon code RS (D, k)
of length n, dimension k and evaluation set D is the code:

RS(D, k) ={(f(z1),..., f(zn)) € FY |
f(X) € Fy[X], deg(f) <k —1}.

Here f(oco) is taken to be the coefficient of X*~1 in f(X),
and the parameters n and k satisfy 1 < &k < n < g+ 1.
Generalized Reed-Solomon (GRS) codes are obtained by
applying a diagonal Hamming isometry to a Reed-Solomon
code: in other words, any GRS code is of the form
C' = {cM : ¢ € C} where C is a [n, k] Reed-Solomon code
and M is an invertible n x n diagonal matrix over IF,. Clearly,
the set of deep holes of C’ is {xM |z is a deep hole of C'}.
Therefore, for the problem of determining the deep holes of
GRS codes, it suffices to only treat Reed-Solomon codes.

When D = F, U oo, the Reed-Solomon codes RS(D, k)
are called projective Reed-Solomon codes and will be simply
denoted as PRS(k). These codes are also known in literature
as doubly-extended Reed-Solomon codes. While the covering
radius of [n, k] Reed-Solomon codes of length n < ¢+ 1 is
known to be n — k, the situation with PRS codes is different.
For k € {1, ¢, g+1}, the covering radius is again n—k and the
deep holes of PRS(k) are easily determined. For k = ¢ — 1,
the covering radius is n—k — 1 and the deep holes of PRS(k)
are known (see §II for these facts). But for 2 < k < g — 2,
the covering radius of PRS(k) is only known conjecturally:

Conjecture 1.2. For 2 < k < q — 2, the covering radius of
PRS(k) is:

qg—k+1

q—k
This conjecture is equivalent to a well-known conjecture in
finite geometry (see Conjecture IL.5 in §II-A). Conjecture 1.2

has been shown to be true for several values of k for example
k > |(¢ —1)/2]. This brings us to our main problem:

Problem L.3. Determine the set of deep holes PRS(k) for
those k for which Conjecture 1.2 is true.

if q is even and k € {2,q — 2}
otherwise.

For k € {q — 1,q — 2}, the problem has an easy solution
as given in [9] (see §II for details). For 2 < k& < ¢ — 3,



the problem is difficult and wide open. In [17], the following
classes of deep holes of PRS(k) were identified:

Theorem L4 ( [17]). Let 2 < k < q — 3 and suppose
p(PRS(k)) = q—k. Let D = (a1, . . ., aq,00) be the ordered
evaluation set for PRS(k). The q words

{(a’f,aé"’.. a€lF,},

are distinct deep hole classes of PRS(k).

.,a’;,a):

The term deep hole class is defined in the next section. The
automorphism group of a linear code also acts on the set of its
deep holes. Using this fact, we show in §II-C that the group
PGL4(F,) acts on the set of deep hole classes of PRS(k).
The orbits under PG L4 (FF,) of the ¢ deep hole classes given
in Theorem 1.4 above, give us new classes of deep holes of
PRS(k). This is the first result of this paper:

Theorem L5. Let 2 < k < g — 3 and suppose p(PRS(k)) =
q — k. The set of words

1 1 1 1 .
{(041*041" "aa—a @ oip1—ag’ ’ aq*ai’o) ’

1<i<q achF,},

represent q? distinct classes of deep holes of PRS(k). These
classes are distinct from the q classes of Theorem 1.4.

We also show that the ¢? + ¢ deep hole classes of Theorems
I.4 and L.5 taken together have a nice geometric interpretation
in terms of the tangent lines to the degree (¢ — k) normal
rational curve in P7=K(F,).

The second result of this paper is a new class of deep holes
of PRS(k):

Theorem L.6. Let 2 < k < g — 3 and suppose p(PRS(k)) =
q — k. The words (g(a1),g(az),...,g(ay),0) as g runs over
the (q+1)q(q—1)/2 rational functions of the form a(X)/b(X)
with b(X) a monic irreducible polynomial of degree 2, and
a(X) a nonzero monic polynomial of degree at most 1,
represent (q + 1)q(q — 1)/2 distinct classes of deep holes of
PRS(k). These classes are distinct from the q* + q classes of
Theorems 1.4 and I.5.

We also show that this construction has a geometric
interpretation in terms of the degree (¢ — k) normal rational
curve in P77*(F ) over a quadratic field extension F 2 of F,,.

The third result of this paper is the complete classification
of deep holes of PRS(k) for k =q — 3:

Theorem 1.7. The total number of deep hole classes of
PRS(q — 3) is q(q + 1)%/2. These are given by the q deep
hole classes of Theorem 1.4, q* classes of Theorem I.5, and
(¢ + 1)g(q —1)/2 classes of Theorem L6.

The rest of this paper is organized as follows. In §II-D
we prove Theorems 1.5 and 1.6. The necessary tools and
background are covered in §II-C and and §II-A. We prove
Theorem 1.7 in §III. The purpose of §II-B is to highlight the
fact that the assertion which sometimes appears in literature—
that MDS codes of minimum distance d have covering radius

(d—1) or (d —2) — has no known correct proof. This section
is independent of the rest of the paper.

II. PROJECTIVE REED-SOLOMON CODES AND THEIR
COVERING RADII

We begin with some notation for PRS codes. We use the
term words for row vectors, and a vector (of IF;” for some m)
will mean a column vector. For any integer 1 < k < g+ 1
and o € F, U oo, we define vectors

ca(a) = {(1,04,042,~~- ,ab—hT %f acly,
if o = 0.

1
(0707"'7071)T ()

For k = 1, it is understood that ¢ (o) = 1 for all « € F,Ucc.
Let aq,..., a4 be a fixed ordering of I, and let og41 = o0.
The matrix Gy, defined as:

2

is a generator matrix for PRS(k): for a message word
(ag,...,ak—1) the codeword (ag,...,ar—1)Gy is the eval-
uation of the polynomial ayp + a1 X + --- + ar_1 X1 at
the ordered set of points a,...,aq+1. We recall that for a
polynomial f(X) of degree at most k— 1, the value of f(c0) is
taken to be the coefficient of X*~1 in f(X). Any k x k minor
of (G}, is a Vandermonde determinant and hence is nonzero
(here we use the fact that k < ¢+ 1). It is well known that a
linear [n, k,d] code C satisfies d < n — k + 1 (the Singleton
bound), and equality holds in this bound if and only if every
k x k minor of a generator matrix of C' is nonzero. Such
a code is called a maximum-distance-separable code (MDS
code). Therefore PRS(k) is always an MDS code. Using
the following well-known identity about sum of powers of
elements in F:

G = [er(an)] - .- |ex(ag)len(aga)];

ifg—1¢14

3
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it follows that for 1 < k < ¢, the product GquT+1_k is the
k x (¢ +1— k) zero matrix. Thus G441 is a parity check
matrix for PRS(k), or equivalently PRS(q + 1 — k) is the
dual code to PRS(k).

