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Deep Holes of Projective Reed-Solomon Codes
Jun Zhang, Daqing Wan, Krishna Kaipa

Abstract—Projective Reed-Solomon (PRS) codes are Reed-
Solomon codes of the maximum possible length q + 1. The
classification of deep holes –received words with maximum
possible error distance– for PRS codes is an important and
difficult problem. In this paper, we use algebraic methods to
explicitly construct three classes of deep holes for PRS codes. We
show that these three classes completely classify all deep holes
of PRS codes with redundancy four. Previously, the deep hole
classification was only known for PRS codes with redundancy at
most three by the work [9].

I. INTRODUCTION

Let Fq denote the finite field of size q and characteristic
a prime number p. Let Fnq denote the vector space of row-
vectors or words x = (x1, x2, · · · , xn). The Hamming metric
on Fnq is the metric obtained by defining the distance between
two words x and y to be the number of coordinates in which
x and y differ:

d(x, y) = |{i |xi 6= yi}|.

A linear [n, k] code C is a k-dimensional linear subspace of
Fnq with the induced metric. The minimum distance d(C) of
C is

d(C) = min{d(x, y) | x and y are distinct elements of C}.

The error distance of any word u ∈ Fnq to C is defined to be

d(u,C) = min{d(u, v) | v ∈ C}.

The maximum error distance

ρ(C) = max{d(u, C) |u ∈ Fnq },

is called the covering radius of C, and the words achieving
maximum error distance are called deep holes of the code.
The problem of determining the set of deep holes of a code,
or of deciding whether a given word is a deep hole, are in
general hard problems. These problems are also important
from the perspective of the decoding problem for the code.
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When C is a Reed-Solomon code, the problem of deter-
mining the deep-holes of C is an interesting and difficult
combinatorial problem. This problem has received significant
attention in recent literature, for example in the works [4] [5]
and [9] [11] [12] [17] [18]. In this work, by a Reed-Solomon
code we mean the following code:

Definition I.1. Let D = (x1, . . . , xn) be an ordered set of n
distinct elements of Fq∪∞. The Reed-Solomon code RS(D, k)
of length n, dimension k and evaluation set D is the code:

RS(D, k) = {(f(x1), . . . , f(xn)) ∈ Fnq |
f(X) ∈ Fq[X],deg(f) ≤ k − 1}.

Here f(∞) is taken to be the coefficient of Xk−1 in f(X),
and the parameters n and k satisfy 1 ≤ k ≤ n ≤ q + 1.
Generalized Reed-Solomon (GRS) codes are obtained by
applying a diagonal Hamming isometry to a Reed-Solomon
code: in other words, any GRS code is of the form
C ′ = {cM : c ∈ C} where C is a [n, k] Reed-Solomon code
and M is an invertible n×n diagonal matrix over Fq . Clearly,
the set of deep holes of C ′ is {xM |x is a deep hole of C}.
Therefore, for the problem of determining the deep holes of
GRS codes, it suffices to only treat Reed-Solomon codes.

When D = Fq ∪ ∞, the Reed-Solomon codes RS(D, k)
are called projective Reed-Solomon codes and will be simply
denoted as PRS(k). These codes are also known in literature
as doubly-extended Reed-Solomon codes. While the covering
radius of [n, k] Reed-Solomon codes of length n < q + 1 is
known to be n− k, the situation with PRS codes is different.
For k ∈ {1, q, q+1}, the covering radius is again n−k and the
deep holes of PRS(k) are easily determined. For k = q − 1,
the covering radius is n−k−1 and the deep holes of PRS(k)
are known (see §II for these facts). But for 2 ≤ k ≤ q − 2,
the covering radius of PRS(k) is only known conjecturally:

Conjecture I.2. For 2 ≤ k ≤ q − 2, the covering radius of
PRS(k) is:{

q − k + 1 if q is even and k ∈ {2, q − 2}
q − k otherwise.

This conjecture is equivalent to a well-known conjecture in
finite geometry (see Conjecture II.5 in §II-A). Conjecture I.2
has been shown to be true for several values of k for example
k > b(q − 1)/2c. This brings us to our main problem:

Problem I.3. Determine the set of deep holes PRS(k) for
those k for which Conjecture I.2 is true.

For k ∈ {q − 1, q − 2}, the problem has an easy solution
as given in [9] (see §II for details). For 2 6 k 6 q − 3,
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the problem is difficult and wide open. In [17], the following
classes of deep holes of PRS(k) were identified:

Theorem I.4 ( [17]). Let 2 ≤ k ≤ q − 3 and suppose
ρ(PRS(k)) = q−k. Let D = (α1, . . . , αq,∞) be the ordered
evaluation set for PRS(k). The q words

{(αk1 , αk2 , . . . , αkq , a) : a ∈ Fq},

are distinct deep hole classes of PRS(k).