For a linear code [n, k] code C, and a received word u € Fy,
the word v = au + ¢ where c € C' and a € F has the same
error distance as u. We recall that for a vector space V, the
projective space P(V') denotes the set of equivalence classes
of V'\ {0} in which two nonzero vectors are equivalent if and
only if they generate the same one dimensional subspace of
V.

Definition IL.1. For a linear code [n, k] code C, we will say
that received words u,v € Fy are equivalent if v = au+c for
some ¢ € C and a € F;. In particular non-codewords u,v
are equivalent if and only if they represent the same element
of the projective space P(Fy /C). Here Fy /C' is the quotient
vector space of cosets of C' in /. The term deep hole class
will refer to the class of a deep hole of C in P(Fy /C').



We recall the following well-known characterization of
covering radius of a linear code in terms of a parity check
matrix.

Lemma IL.2. Let C be a [n, k] linear code with parity check
matrix H. The error distance d(u,C) of a received word u €
[y equals the least number j such that the syndrome syn(u) =
HuT can be expressed as a linear combination of j columns of
H. In particular, the covering radius p(C) is the least integer
J such that any vector in IFZ*"' can be expressed as a linear
combination of some j columns of H. The word u is a deep
hole of C if and only if syn(u) can not be written as a linear
combination of any p(C) — 1 columns of H.

Definition IL.3. Let C be a [n, k] linear code. The term projec-
tive syndrome of a non-codeword u will refer to the element
of P(F}~") represented by syn(u). The map u +— syn(u)
induces a bijective correspondence

syn: P(F?/C) — P(F2—F) 4)
from the set P(IFy /C) of equivalence classes of non-codewords
to the set of projective syndromes P(Fg_k).

We use the notation S(k) for the subset of P4=%(F,) =
]P’(IFZ“"“) consisting of the projective syndromes of deep
hole classes of PRS(k). We note that the Problem L3 is
equivalent to determining the subset S(k) C P77%(F,). In
the literature on deep holes of RS codes, deep holes are often
described by generating polynomials. This can be adapted to
PRS codes and is closely related to our description in terms of
projective syndromes: Let P9~*(F,) denote the set of polyno-
mials of degree at most (¢— 1) which are monic and for which

the coefficient of 1, X, ..., X* 2 is zero. The number of such
polynomials is 1 + ¢ + - - - 4+ ¢9~*. To each such polynomial,
we associate the word u = (u(o),...,u(ag),0) € FItL

If w(X) # v(X), we claim u and v represent different
equivalence classes: if v = au + ¢ for some a € F; and
¢ € C, then there is a polynomial f(X) of degree at most k—1
(representing the codeword c¢) such that v(X) —au(X)— f(X)
has ¢ roots, but degree at most ¢ — 1. This forces v(X) —
au(X) = f(X). We note that

0 =vg41 — atlgy1 = cq1 = f(00).

Since f(o0o) is the coefficient of X*~! in f(X), it follows
that deg(f) < k — 2. Combining this with the fact that the
coefficients of 1, X,..., X% 2 in w(X) and v(X) are zero,
forces f(X) = v(X) — au(X) = 0. Since u(X),v(X) are
monic we get a = 1 and hence u(X) = v(X). The deep hole
class of u is said to be generated by the polynomial u(X).
The relation between the projective syndrome syn(u) and the
polynomial «(X) is very simple: if u(X) = 3;f+1 a; X1
generates the word u, then the projective syndrome syn(u) =
(a1 :ag -+ ag—gy1). This easily follows from the formula
syn(u) = Ggy1-rul together with the identity (3). For
example the projective syndromes of the ¢ words of Theorem
1.4 are:

syn(af,ab, ... afa)=(0:--:0:1:—a),

(&)

and the corresponding generating polynomials are

Xk g Xk,

A. Covering radius of PRS codes

We first discuss the possible values of covering radius for
PRS codes. As mentioned above, the matrix G¢y1—y is a parity
check matrix for the code PRS(k). Since G441k has full
rank, it follows from Lemma I1.2, that p(PRS(k)) < q¢+1—k.
Next, we show that

p(PRS(k))=q+1—k for ke{l,qq+1},

and p(PRS(k)) = q — k for k = ¢ — 1. We also determine
the set of deep holes in each case:

o For k = ¢q+1, we have p(PRS(k)) = 0 and hence every
word is a deep hole: this is because

p(PRS(k)) <q+1—k=0.

o For k = ¢, we have p(PRS(k)) = 1, and hence every
non-codeword is a deep hole: here

p(PRS(k)) <qg+1—-k=1,

and p(PRS(k)) # 0 because a linear [n,k| code C
satisfies p(C') = 0 if and only if n = k.

o For k = g—1, we have p(PRS(k)) = 1, and hence every
non-codeword is a deep hole: here any syndrome in Fg is
proportional to one of the (¢ 4+ 1) columns of the parity
check matrix G5, and hence p(PRS(k)) = 1.

e For k = 1, we have p(PRS(k)) = ¢: here the
codewords are {(a,...,a) : a € F,} and hence the
maximum possible distance of a received word from the
code is g. The deep holes are those received words of
length ¢ + 1 which have the maximum possible number
(namely q) of distinct coordinates.