The term deep hole class is defined in the next section. The
automorphism group of a linear code also acts on the set of its
deep holes. Using this fact, we show in §II-C that the group
PGL2(Fq) acts on the set of deep hole classes of PRS(k).
The orbits under PGL2(Fq) of the q deep hole classes given
in Theorem I.4 above, give us new classes of deep holes of
PRS(k). This is the first result of this paper:

Theorem I.5. Let 2 ≤ k ≤ q− 3 and suppose ρ(PRS(k)) =
q − k. The set of words

{( 1
α1−αi

, · · · , 1
αi−1−αi

, a, 1
αi+1−αi

, · · · , 1
αq−αi

, 0) :

1 ≤ i ≤ q, a ∈ Fq},

represent q2 distinct classes of deep holes of PRS(k). These
classes are distinct from the q classes of Theorem I.4.

We also show that the q2+q deep hole classes of Theorems
I.4 and I.5 taken together have a nice geometric interpretation
in terms of the tangent lines to the degree (q − k) normal
rational curve in Pq−k(Fq).

The second result of this paper is a new class of deep holes
of PRS(k):

Theorem I.6. Let 2 ≤ k ≤ q− 3 and suppose ρ(PRS(k)) =
q − k. The words (g(α1), g(α2), . . . , g(αq), 0) as g runs over
the (q+1)q(q−1)/2 rational functions of the form a(X)/b(X)
with b(X) a monic irreducible polynomial of degree 2, and
a(X) a nonzero monic polynomial of degree at most 1,
represent (q + 1)q(q − 1)/2 distinct classes of deep holes of
PRS(k). These classes are distinct from the q2 + q classes of
Theorems I.4 and I.5.

We also show that this construction has a geometric
interpretation in terms of the degree (q − k) normal rational
curve in Pq−k(Fq2) over a quadratic field extension Fq2 of Fq .

The third result of this paper is the complete classification
of deep holes of PRS(k) for k = q − 3:

Theorem I.7. The total number of deep hole classes of
PRS(q − 3) is q(q + 1)2/2. These are given by the q deep
hole classes of Theorem I.4, q2 classes of Theorem I.5, and
(q + 1)q(q − 1)/2 classes of Theorem I.6.

The rest of this paper is organized as follows. In §II-D
we prove Theorems I.5 and I.6. The necessary tools and
background are covered in §II-C and and §II-A. We prove
Theorem I.7 in §III. The purpose of §II-B is to highlight the
fact that the assertion which sometimes appears in literature–
that MDS codes of minimum distance d have covering radius

(d− 1) or (d− 2) – has no known correct proof. This section
is independent of the rest of the paper.

II. PROJECTIVE REED-SOLOMON CODES AND THEIR
COVERING RADII

We begin with some notation for PRS codes. We use the
term words for row vectors, and a vector (of Fmq for some m)
will mean a column vector. For any integer 1 ≤ k ≤ q + 1
and α ∈ Fq ∪∞, we define vectors

ck(α) =

{
(1, α, α2, · · · , αk−1)T if α ∈ Fq ,
(0, 0, · · · , 0, 1)T if α =∞.

(1)

For k = 1, it is understood that ck(α) = 1 for all α ∈ Fq∪∞.
Let α1, . . . , αq be a fixed ordering of Fq , and let αq+1 =∞.
The matrix Gk defined as:

Gk = [ck(α1)| . . . |ck(αq)|ck(αq+1)], (2)

is a generator matrix for PRS(k): for a message word
(a0, . . . , ak−1) the codeword (a0, . . . , ak−1)Gk is the eval-
uation of the polynomial a0 + a1X + · · · + ak−1X

k−1 at
the ordered set of points α1, . . . , αq+1. We recall that for a
polynomial f(X) of degree at most k−1, the value of f(∞) is
taken to be the coefficient of Xk−1 in f(X). Any k×k minor
of Gk is a Vandermonde determinant and hence is nonzero
(here we use the fact that k ≤ q + 1). It is well known that a
linear [n, k, d] code C satisfies d ≤ n− k + 1 (the Singleton
bound), and equality holds in this bound if and only if every
k × k minor of a generator matrix of C is nonzero. Such
a code is called a maximum-distance-separable code (MDS
code). Therefore PRS(k) is always an MDS code. Using
the following well-known identity about sum of powers of
elements in Fq: ∑

α∈F×
q

αi =

{
0 if q − 1 - i
−1 if q − 1 | i,

(3)

it follows that for 1 ≤ k ≤ q, the product GkGTq+1−k is the
k × (q + 1 − k) zero matrix. Thus Gq+1−k is a parity check
matrix for PRS(k), or equivalently PRS(q + 1 − k) is the
dual code to PRS(k).

For a linear code [n, k] code C, and a received word u ∈ Fnq ,
the word v = au+ c where c ∈ C and a ∈ F×q has the same
error distance as u. We recall that for a vector space V , the
projective space P(V ) denotes the set of equivalence classes
of V \{0} in which two nonzero vectors are equivalent if and
only if they generate the same one dimensional subspace of
V .

Definition II.1. For a linear code [n, k] code C, we will say
that received words u, v ∈ Fnq are equivalent if v = au+c for
some c ∈ C and a ∈ F×q . In particular non-codewords u, v
are equivalent if and only if they represent the same element
of the projective space P(Fnq /C). Here Fnq /C is the quotient
vector space of cosets of C in Fnq . The term deep hole class
will refer to the class of a deep hole of C in P(Fnq /C).
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We recall the following well-known characterization of
covering radius of a linear code in terms of a parity check
matrix.

Lemma II.2. Let C be a [n, k] linear code with parity check
matrix H . The error distance d(u,C) of a received word u ∈
Fnq equals the least number j such that the syndrome syn(u) =
HuT can be expressed as a linear combination of j columns of
H . In particular, the covering radius ρ(C) is the least integer
j such that any vector in Fn−kq can be expressed as a linear
combination of some j columns of H . The word u is a deep
hole of C if and only if syn(u) can not be written as a linear
combination of any ρ(C)− 1 columns of H .

Definition II.3. Let C be a [n, k] linear code. The term projec-
tive syndrome of a non-codeword u will refer to the element
of P(Fn−kq ) represented by syn(u). The map u 7→ syn(u)
induces a bijective correspondence

syn : P(Fnq /C)→ P(Fn−kq ) (4)

from the set P(Fnq /C) of equivalence classes of non-codewords
to the set of projective syndromes P(Fn−kq ).

We use the notation S(k) for the subset of Pq−k(Fq) =
P(Fq+1−k

q ) consisting of the projective syndromes of deep
hole classes of PRS(k). We note that the Problem I.3 is
equivalent to determining the subset S(k) ⊂ Pq−k(Fq). In
the literature on deep holes of RS codes, deep holes are often
described by generating polynomials. This can be adapted to
PRS codes and is closely related to our description in terms of
projective syndromes: Let Pq−k(Fq) denote the set of polyno-
mials of degree at most (q−1) which are monic and for which
the coefficient of 1, X, . . . ,Xk−2 is zero. The number of such
polynomials is 1 + q + · · ·+ qq−k. To each such polynomial,
we associate the word u = (u(α1), . . . , u(αq), 0) ∈ Fq+1

q .
If u(X) 6= v(X), we claim u and v represent different
equivalence classes: if v = au + c for some a ∈ F×q and
c ∈ C, then there is a polynomial f(X) of degree at most k−1
(representing the codeword c) such that v(X)−au(X)−f(X)
has q roots, but degree at most q − 1. This forces v(X) −
au(X) = f(X). We note that

0 = vq+1 − auq+1 = cq+1 = f(∞).

Since f(∞) is the coefficient of Xk−1 in f(X), it follows
that deg(f) ≤ k − 2. Combining this with the fact that the
coefficients of 1, X, . . . ,Xk−2 in u(X) and v(X) are zero,
forces f(X) = v(X) − au(X) = 0. Since u(X), v(X) are
monic we get a = 1 and hence u(X) = v(X). The deep hole
class of u is said to be generated by the polynomial u(X).
The relation between the projective syndrome syn(u) and the
polynomial u(X) is very simple: if u(X) =

∑q−k+1
i=1 aiX

q−i

generates the word u, then the projective syndrome syn(u) =
(a1 : a2 : · · · : aq−k+1). This easily follows from the formula
syn(u) = Gq+1−ku

T together with the identity (3). For
example the projective syndromes of the q words of Theorem
I.4 are:

syn(αk1 , α
k
2 , . . . , α

k
q , a) = (0 : · · · : 0 : 1 : −a), (5)

and the corresponding generating polynomials are

Xk − aXk−1.

A. Covering radius of PRS codes

We first discuss the possible values of covering radius for
PRS codes. As mentioned above, the matrix Gq+1−k is a parity
check matrix for the code PRS(k). Since Gq+1−k has full
rank, it follows from Lemma II.2, that ρ(PRS(k)) ≤ q+1−k.
Next, we show that

ρ(PRS(k)) = q + 1− k for k ∈ {1, q, q + 1},

and ρ(PRS(k)) = q − k for k = q − 1. We also determine
the set of deep holes in each case:
• For k = q+1, we have ρ(PRS(k)) = 0 and hence every

word is a deep hole: this is because

ρ(PRS(k)) ≤ q + 1− k = 0.

• For k = q, we have ρ(PRS(k)) = 1, and hence every
non-codeword is a deep hole: here

ρ(PRS(k)) ≤ q + 1− k = 1,

and ρ(PRS(k)) 6= 0 because a linear [n, k] code C
satisfies ρ(C) = 0 if and only if n = k.

• For k = q−1, we have ρ(PRS(k)) = 1, and hence every
non-codeword is a deep hole: here any syndrome in F2

q is
proportional to one of the (q + 1) columns of the parity
check matrix G2, and hence ρ(PRS(k)) = 1.

• For k = 1, we have ρ(PRS(k)) = q: here the
codewords are {(a, . . . , a) : a ∈ Fq} and hence the
maximum possible distance of a received word from the
code is q. The deep holes are those received words of
length q + 1 which have the maximum possible number
(namely q) of distinct coordinates.