On the other hand, for 2 < k£ < ¢ — 2 it is also known that
p(PRS(k)) > q— k: for the word u = (af,..., &k, 0), it can
be shown that d(u, PRS(k)) = q — k. A quick proof is as
follows. The distance of u from a codeword represented by a
polynomial f(X) of degree at most k — 1, is at least ¢ — k
because the polynomial X* — f(X) can have at most k roots.
On the other hand for

fX)=X"— (X —2)(X —x2)... (X —xp),

where x4, ..., are k distinct elements of I, which add up
to O (this is always possible, see [7], [17]), the distance of u
from the codeword represented by f(X) is exactly ¢ — k. For
2 <k < ¢—2, we have p(PRS(k)) = g+ 1—k if there exists
a vector v € FIT1~F which cannot be expressed as a linear
combination of any ¢ — k columns of G,41— (by Lemma
I1.2). If no such vector exists, then p(PRS(k)) < ¢ — k and
hence p(PRS(k)) = g — k. As mentioned in the introduction,
a [n, k| linear code is MDS if and only if every & x k minor of
a generator matrix of the code is nonzero. Since this property
holds for Gg1—x, we can rewrite the above characterization
of p(PRS(k)) in the following way (originally due to Diir
(1994)):



Lemma II.4. [6] For 2 < k < q— 2, we have p(PRS(k)) =
qg—k+1or p(PRS(k)) = q — k according as whether or
not there exists a vector v € Fg+1_k such that the (¢ +1 —
k) x (g + 2) matrix [Gg41-k|v] generates an MDS code, i.e.
whether or not there exists a [q + 2,q + 1 — k] MDS code
extending PRS(q + 1 — k) by one coordinate.

In finite geometry an (ordered) n-arc in projective space
P™~1(F,) is an ordered set of n points of P™~1(F,) repre-
sented by vectors vy, ..., v, € Fj" with the property that the
mxn matrix [v1|ve|...|v,] generates a [n, m] MDS code. The
standard degree (m — 1) normal rational curve in P™~1(F,)
is the image of the embedding

PY(F,) < P™"(F,) given by

m—1 m—2, .

(z:y)— (z s Ty iy Dy
or equivalently ¢ — c¢,,(t) where ¢ represents (1 : t) if
t € Fq, and (0 : 1) if ¢ = co. To keep the notation simple,
we use the same symbol ¢, (t) for the class in P~ 1(F,) of
the vector c,,(t) € Fy'. When m < ¢, these (¢ + 1) points
form a (¢ + 1) arc in P™~!(F,) because they represent the
(¢ + 1) columns of the matrix G,,,. A n-arc in P"~1(F,) is
said to be complete if it is not a subset of a (n + 1)-arc in
P™~1(F,). Therefore, Lemma IL4 can be restated in finite
geometry terms as:

Lemma 114 restated: For 2 < k < ¢ — 2, we have
p(PRS(k)) = q— k or p(PRS(k)) = q — k + 1 according
as whether the (¢ + 1) points of the degree (¢ — k) normal
rational curve in P9~*(F,) form a complete arc or not.

A well-known conjecture in finite geometry is:

Conjecture IL5. For 2 < k < q — 2, the (¢ + 1) points of
the degree (q — k) normal rational curve in P1=*(F,) form a
complete arc except when q is even and k € {2,q — 2}.

We note that Conjecture 1.2 mentioned in the introduction
is just a restatement of Conjecture II.5. The conjecture is true
if k> [(¢ —1)/2] from the work of Seroussi and Roth [13].
This was improved to the range k£ > 6+/g¢lng — 2 in [14].
Also, Conjecture II.5 is a special case of the famous MDS
conjecture which states that for 2 < k < ¢ — 1, the maximum
possible length of a (¢ + 1 — k)-dimensional MDS code is
g + 1 except when ¢ is even and k € {2,q — 2}. Therefore,
Conjecture IL5 is true for a value of k if the MDS conjecture
is true for the same k. Some values of k£ for which the MDS
conjecture is true are:

1) [1, Theorem 1.10]: 3 <k <p<q—2
2) [16], [10]: g odd, ¢ — \/q/4 —9/4 <k < q—2.
3) [15]: g even, ¢ — \/q/2 —11/4 <k < q—4.
Some other values of k for which the Conjecture II.5 has

been proved (for example k € {2,3,4} for ¢ odd) can be
found in [9, §4].

For k = ¢ — 2, Problem 1.3 was solved in [9]:
Theorem I1.6. Let k = q — 2.

o If q is even, then p(PRS(k)) = 3 and S(k) ={(0:1:
0)}. In other words, there is exactly one deep hole class
and its projective syndrome is (0:1:0).

e If qis odd, then p(PRS(k)) = 2. There are q* deep hole
classes, and S(k) consists of all points of P*(F,) other
than the (q + 1) points {c3(t) : t € F, U o}

Briefly, the problem of finding all v € F3 such that the
matrix [G5 |v] generates a [q + 2, 3] MDS code is easily seen
to have no solution if ¢ is odd, and if ¢ is even then v must be
(0,a,0)T for a # 0. Thus by Lemma IL4, p(PRS(q—2)) = 2
if ¢ is odd, and p(PRS(q — 2)) = 3 if ¢ is even. Next, by
Lemma I1.2, v € Fg is the syndrome of a deep hole if and
only if
1) Case when ¢ is odd: v cannot be expressed as a linear
combination of one column of G3(F,). In other words,
the class of v in P?(F,) consists of the ¢* points of
P%(F,) other that {c3(t) : t € F, U oo}

2) Case when ¢ is even: the matrix [G3(F,) | v] generates
a [¢ + 2,3] MDS code, which has the only solutions
v=a(0,1,0)7,a # 0 as noted above.

B. Remarks on the Covering Radius of MDS codes

It is sometimes asserted in literature (for example [2], [7])
that the covering radius of any linear [n, k] MDS code C is
either n—k or n—k — 1. In this section we wish to emphasize
that there is no known correct proof of this assertion, and hence
it remains a widely believed conjecture. Let A and A+ denote
a pair of generator and parity check matrices for C. We recall
that the covering radius of any linear [n, k] code is at most
n—k.

Lemma I1.7. The following assertions are equivalent for an
[n, k] MDS code C:
D p(C)=n—k
2) There exists a word u € Fy such that the (k +1) x n
matrix (4) generates a [n,k + 1] MDS code.
3) There exists a word u € ¥y such that the (k+1)x (n+1)
matrix (4 0) generates a [n+ 1,k + 1] MDS code.

u 1

4) There exists a vector v € F2 =% such that the (n — k) x
(n+1) matrix (At |v) generates a [n+1,n — k] MDS

code extending C* by one coordinate.

Proof: (1) < (2): We have p(C) =n — k if and only if
there exists a word u € [y with error distance n — k. This in
turn is true if and only if no (k + 1) x (k + 1) minor of the
matrix (4) is zero.

(2) < (3): Since every k x k minor of A is nonzero, it follows
that every (k+1)x (k+1) minor of the matrix (4 9) is nonzero
if and only if the same is true of the matrix (4 ).