On the other hand, for 2 ≤ k ≤ q − 2 it is also known that
ρ(PRS(k)) ≥ q−k: for the word u = (αk1 , . . . , α

k
q , 0), it can

be shown that d(u, PRS(k)) = q − k. A quick proof is as
follows. The distance of u from a codeword represented by a
polynomial f(X) of degree at most k − 1, is at least q − k
because the polynomial Xk− f(X) can have at most k roots.
On the other hand for

f(X) = Xk − (X − x1)(X − x2) . . . (X − xk),

where x1, . . . , xk are k distinct elements of Fq which add up
to 0 (this is always possible, see [7], [17]), the distance of u
from the codeword represented by f(X) is exactly q− k. For
2 ≤ k ≤ q−2, we have ρ(PRS(k)) = q+1−k if there exists
a vector v ∈ Fq+1−k

q which cannot be expressed as a linear
combination of any q − k columns of Gq+1−k (by Lemma
II.2). If no such vector exists, then ρ(PRS(k)) ≤ q − k and
hence ρ(PRS(k)) = q−k. As mentioned in the introduction,
a [n, k] linear code is MDS if and only if every k×k minor of
a generator matrix of the code is nonzero. Since this property
holds for Gq+1−k, we can rewrite the above characterization
of ρ(PRS(k)) in the following way (originally due to Dür
(1994)):
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Lemma II.4. [6] For 2 ≤ k ≤ q− 2, we have ρ(PRS(k)) =
q − k + 1 or ρ(PRS(k)) = q − k according as whether or
not there exists a vector v ∈ Fq+1−k

q such that the (q + 1 −
k)× (q + 2) matrix [Gq+1−k|v] generates an MDS code, i.e.
whether or not there exists a [q + 2, q + 1 − k] MDS code
extending PRS(q + 1− k) by one coordinate.

In finite geometry an (ordered) n-arc in projective space
Pm−1(Fq) is an ordered set of n points of Pm−1(Fq) repre-
sented by vectors v1, . . . , vn ∈ Fmq with the property that the
m×n matrix [v1|v2| . . . |vn] generates a [n,m] MDS code. The
standard degree (m − 1) normal rational curve in Pm−1(Fq)
is the image of the embedding

P1(Fq) ↪→ Pm−1(Fq) given by

(x : y) 7→ (xm−1 : xm−2y : · · · : xym−2 : ym−1),

or equivalently t 7→ cm(t) where t represents (1 : t) if
t ∈ Fq , and (0 : 1) if t = ∞. To keep the notation simple,
we use the same symbol cm(t) for the class in Pm−1(Fq) of
the vector cm(t) ∈ Fmq . When m ≤ q, these (q + 1) points
form a (q + 1) arc in Pm−1(Fq) because they represent the
(q + 1) columns of the matrix Gm. A n-arc in Pm−1(Fq) is
said to be complete if it is not a subset of a (n + 1)-arc in
Pm−1(Fq). Therefore, Lemma II.4 can be restated in finite
geometry terms as:

Lemma II.4 restated: For 2 ≤ k ≤ q − 2, we have
ρ(PRS(k)) = q − k or ρ(PRS(k)) = q − k + 1 according
as whether the (q + 1) points of the degree (q − k) normal
rational curve in Pq−k(Fq) form a complete arc or not.
A well-known conjecture in finite geometry is:

Conjecture II.5. For 2 ≤ k ≤ q − 2, the (q + 1) points of
the degree (q− k) normal rational curve in Pq−k(Fq) form a
complete arc except when q is even and k ∈ {2, q − 2}.

We note that Conjecture I.2 mentioned in the introduction
is just a restatement of Conjecture II.5. The conjecture is true
if k > b(q − 1)/2c from the work of Seroussi and Roth [13].
This was improved to the range k ≥ 6

√
q ln q − 2 in [14].

Also, Conjecture II.5 is a special case of the famous MDS
conjecture which states that for 2 ≤ k ≤ q− 1, the maximum
possible length of a (q + 1 − k)-dimensional MDS code is
q + 1 except when q is even and k ∈ {2, q − 2}. Therefore,
Conjecture II.5 is true for a value of k if the MDS conjecture
is true for the same k. Some values of k for which the MDS
conjecture is true are:

1) [1, Theorem 1.10]: 3 ≤ k ≤ p ≤ q − 2
2) [16], [10]: q odd, q −√q/4− 9/4 < k ≤ q − 2.
3) [15]: q even, q −√q/2− 11/4 < k ≤ q − 4.

Some other values of k for which the Conjecture II.5 has
been proved (for example k ∈ {2, 3, 4} for q odd) can be
found in [9, §4].

For k = q − 2, Problem I.3 was solved in [9]:

Theorem II.6. Let k = q − 2.

• If q is even, then ρ(PRS(k)) = 3 and S(k) = {(0 : 1 :
0)}. In other words, there is exactly one deep hole class
and its projective syndrome is (0 : 1 : 0).

• If q is odd, then ρ(PRS(k)) = 2. There are q2 deep hole
classes, and S(k) consists of all points of P2(Fq) other
than the (q + 1) points {c3(t) : t ∈ Fq ∪∞}.

Briefly, the problem of finding all v ∈ F3
q such that the

matrix [G3 | v] generates a [q+ 2, 3] MDS code is easily seen
to have no solution if q is odd, and if q is even then v must be
(0, a, 0)T for a 6= 0. Thus by Lemma II.4, ρ(PRS(q−2)) = 2
if q is odd, and ρ(PRS(q − 2)) = 3 if q is even. Next, by
Lemma II.2, v ∈ F3

q is the syndrome of a deep hole if and
only if

1) Case when q is odd: v cannot be expressed as a linear
combination of one column of G3(Fq). In other words,
the class of v in P2(Fq) consists of the q2 points of
P2(Fq) other that {c3(t) : t ∈ Fq ∪∞}.