(3) < (4): Suppose (4 9) generates a [n+1, k+1] MDS code.
A parity check matrix for this code is (AL | —Atut). Since
the dual code of an MDS code is MDS, it follows that the
latter matrix generates an [n+1,n—k] MDS code. Conversely
suppose the (n — k) x (n + 1) matrix (A*|v) generates an
MDS code. Since A~ is full rank, there exists a word u € ]Fg
such that Atu! = —v. The (k+ 1) x (n + 1) matrix (49)
also generates an MDS code as it is a parity check matrix for

the code generated by (A* |v). [ |



If the (k + 1) x n matrix () generates a [n, k + 1] code,
then the latter code is called a supercode containing C'. By
Lemma IL7 it follows that p(C) < n — k if and only if C
cannot be embedded in an MDS supercode, or equivalently
if C1 cannot be extended to a [n + 1,n — k] MDS code. It
is not true in general that any [n, k] MDS code with n < ¢
can be embedded in a [n,k + 1] MDS supercode, because
dually, it is not true that any [n,n — k] MDS code for n < ¢
can be extended to a [n 4+ 1,n — k] MDS code. In finite
geometry terms there do exist complete arcs of length n < ¢
in P"~*~1(F,) for some k,n. For instance several examples
of complete n-arcs in P?(F,) are known for some ¢,n with
n < q (see [8, Tables 1,2]), which means that there do exist
[n,n — 3] MDS codes for n < ¢ which cannot be embedded
in a MDS supercode. Thus, Remark 1) of [7] is not accurate.
For such codes C, it is unlikely that p(C) < n — k — 1,
however there is no known proof that p(C) =n—k —1 to
the authors’ best knowledge.

Theorem 2 of [7] asserts that any [¢ + 1, k] MDS code C'
(except the cases k € {2,q— 2} when ¢ is even) has covering
radius ¢ — k. Here, by Lemma I1.7, one must clearly add the
hypothesis that C' cannot be embedded in a MDS supercode,
or equivalently C* cannot be extended to an MDS code of
length ¢ + 2 (the additional hypothesis is not necessary if the
MDS conjecture is true in dimension ¢ + 1 — k). In the proof
of this theorem, the authors assume that C' can be taken to be
PRS(k), for which the result is true by Lemma I1.4. However,
it is not true in general that every MDS code of length ¢ 4 1
is PRS, and therefore we cannot conclude that p(C') = g — k.
It is unlikely that p(C) < ¢ — k but there is no proof yet.

C. Automorphisms of PRS codes

The automorphism group of a linear code acts on the set
of deep holes of the code, and hence can be a useful tool to
determine the set of deep holes. We begin with some general
notions concerning automorphisms of a linear code. We
recall that the subgroup of GL,,(F,) consisting of Hamming
isometries of Fy is the group of n X n monomial matrices (a
n X n monomial matrix is a product of a n X n permutation
matrix and a n x n diagonal matrix). Since we are writing
words of Fy as row vectors, the action of A € GL,(F,)
on a word u is u — uA~!. For a linear [n, k] code C, the
automorphism group Aut(C') of the code is the subgroup of
GL, (F,) consisting of those monomial matrices A satisfying
cA~!' € Cforall ¢ € C. Since C is linear, the group of scalar
matrices {\l,, : A € FX} (where I,, is the n x n identity
matrix) is contained in the center of Aut(C'). Let PAut(C)
denote the quotient group Aut(C)/{Al, : A € F}.

Given a pair G, H of generator and parity check matrices
for C, we can define monomorphisms 2 : Aut(C) — GLy(F,)
and 7 : Aut(C) — GL,_i(F,) defined as follows. For each
A € Aut(C) the matrix GA™! is also a generator matrix for
C. The fact that A~! also is in Aut(C) implies that GA is also
a generator matrix for C. Similarly, the fact that cA=! € C
implies that HA™tc! = 0 for all ¢ € C. Therefore, HA™! is

also a parity check matrix for C. Since generator and parity
check matrices are unique upto row equivalence, it follows that
there exist matrices A’ € GLy(F,) and A” € GL,_x(F,)
such that A’G = GA and A”H = HA™t. Moreover, the
matrices A’ and A” are unique because G and H are full
rank. We define

1(A)=A" and y(A)=A".

The identities

GAB =1(A)GB =1(A)(B)G,
HA™'B™'= (A)HB™" = 5(A))(B)H,

show that ¢, 7 are group homomorphisms. Again, the fact that
G and H are full rank implies that the only matrices A’} A”
satisfying A’G = G and A”H = H are the identity matrices.
Therefore, ¢+ and 7 are monomorphisms. Finally, we use the
same notation ¢ and 7 for the induced monomorphisms

1: PAut(C) — PGLy(F,) and 7 : PAut(C') — PGL,_(F,).

Here PGL,,(F,) denotes, as above the quotient group
GLy(Fg)/{N . - A € T} Since A carries C' to C, it follows
that Aut(C) acts on the vector space [/ /C of cosets of C'. The
action of Aut(C') on Fy/C, induces an action of PAut(C’) on
the projective space P(Fy;/C) of equivalence classes of non-
codewords. The bijective correspondence

syn: P(Fp/C) — P(F; "),
(given in (4)) respects the action of PAut(C):
syn(uA™') = HA ! = j(A)Hu® = j(A)syn(u).  (6)

For A € Aut(C) and a received word u, clearly the error
distance d(u,C) = d(uA~!,C). In particular Aut(C) acts on
the set of deep holes of C, and PAut(C) acts on the set of
deep hole classes of C.

We now return to the code C' = PRS(k).For2 < k < ¢—2,
if A € Aut(PRS(k)), then the equation :(A)G = G A implies
that 1(A) € PGLy(F,) preserves the set of (¢ + 1) points
{ex(t) : t € Fy U oo} C P*=L(F,). Similarly, the equation
J(A)H = HA™" implies that j(A) € PGLyy1-x(F,) pre-
serves the set of (¢ + 1) points

{cqr1-n(t) : t €F U0} C PI7F(F,).

Here we have used the fact that for a monomial matrix A, the
columns of a matrix M A are obtained from the columns of M
by permutation and rescaling. We recall that there is a bijection
F,Uocc — PY(FF,) given by ¢ — (1 : ) where it is understood
that (1 : t) = (0 : 1) for t = oco. The action of GLo(IF,)
on the vector space IE% induces an action of PGLy(F,) on
the set P'(F,) of one dimensional subspaces of F2. Given
g=(2Y%) € PGLy(F,) and (1:t) € P}(F,), we have

(251 = (&)
In terms of the identification F,Uoo — P! (IF,), this is usually

written as g(t) = (c+dt)/(a+bt) and referred to as a Mdbius
or fractional linear transformation.



Definition II.8. For each 2 < m < q, we define functions
GLy(F,) — GL,,(F,) denoted g — g, as follows. For g =
(ab), the ij-th entry of gy, is the coefficient of X7~ in the
polynomial (a + bX)™ (c+ dX)"L.

For example g2 = g and,

a? 2ab b? a b
gs=|ac ad+bc be forg:(C ),

2 2cd d? d
1
1 01
1
1 0
Also for g = <c 1>, we have
1
c 1
2
Gm = C 2c 1 (8)
b (m—1)em—? (mgl)cmfg’ o1

We collect some properties of the matrices gy, :

1) [3, Proposition 2.6]: the map g +— g, is a
group homomorphism and the induced homomorphism
PGLy(F,) - PGL,,(F,) (which we again denote by
g — gm) is a monomorphism.

2) [3, Proposition 2.5]): For each ¢t € F; U co we have

gmem(t) = cm(g(t)) € P™7H(F,) ©))

3) [3, Theorem 2.10]: For m < g, the only elements of
PGL,,(F,) which preserve the set

{em(t) i t € F,Uo00} C P (F,),

are {gm, : g € PGLy(Fy)}.

Thus for C' = PRS(k), the images of the monomorphisms ¢ :
PAut(C) — PGLy(F,) and 7 : PAut(C) — PGLn_i(F,)
are precisely {gr : ¢ € PGL2(Fy)} and {gg41-k : g €
PGLy(F,)}. The group PAut(C) itself can be described
as follows: The action of PGLy(F,;) on F, U co gives a
monomorphism g — II(g) from PGL2(F,) to the group of
permutation matrices in GL,41(F,) defined by:

[galv s 7gaq+1] = [alv SRR qu+1}l_[(g).

By the identity (9), it follows that there exists a diagonal
matrix A, (g) such that the n X n monomial matrix B,,(g) =
II(g)A,.(g) satisfies the property

In particular,

1(Br(g9)) = gr, and 3(Bx(9)) = gg+1-k-

Since ¢ — gr (from PGLs(F,) — PGLy(F,)) and
v : PAut(PRS(k)) — PGLy(F,) are both monomorphisms,
it follows that g — By/(g) is an isomorphism from PG Lo (F,)

to PAut(PRS(k)) C PGLqg41(F,).

For completenes, we write down the matrices A,,(g) =

diag(61a627"' 75q+1):
a+bo)™ b if oy £ —2, 00,
( ) b
— daym-1 ifb#£0, a =—2
61' — (C ) b) 1 # ai b (10)
b if b#£0, a; = 0,
dm—1 if b=0, o; = o0.

Since G| is also a parity check matrix for PRS(q¢ + 1 — k),
it follows from the definition of the homomorphism ; that

GiBys1-1(9)"" = 3(Byr1-£(9))Gr = guGir = G1,By(9).

Therefore,
Boy1-k(9) = Be(g) ™.

Using this, the equation (6) for C = PRS(k) becomes:

syn(uBi(97)) = Gyr1-rBes1-k(g)u'
= gq+1-kGar1-1u" = ggr1-psyn(u).
We summarize this in the following lemma:

Lemma IL9. Let u and v be deep hole classes of PRS(k).
Then v is in the PAut(PRS(k)) orbit of u if and only if there
exists g € PGLy(F,) such that gq41-gsyn(u) = syn(v).

We end this section with a calculation of the PGLy(F,)
orbit of

Np=0:-:0:1:0) € P"Y(F,), m>3, (I1)

which we need in the next section. We also use the same
symbol N, for the vector (0,...,0,1,0)" € FI".

Lemma IL10. Let 3 < m < g, and let N,,, € P""(F,) be
as above.

1) if m = 3 and q is odd, the orbit of Ny, has size q(q +
1)/2 and its stabilizer is the group {t — dtT' : d €
Fy}

2) if m > 3 and m £ 1 mod p, the orbit of N,, has size
q(q + 1) and its stabilizer is the group {t — dt : d €
Fx}.

3) if m > 3 and m = 1 mod p, the orbit of Ny, has size
(¢g+1) and its stabilizer is the group {t — dt+c:d €
Fx,ceF,}.

4) if m = 3 and q is even, the orbit of N,,, has size 1 and
its stabilizer is the whole group PGLy(F,).

5) Npy + ¢m(00) is in the PGLo(F,)-orbit of Ny, if and
only if m # 1 mod p. In case m = 1 mod p, the orbit
of Ny + ¢ (00) has size q* — 1, and its stabilizer is the
group {t =~ t+c:celF,}

Proof: For ¢ = (%Y%) € PGLy(F,), we have by
Definition II.8:

(m_l)abnl—2
cb™ 24 (m—2)ab™ " 3d
2¢b™ "3 d+(m—3)ab™ " *d?
(77’L72)cbalm._3Jradm_2
(m—1)cd™ ™2



In order to determine when this equals N,,, we consider the
cases m = lmodp and m # 1mod p separately. First
suppose m Z 1 mod p. The first and last components of (12)
imply ab = cd =0, i.e. either a =d =0 or b =c = 0. In the
former case ¢, N, = (0:1:0:---:0) which equals N,,
if and only if m = 3. If b = ¢ = 0, then ¢,, N,,, = N,,. This
proves the assertions 1) and 2). Now suppose m = 1 mod p.
If b =0, we have g, N;, = Ny, If b # 0, using the fact that

ad — be # 0, we can write
Gm Ny = (0:1:2d/b : 3(d/b)? (m—2)(d/b)™3 : 0).

This equals N, if and only if m =
assertions 3) and 4).