2) Case when q is even: the matrix [G3(Fq) | v] generates
a [q + 2, 3] MDS code, which has the only solutions
v = a(0, 1, 0)T , a 6= 0 as noted above.

B. Remarks on the Covering Radius of MDS codes

It is sometimes asserted in literature (for example [2], [7])
that the covering radius of any linear [n, k] MDS code C is
either n−k or n−k−1. In this section we wish to emphasize
that there is no known correct proof of this assertion, and hence
it remains a widely believed conjecture. Let A and A⊥ denote
a pair of generator and parity check matrices for C. We recall
that the covering radius of any linear [n, k] code is at most
n− k.

Lemma II.7. The following assertions are equivalent for an
[n, k] MDS code C:

1) ρ(C) = n− k
2) There exists a word u ∈ Fnq such that the (k + 1) × n

matrix (Au ) generates a [n, k + 1] MDS code.
3) There exists a word u ∈ Fnq such that the (k+1)×(n+1)

matrix (A 0
u 1 ) generates a [n+ 1, k + 1] MDS code.

4) There exists a vector v ∈ Fn−kq such that the (n− k)×
(n+ 1) matrix (A⊥ | v) generates a [n+ 1, n− k] MDS
code extending C⊥ by one coordinate.

Proof: (1)⇔ (2): We have ρ(C) = n− k if and only if
there exists a word u ∈ Fnq with error distance n− k. This in
turn is true if and only if no (k + 1) × (k + 1) minor of the
matrix (Au ) is zero.
(2)⇔ (3): Since every k×k minor of A is nonzero, it follows
that every (k+1)×(k+1) minor of the matrix (A 0

u 1 ) is nonzero
if and only if the same is true of the matrix (Au ).
(3)⇔ (4): Suppose (A 0

u 1 ) generates a [n+1, k+1] MDS code.
A parity check matrix for this code is (A⊥ | −A⊥ut). Since
the dual code of an MDS code is MDS, it follows that the
latter matrix generates an [n+1, n−k] MDS code. Conversely
suppose the (n − k) × (n + 1) matrix (A⊥ | v) generates an
MDS code. Since A⊥ is full rank, there exists a word u ∈ Fnq
such that A⊥ut = −v. The (k + 1) × (n + 1) matrix (A 0

u 1 )
also generates an MDS code as it is a parity check matrix for
the code generated by (A⊥ | v).
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If the (k + 1)× n matrix (Au ) generates a [n, k + 1] code,
then the latter code is called a supercode containing C. By
Lemma II.7 it follows that ρ(C) < n − k if and only if C
cannot be embedded in an MDS supercode, or equivalently
if C⊥ cannot be extended to a [n + 1, n − k] MDS code. It
is not true in general that any [n, k] MDS code with n ≤ q
can be embedded in a [n, k + 1] MDS supercode, because
dually, it is not true that any [n, n− k] MDS code for n ≤ q
can be extended to a [n + 1, n − k] MDS code. In finite
geometry terms there do exist complete arcs of length n ≤ q
in Pn−k−1(Fq) for some k, n. For instance several examples
of complete n-arcs in P2(Fq) are known for some q, n with
n ≤ q (see [8, Tables 1,2]), which means that there do exist
[n, n − 3] MDS codes for n < q which cannot be embedded
in a MDS supercode. Thus, Remark 1) of [7] is not accurate.
For such codes C, it is unlikely that ρ(C) < n − k − 1,
however there is no known proof that ρ(C) = n − k − 1 to
the authors’ best knowledge.

Theorem 2 of [7] asserts that any [q + 1, k] MDS code C
(except the cases k ∈ {2, q− 2} when q is even) has covering
radius q − k. Here, by Lemma II.7, one must clearly add the
hypothesis that C cannot be embedded in a MDS supercode,
or equivalently C⊥ cannot be extended to an MDS code of
length q + 2 (the additional hypothesis is not necessary if the
MDS conjecture is true in dimension q+ 1− k). In the proof
of this theorem, the authors assume that C can be taken to be
PRS(k), for which the result is true by Lemma II.4. However,
it is not true in general that every MDS code of length q + 1
is PRS, and therefore we cannot conclude that ρ(C) = q− k.
It is unlikely that ρ(C) < q − k but there is no proof yet.

C. Automorphisms of PRS codes

The automorphism group of a linear code acts on the set
of deep holes of the code, and hence can be a useful tool to
determine the set of deep holes. We begin with some general
notions concerning automorphisms of a linear code. We
recall that the subgroup of GLn(Fq) consisting of Hamming
isometries of Fnq is the group of n× n monomial matrices (a
n × n monomial matrix is a product of a n × n permutation
matrix and a n × n diagonal matrix). Since we are writing
words of Fnq as row vectors, the action of A ∈ GLn(Fq)
on a word u is u 7→ uA−1. For a linear [n, k] code C, the
automorphism group Aut(C) of the code is the subgroup of
GLn(Fq) consisting of those monomial matrices A satisfying
cA−1 ∈ C for all c ∈ C. Since C is linear, the group of scalar
matrices {λIn : λ ∈ F×q } (where In is the n × n identity
matrix) is contained in the center of Aut(C). Let PAut(C)
denote the quotient group Aut(C)/{λIn : λ ∈ F×q }.

Given a pair G,H of generator and parity check matrices
for C, we can define monomorphisms ı : Aut(C) ↪→ GLk(Fq)
and  : Aut(C) ↪→ GLn−k(Fq) defined as follows. For each
A ∈ Aut(C) the matrix GA−1 is also a generator matrix for
C. The fact that A−1 also is in Aut(C) implies that GA is also
a generator matrix for C. Similarly, the fact that cA−1 ∈ C
implies that HA−tct = 0 for all c ∈ C. Therefore, HA−t is

also a parity check matrix for C. Since generator and parity
check matrices are unique upto row equivalence, it follows that
there exist matrices A′ ∈ GLk(Fq) and A′′ ∈ GLn−k(Fq)
such that A′G = GA and A′′H = HA−t. Moreover, the
matrices A′ and A′′ are unique because G and H are full
rank. We define

ı(A) = A′ and (A) = A′′.

The identities

GAB = ı(A)GB = ı(A)ı(B)G,

HA−tB−t= (A)HB−t = (A)(B)H,

show that ı,  are group homomorphisms. Again, the fact that
G and H are full rank implies that the only matrices A′, A′′

satisfying A′G = G and A′′H = H are the identity matrices.
Therefore, ı and  are monomorphisms. Finally, we use the
same notation ı and  for the induced monomorphisms

ı : PAut(C) ↪→ PGLk(Fq) and  : PAut(C) ↪→ PGLn−k(Fq).

Here PGLm(Fq) denotes, as above the quotient group
GLm(Fq)/{λIm : λ ∈ F×q }. Since A carries C to C, it follows
that Aut(C) acts on the vector space Fnq /C of cosets of C. The
action of Aut(C) on Fnq /C, induces an action of PAut(C) on
the projective space P(Fnq /C) of equivalence classes of non-
codewords. The bijective correspondence

syn : P(Fnq /C)→ P(Fn−kq ),

(given in (4)) respects the action of PAut(C):

syn(uA−1) = HA−tut = (A)Hut = (A)syn(u). (6)

For A ∈ Aut(C) and a received word u, clearly the error
distance d(u,C) = d(uA−1, C). In particular Aut(C) acts on
the set of deep holes of C, and PAut(C) acts on the set of
deep hole classes of C.

We now return to the code C = PRS(k). For 2 ≤ k ≤ q−2,
if A ∈ Aut(PRS(k)), then the equation ı(A)G = GA implies
that ı(A) ∈ PGLk(Fq) preserves the set of (q + 1) points
{ck(t) : t ∈ Fq ∪ ∞} ⊂ Pk−1(Fq). Similarly, the equation
(A)H = HA−t implies that (A) ∈ PGLq+1−k(Fq) pre-
serves the set of (q + 1) points

{cq+1−k(t) : t ∈ Fq ∪∞} ⊂ Pq−k(Fq).

Here we have used the fact that for a monomial matrix A, the
columns of a matrix MA are obtained from the columns of M
by permutation and rescaling. We recall that there is a bijection
Fq ∪∞ → P1(Fq) given by t 7→ (1 : t) where it is understood
that (1 : t) = (0 : 1) for t = ∞. The action of GL2(Fq)
on the vector space F2

q induces an action of PGL2(Fq) on
the set P1(Fq) of one dimensional subspaces of F2

q . Given
g = ( a bc d ) ∈ PGL2(Fq) and (1 : t) ∈ P1(Fq), we have

( a bc d )( 1
t ) = ( a+btc+dt ).

In terms of the identification Fq∪∞ → P1(Fq), this is usually
written as g(t) = (c+dt)/(a+bt) and referred to as a Möbius
or fractional linear transformation.
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Definition II.8. For each 2 ≤ m ≤ q, we define functions
GL2(Fq) → GLm(Fq) denoted g 7→ gm as follows. For g =
( a bc d ), the ij-th entry of gm is the coefficient of Xj−1 in the
polynomial (a+ bX)m−i(c+ dX)i−1.

For example g2 = g and,

g3 =

a2 2ab b2

ac ad+ bc bc
c2 2cd d2

 for g =

(
a b
c d

)
,

gm =


1

1

. .
.

1

 for g =

(
0 1
1 0

)
. (7)

Also for g =

(
1 0
c 1

)
, we have:

gm =


1
c 1
c2 2c 1
...

...
...

. . .

cm−1 (m− 1)cm−2
(
m−1
2

)
cm−3 . . . 1

 (8)

We collect some properties of the matrices gm:
1) [3, Proposition 2.6]: the map g 7→ gm is a

group homomorphism and the induced homomorphism
PGL2(Fq) → PGLm(Fq) (which we again denote by
g 7→ gm) is a monomorphism.