3. This proves the

If m # 1 mod p, then ¢, N,y = Ny, + ¢ (00) for g(t) =
t+(m—1)"1. If m = 1 mod p, then it is clear from (12) that,
for every v in the PG Lo (F,)-orbit of N,,, the last entry of v is
zero. In particular, N,,, +¢,,(00) is not in the PG Lo (F)-orbit
of N,,. Also, for m = 1 mod p, we have

bwt—l 0
bm—Qd bnl—B
b77L73d2 2bm—4d
gm(Nm +cm(00)) = |+ (be—ad) :
bd™ 2 (m—2)d™~3
d'm,fl 0

Thus g stabilizes N, + ¢;,(00) if and only if b = 0 and
a = d. Therefore, the stabilizer of N, + ¢,,(c0) is the group
{t—t+c:celF,}. This proves assertion 5). ]

D. New deep holes of PRS codes

In this section we obtain the two new deep hole classes
of PRS(k) given in Theorem 1.5 and Theorem 1.6. We
throughout assume 2 < k < ¢ — 3 in this section.

Proof of Theorem 1.5: Assuming p(PRS(k)) = q — k, we
need to show that the ¢? words

. _ 1 1 1 1
u(z,a) o (041—047:’ to i—a & ajp1—ag? Y ag—a;’ )7

where 1 < 7 < g and a € [y, represent distinct deep holes
classes of PRS(k), and that these are distinct from the ¢ deep
holes of Theorem L.4. The j-th component of syn(u(i,a)) =
Gyi1-ru(i,a)t is

. -1
ao] ) S
0#£1
Expanding az_l as (g — a; + ;)7 1, we have:
! -2 i—1\ j—1— _
;ZZ —(j— e :Z(js Jal T (o — ay)Th

s#1

Summing the last equation over all ¢ ;ﬁ i, we get:

2+ZO¢Z Qg

0#£1
where we have used the identity (3), and the fact that s — 1 <
j < q+1—Fk < q— 1. Therefore, the j-th component of
syn(u(i,a)) is

(j—Dal™

ac) = (j—1)al 2

In other words:

syn(u(i, a)) = acqri-k(0s) = cgyq p(es)  (13)
where ¢/, _,.(t) = (0,1,2t,3t%,..., (¢ — k)ta=F 1T,
For g = (10) € GLy(F,), it follows from (8) that:
ImCm(X) = e (X +¢), (14)
where each of the m components of this equation
are polynomial identities in TF,[X] with ¢, (X) =

(1,X,X2,..., X" T Differentiating this polynomial iden-
tity with respect to X gives

Iy (X) = ¢, (X 4 ¢) where
¢ (X) = (0,1,2X,..., (m— )X T,
Using this in (13), we get
gg+1-k8yn(u(i, a)) = acq1-1(0) — i1 _4(0)

=(a,—1,0...,0" forg=(_%, 9). 15
Further, using (7) we get:
hq+1—ksyn(u(ia Cl)) = (Oa R Oa _17 a’)T
= —Nyt1-k + acgy1-£(0) forh:((l)(l))(flai(l))-
Thus the projective syndrome syn(u(i,a)) is in the
PGLy(Fy)-orbit  of Ngp1-x — acqr1-k(00). Since
Nyt1—k — acgr1—k(c0) is the syndrome of the deep

hole (af,af,...,al, a), it follows from Lemma IL9 that
u(i,a) are deep holes.

Next we show that the ¢> words
{u(i,a):1<i<gq,aelF,},

represent distinct deep hole classes. Suppose the projective
syndromes syn(u(i,a)) = syn(u(j,b)). In view of (15), we
may assume «; = 0 i.e.

syn(u(g,b)) =(b:—=1:0:---:0).
If a; = 0, then the expression

syn(u(i,a)) =(a:—=1:0:---:0),

shows that b = a, and hence u(%,a) = u(i,b). Next, suppose
a; # 0. Since ¢ + 1 — k > 4, the last two components of

(b:=1:0:---:0) are zero, but the last two components of
syn(u(i,a)), namely
a? "2 (ae; — (g —k —1)) and o2 (aq; — (¢ — k),

cannot both be zero. This contradiction shows that the
projective syndromes syn(u(i,a)) and syn(u(j,b)) are
distinct if 7 # j.

Next we show that the deep hole classes represented by
u(%,a) are distinct from the the g classes of Theorem 1.4. The
fact that g4+ 1—k& > 4 implies that the first two components of
Nyt1—k —begyi—k(00) =(0:---:0:1: —b) are zero, but
the first two components of syn(u(i,a)) = (a:aa; —1:...)



cannot both be zero. This shows that the deep hole classes of
the words (i, a) are distinct from the ¢ classes of Theorem
L4.

We recall from Lemma II.10, that

{Ngt1-k — acqgt1-£(00) : a € Fy},

is in the PGLy(F,) orbit of Ngyi_, provided p { k.
If p | k, then the PGLy(F,) orbits of Ny41_j and
Nyt1—k + cq+1-k(00) are distinct, and the latter orbit con-
tains {Ngy1- — acgy1-k(00) @ a € Fy}. Combining this
with the fact that syn(u(,a)) is in the PGLo(FF,) orbit of
Ngt1-k — acqy1-k(00), we conclude:

The ¢? + ¢ deep holes of Theorems 1.4 and Theorem 1.5 put
together form:

1) in case p t k, the PG Ly(F,) orbit of (of, o, ..., ak,0)
2) in case p | k, the PGLo(F,) orbits of

(a’f,ag,...,a’;,()) and (a’f,ag,...,a’;,l),

of sizes ¢ + 1 and ¢® — 1 respectively.

Remark: In terms of the the standard degree (¢ — k) normal
rational curve in P4~*(F,), the projective tangent line to the
curve at cqi1—x(t) for each ¢ € F, U oo has (¢ + 1) points
with Fg-coordinates given by c(t) itself and the ¢ points
{c}.(t) —ack(t) : a € Fg}. If t = oo, then these (¢ + 1) points
are cqy1-(00) and {Ngp1-k — acqr1-5(00) : a € F,}. As
shown above, the tangent lines have no pairwise intersection
when k£ < g — 3. Thus the geometric interpretation of the
(¢ + 1)q syndromes of the deep hole classes in Theorems
1.4 and 15, is that these consist of those points with Fg-
coordinates which are not on the curve, but are in the union
of the tangent lines to the curve. |

Proof of Theorem I.6: For each p(X) in the set of (¢*—¢q)/2
monic irreducible quadratic polynomials over FF,;, and for each
a € Fq Uoo, let u(a, p(X)) be the word in FIt! defined by

u(a p(X)){(”‘g”“""’z@ﬁ) if ¢ = oo
7 B ata azta agta .
(5ta) blas) " 7 plaq0) if @ EIF((116)

Assuming p(PRS(k)) = q—k, we must show that (g+1)g(qg—
1)/2 words given by u(a,p(X)) represent distinct deep hole
classes of PRS(k) for 2 < k < ¢q — 3, and that these are
distinct from the g2 + ¢ classes of Theorems 1.4 and 1.5. We
begin with two lemmas.