2) [3, Proposition 2.5]): For each t ∈ Fq ∪∞ we have

gmcm(t) = cm(g(t)) ∈ Pm−1(Fq) (9)

3) [3, Theorem 2.10]: For m < q, the only elements of
PGLm(Fq) which preserve the set

{cm(t) : t ∈ Fq ∪∞} ⊂ Pm−1(Fq),

are {gm : g ∈ PGL2(Fq)}.
Thus for C = PRS(k), the images of the monomorphisms ı :
PAut(C) ↪→ PGLk(Fq) and  : PAut(C) ↪→ PGLn−k(Fq)
are precisely {gk : g ∈ PGL2(Fq)} and {gq+1−k : g ∈
PGL2(Fq)}. The group PAut(C) itself can be described
as follows: The action of PGL2(Fq) on Fq ∪ ∞ gives a
monomorphism g 7→ Π(g) from PGL2(Fq) to the group of
permutation matrices in GLq+1(Fq) defined by:

[gα1, . . . , gαq+1] = [α1, . . . , αq+1]Π(g).

By the identity (9), it follows that there exists a diagonal
matrix ∆m(g) such that the n×n monomial matrix Bm(g) =
Π(g)∆m(g) satisfies the property

gmGm = GmBm(g).

In particular,

ı(Bk(g)) = gk, and (Bk(g)) = gq+1−k.

Since g 7→ gk (from PGL2(Fq) → PGLk(Fq)) and
ı : PAut(PRS(k)) → PGLk(Fq) are both monomorphisms,
it follows that g 7→ Bk(g) is an isomorphism from PGL2(Fq)

to PAut(PRS(k)) ⊂ PGLq+1(Fq).

For completenes, we write down the matrices ∆m(g) =
diag(δ1, δ2, · · · , δq+1):

δi =


(a+ bαi)

m−1 if αi 6= −ab ,∞,
(c− dab )m−1 if b 6= 0, αi = −ab ,
bm−1 if b 6= 0, αi =∞,
dm−1 if b = 0, αi =∞.

(10)

Since Gk is also a parity check matrix for PRS(q + 1− k),
it follows from the definition of the homomorphism  that

GkBq+1−k(g)
−t

= (Bq+1−k(g))Gk = gkGk = GkBk(g).

Therefore,
Bq+1−k(g) = Bk(g)−t.

Using this, the equation (6) for C = PRS(k) becomes:

syn(uBk(g−1)) = Gq+1−kBq+1−k(g)ut

= gq+1−kGq+1−ku
t = gq+1−ksyn(u).

We summarize this in the following lemma:

Lemma II.9. Let u and v be deep hole classes of PRS(k).
Then v is in the PAut(PRS(k)) orbit of u if and only if there
exists g ∈ PGL2(Fq) such that gq+1−ksyn(u) = syn(v).

We end this section with a calculation of the PGL2(Fq)
orbit of

Nm = (0 : · · · : 0 : 1 : 0) ∈ Pm−1(Fq), m ≥ 3, (11)

which we need in the next section. We also use the same
symbol Nm for the vector (0, . . . , 0, 1, 0)T ∈ Fmq .

Lemma II.10. Let 3 ≤ m ≤ q, and let Nm ∈ Pm−1(Fq) be
as above.

1) if m = 3 and q is odd, the orbit of Nm has size q(q +
1)/2 and its stabilizer is the group {t 7→ dt±1 : d ∈
F×q }.

2) if m > 3 and m 6≡ 1 mod p, the orbit of Nm has size
q(q + 1) and its stabilizer is the group {t 7→ dt : d ∈
F×q }.

3) if m > 3 and m ≡ 1 mod p, the orbit of Nm has size
(q+ 1) and its stabilizer is the group {t 7→ dt+ c : d ∈
F×q , c ∈ Fq}.

4) if m = 3 and q is even, the orbit of Nm has size 1 and
its stabilizer is the whole group PGL2(Fq).

5) Nm + cm(∞) is in the PGL2(Fq)-orbit of Nm if and
only if m 6≡ 1 mod p. In case m ≡ 1 mod p, the orbit
of Nm+ cm(∞) has size q2−1, and its stabilizer is the
group {t 7→ t+ c : c ∈ Fq}.

Proof: For g = ( a bc d ) ∈ PGL2(Fq), we have by
Definition II.8:

gm ·Nm =


(m−1)abm−2

cbm−2+(m−2)abm−3d

2cbm−3d+(m−3)abm−4d2

...
(m−2)cbdm−3+adm−2

(m−1)cdm−2

 . (12)
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In order to determine when this equals Nm, we consider the
cases m ≡ 1 mod p and m 6≡ 1 mod p separately. First
suppose m 6≡ 1 mod p. The first and last components of (12)
imply ab = cd = 0, i.e. either a = d = 0 or b = c = 0. In the
former case gmNm = (0 : 1 : 0 : · · · : 0) which equals Nm
if and only if m = 3. If b = c = 0, then gmNm = Nm. This
proves the assertions 1) and 2). Now suppose m ≡ 1 mod p.
If b = 0, we have gmNm = Nm. If b 6= 0, using the fact that
ad− bc 6= 0, we can write

gmNm = (0 : 1 : 2d/b : 3(d/b)2 : · · · : (m−2)(d/b)m−3 : 0).