Lemma 1II.11. The projective syndrome of the word
u(a,p(X)) is
syn(u(a, p(X))) = pa cq+1—k(t) + 11 cqr1-r(p?),

where i is a root of p(X) in a quadratic extension F 2 of Fg,

and
w+a ifack,
Ha = 1

if a =00 17

Proof: Let i € Fy2 be a root of p(X), and let o denote
the nontrivial automorphism x +— x¢ of IF ;2 over IF,. We have:

1 1 1 1 1
p(X) :u—qu—u+U(u—qu—#>’ {19
X+a pta 1 p+a 1
p(X)  p—pt X —p U(uquu>'
Using this in (16), we get:

syn(u(a, p(X))) = Ggi1-ru(a, p(X))"

_ —Hfqu + a(#fﬂq w) ifa=o0
lfj;qw + U(N“j;qw) ifacF,’
where
1
1 —
a1 —p aau
— : — a=H
w = Gq+1—k i - Z .
ag—p ackF, a—k
0 p—;
Using the partial fraction expansions
X7 —ad
X1—-X 2 X-—a
a€lf,
we get
1
1 12 1
il BN B meq-&-l—k(ﬂ)-

pi=*

Multiplying syn(u(a, p(X))) by —(u—pu9)* € F* does not
change the projective syndrome. Therefore,

syn(u(a, p(X))) = ta Cqr1-k(1)+0 (pa Cqr1-k(1)) € PT™F(Fy),

where p, is as defined in (17). |
Lemma I1.12. The group PAut(PRS(k)) preserves the set of
(¢ + 1)g(q — 1)/2 words of the form u(a,p(X)) .

Proof: We know from (10) that

Jg+1-k(HaCqr1—k (1) + 0 (paCqr1—k (1))
= Acgri-k(V) + Megri—p(v?),

where v = (y+6u)/(a+Bp), and A = (a+Bp)?*u,. Since
e Fp \Fq, the same is true for v, and hence any element
of Fy2 is of the form 7 + sv for some r, s € ;. In particular
any element of ]qu2 /T is represented by one of the (¢ + 1)

elements
v+b ifbel,
vy = .
1 if b=o00
Thus we may take A = v}, for some b € F; U oo. |

Next we show that the wu(a,p(X)) are deep holes of
PRS(k) when p(PRS(k)) = g—k. By Lemma IL.2, we must
show that syn(u(a,p(X))) is not in the F-span of (¢ —1—k)
columns of Gy1-(F,). Consider the (¢ +1—k) x (¢*> +1)
matrix

Gor1-k(Fg2) = [egr1-k(t1)] - - - legr1-r(tg241)],



where t1,...,t,241 is a listing of [F;2 Uoo. We know that any
(¢ +1— k) columns of this matrix are linearly independent
over 2. In particular

syn(u(a, p(X))) = pacqr1—k(1) + pdegri—r(n?),

is not in the IF,-span of (¢—1—k) columns of G441-x(F,), as

was to be shown. Moreover for k < ¢—3, we have 4 < g—k+

1, and hence any four columns of Ggy1_1(Fg2) are linearly

independent over F,,. This shows that if (a, p(X)) # (b,p(X))

then their projective syndromes
PaCqr1-k(1) + picqr1—k(p?) and

UCqr1—k(V) + vy Cqa1—k(v?),

(where p(X) = (X — v)(X — v?)) are distinct. This proves
that the (¢+1)q(¢ —1)/2 words u(a,p(X)) of (16) represent
distinct deep hole classes of PRS(k).

Next, we show that the g2 +q deep hole classes of Theorems
1.4 and L5 are distinct from those of Theorem I1.6. The
projective syndromes of the former deep hole classes are in the
PGLy(FFy)-orbit of Nyi1_ or Ngyi—p + cq1—1(00), Where
as by Lemma II.12, the projective syndromes of words in the
PGL4(F,)-orbits of the latter deep hole classes are of the
form (p1qCqt1—k (1) + 18 cqr1—k(p?)). Since we have assumed
k<q—3.ieqg+1—k >4, it follows that the first two coor-
dinates of Ngi1—x, Ngt1—& + cq41-1(00) are zero. However
the first two coordinates of (pqcqt1—k(1) + plcgr1—k(u?)),
namely

Pa + pg and pupiq + pf g,

are both zero only if ;1 € IF; which is not the case.

Remark: Consider the standard normal rational curve of
degree (q—k) in projective space P9~*(F() over an extension
field Fg of F,. Let P’, P” be two distinct points on the
curve such that not both of them have [F,-coordinates. Let
P ¢ {P’,P"} be a point on the secant line joining P, P".
Since any (¢+ 1 — k) columns of the matrix Gy41_x(Fg) are
linearly independent over [Fq, it follows in particular, that P
cannot be written as a F,-linear combination of (¢ — k — 1)
columns of G,i1_x(F,). Thus P € S(k) provided P has
[F,-coordinates. For P to have F,-coordinates, () must be an
even power of ¢ so that there is a quadratic extension F,2 of
F, in Fg, and we must have P’ = o(P’) where o is the
nontrivial automorphism of F,> over IF,. Thus the geometric
interpretation of the (¢+1)q(q—1)/2 syndromes of the deep
hole classes u(a, P(X)) is as follows: there are (¢*> — q)/2
pairs of distinct points {P’,o(P’)} on the curve, and on the
secant line joining P’, o(P’), there are (¢+ 1) points with F,
coordinates.

ITI. COMPLETE DEEP HOLES OF PRS(q — 3)

In this section, we will show that the deep holes con-
structed in Theorems 1.4, 1.5 and 1.6 form all the deep
holes of PRS(q — 3). Since PRS(k) for k = 1 has been
treated in §II-A, we assume ¢ > 5. Since Conjecture 1.2
is true for PRS(k) when k > |(¢ — 1)/2], it follows that

p(PRS(q—3)) =3 provided ¢ —3 > [(¢—1)/2] i.e. ¢ > 4,
which is the case here. For PRS(k), even the problem of just
determining the number of deep hole classes (not necessarily
determining all of them) is very difficult for £ < g — 3.
If p(PRS(k)) = q — k, this reduces to the problem of
determining the number of points of P?~*(FF,) which are not
in the span of any ¢g—k—1 columns of G441_j. For k = ¢—3,
we can calculate this number:

Theorem IIL1. There are (¢> + 2¢° + q)/2 classes of deep
holes of PRS(q — 3).

Proof: The number of deep hole classes of PRS(q — 3)
is

(I4+q+¢*+¢°)—

[{v € P*(F,) : v is in the span of some 2 columns of Gy}|.

There are (g + 1) points in P3(F,) which are in the span of
less than two columns of G4 (namely {c4(t) : t € F, U oo}).
For each of the (qgl) pairs of columns G, there are ¢ — 1
points which are in the span of these two columns but are
not in {c4(t) : t € Fy U oo}. Since any 4 columns of G4
are linearly independent, a point of P3(F,) which is not in
{ca(t) : t € F, U oo}, cannot be in the span of two different
pairs of columns of G,4. Therefore, the number of deep hole
classes of PRS(q — 3) is

A+q++¢*) —(1+9) — (“3)(g—1) = (*+2¢° +q)/2.

|

We have shown in Theorem L.5 that the ¢ deep hole classes

constructed in this theorem are distinct from the g deep hole

classes constructed in Teorem [.4. We have also shown in

Theorem 1.6, that the (¢ + 1)g(¢ — 1)/2 deep hole classes

constructed in this theorem are distinct from the ¢ + ¢ deep
hole classes of Theorems 1.4 and 1.5. Since

(@ +2¢°+9)/2=q+ ¢+ (¢+ )g(g —1)/2,

we conclude that all deep hole classes of PRS(q — 3) have
been found.

IV. CONCLUSION

The foremost open problem about deep holes for Projective
Reed-Solomon (PRS) codes, is to determine the covering
radius of these codes — i.e. to settle Conjecture 1.2, or equiva-
lently Conjecture II.5. This is a special and important case of
the well known MDS conjecture. For dimensions & in which
Conjecture 1.2 is known to be true, the next important problem
is to determine the deep holes of the code PRS(k). This is
a difficult problem. The oldest known deep holes of PRS(k)
are those generated by the polynomial X*. By applying the
full automorphism group of PRS(k) to these deep holes we
obtained in this work the deep holes of Theorems 1.4 and
L5. In Theorem 1.6, we obtained new deep holes of PRS(k)
using some words having error distance 2 from the the [F -
linear code PRS(q? — q + k). We determined the number of
deep holes of PRS(¢ — 3) and showed in Theorem 1.7, that
the above two constructions account for all the deep holes of



PRS(q — 3). For k < g — 3 it seems increasingly difficult to
enumerate the deep holes of PRS(k). The case k = q — 4
will be discussed in a forthcoming work.

[1]

[2]
[3]

[4]

[5]

[6]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

S. Ball, “On sets of vectors of a finite vector space in which every subset
of basis size is a basis,” J. Eur. Math. Soc. (JEMS), vol. 14, no. 3, pp.
733-748, 2012.

D. Bartoli, M. Giulietti, and I. Platoni, “On the covering radius of MDS
codes,” IEEE Trans. Inform. Theory, vol. 61, no. 2, pp. 801-811, 2015.
P. Beelen, D. Glynn, T. Hgholdt, and K. Kaipa, “Counting generalized
Reed-Solomon codes,” Advances in Mathematics of Communications,
vol. 11, no. 4, pp. 777-790, 2017.

A. Cafure, G. Matera, and M. Privitelli, “Singularities of symmetric
hypersurfaces and an application to Reed-Solomon codes,” Advances in
Mathematics of Communications, vol. 6, no. 1, 2011.

Q. Cheng and E. Murray, “On deciding deep holes of Reed-Solomon
codes,” Lecture Notes in Computer Science, vol. 4484, pp. 296-305,
2007.

A. Diir, “On the covering radius of Reed-Solomon codes,” Discrete
Mathematics, vol. 126, no. 1-3, pp. 99-105, 1994.

E. M. Gabidulin and T. Klove, “The Newton radius of MDS codes,” in
Information Theory Workshop, 1998, 1998, pp. 50-51.

J. W. P. Hirschfeld, “Complete arcs,” Discrete Math., vol. 174, no. 1-3,
pp. 177-184, 1997, combinatorics (Rome and Montesilvano, 1994).

K. Kaipa, “Deep holes and MDS extensions of Reed-Solomon codes,”
IEEE Trans. Inform. Theory, vol. 63, no. 8, pp. 4940-4948, 2017.

H. Kaneta and T. Maruta, “An elementary proof and an extension
of Thas’ theorem on k-arcs,” Math. Proc. Cambridge Philos.
Soc., vol. 105, no. 3, pp. 459-462, 1989. [Online]. Available:
https://doi.org/10.1017/S0305004100077823

M. Keti and D. Wan, “Deep holes in Reed-Solomon codes based on
Dickson polynomials,” Finite Fields and Their Applications, vol. 40,
no. C, pp. 110-125, Jul. 2016.

Y. Li and G. Zhu, “On the error distance of extended Reed-Solomon
codes.” Advances in Mathematics of Communications, vol. 10, no. 2,
2016.

G. Seroussi and R. M. Roth, “On MDS extensions of generalized Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 32, no. 3, pp. 349—
354, 1986.

L. Storme, “Completeness of normal rational curves,” J. Algebraic
Combin., vol. 1, no. 2, pp. 197-202, 1992.

L. Storme and J. A. Thas, “M.D.S. codes and arcs in PG(n, ¢) with ¢
even: an improvement of the bounds of Bruen, Thas, and Blokhuis,” J.
Combin. Theory Ser. A, vol. 62, no. 1, pp. 139-154, 1993. [Online].
Available: https://doi.org/10.1016/0097-3165(93)90076-K

J. A. Thas, “Normal rational curves and k-arcs in Galois spaces,” Rend.
Mat. (6), vol. 1, pp. 331-334, 1968.

J. Zhang and D. Wan, “On deep holes of projective reed-solomon codes,”
2016 IEEE International Symposium on Information Theory (ISIT), pp.
925-929, 2016.

J. Zhuang, Q. Cheng, and J. Li, “On determining deep holes of
generalized Reed-Solomon codes,” IEEE Transactions on Information
Theory, vol. 62, no. 1, pp. 199-207, Jan 2016.