This equals Nm if and only if m = 3. This proves the
assertions 3) and 4).

If m 6≡ 1 mod p, then gmNm = Nm + cm(∞) for g(t) =
t+(m−1)−1. If m ≡ 1 mod p, then it is clear from (12) that,
for every v in the PGL2(Fq)-orbit of Nm, the last entry of v is
zero. In particular, Nm+cm(∞) is not in the PGL2(Fq)-orbit
of Nm. Also, for m ≡ 1 mod p, we have

gm(Nm+cm(∞)) =


bm−1

bm−2d
bm−3d2

...
bdm−2

dm−1

+(bc−ad)


0

bm−3

2bm−4d
...

(m−2)dm−3

0

 .

Thus g stabilizes Nm + cm(∞) if and only if b = 0 and
a = d. Therefore, the stabilizer of Nm + cm(∞) is the group
{t 7→ t+ c : c ∈ Fq}. This proves assertion 5).

D. New deep holes of PRS codes

In this section we obtain the two new deep hole classes
of PRS(k) given in Theorem I.5 and Theorem I.6. We
throughout assume 2 ≤ k ≤ q − 3 in this section.

Proof of Theorem I.5: Assuming ρ(PRS(k)) = q − k, we
need to show that the q2 words

u(i, a) = ( 1
α1−αi

, · · · , 1
αi−1−αi

, a, 1
αi+1−αi

, · · · , 1
αq−αi

, 0),

where 1 ≤ i ≤ q and a ∈ Fq, represent distinct deep holes
classes of PRS(k), and that these are distinct from the q deep
holes of Theorem I.4. The j-th component of syn(u(i, a)) =
Gq+1−ku(i, a)T is

aαj−1i +
∑
` 6=i

αj−1
`

α`−αi
.

Expanding αj−1` as (α` − αi + αi)
j−1, we have:

αj−1
`

α`−αi
− (j − 1)αj−2i =

∑
s6=1

(
j−1
s

)
αj−1−si (α` − αi)s−1.

Summing the last equation over all ` 6= i, we get:

(j − 1)αj−2i +
∑
` 6=i

αj−1
`

α`−αi
= 0,

where we have used the identity (3), and the fact that s− 1 <
j ≤ q + 1 − k ≤ q − 1. Therefore, the j-th component of
syn(u(i, a)) is

aαj−1i − (j − 1)αj−2i .

In other words:

syn(u(i, a)) = a cq+1−k(αi)− c′q+1−k(αi) (13)

where c′q+1−k(t) = (0, 1, 2t, 3t2, . . . , (q − k)tq−k−1)T .

For g = ( 1 0
c 1 ) ∈ GL2(Fq), it follows from (8) that:

gmcm(X) = cm(X + c), (14)

where each of the m components of this equation
are polynomial identities in Fq[X] with cm(X) =
(1, X,X2, . . . , Xm−1)T . Differentiating this polynomial iden-
tity with respect to X gives

gmc
′
m(X) = c′m(X + c) where

c′m(X) = (0, 1, 2X, . . . , (m− 1)Xm−2)T .

Using this in (13), we get

gq+1−ksyn(u(i, a)) = acq+1−k(0)− c′q+1−k(0)

= (a,−1, 0 . . . , 0)T for g = ( 1 0
−αi 1 ). (15)

Further, using (7) we get:

hq+1−ksyn(u(i, a)) = (0, . . . , 0,−1, a)T

= −Nq+1−k + a cq+1−k(∞) for h = ( 0 1
1 0 )( 1 0

−αi 1 ).

Thus the projective syndrome syn(u(i, a)) is in the
PGL2(Fq)-orbit of Nq+1−k − acq+1−k(∞). Since
Nq+1−k − acq+1−k(∞) is the syndrome of the deep
hole (αk1 , α

k
2 , . . . , α

k
q , a), it follows from Lemma II.9 that

u(i, a) are deep holes.

Next we show that the q2 words

{u(i, a) : 1 ≤ i ≤ q, a ∈ Fq},

represent distinct deep hole classes. Suppose the projective
syndromes syn(u(i, a)) = syn(u(j, b)). In view of (15), we
may assume αj = 0 i.e.

syn(u(j, b)) = (b : −1 : 0 : · · · : 0).

If αi = 0, then the expression

syn(u(i, a)) = (a : −1 : 0 : · · · : 0),

shows that b = a, and hence u(i, a) = u(i, b). Next, suppose
αi 6= 0. Since q + 1 − k ≥ 4, the last two components of
(b : −1 : 0 : · · · : 0) are zero, but the last two components of
syn(u(i, a)), namely

αq−k−2i (aαi − (q − k − 1)) and αq−k−1i (aαi − (q − k)) ,

cannot both be zero. This contradiction shows that the
projective syndromes syn(u(i, a)) and syn(u(j, b)) are
distinct if i 6= j.

Next we show that the deep hole classes represented by
u(i, a) are distinct from the the q classes of Theorem I.4. The
fact that q+1−k ≥ 4 implies that the first two components of
Nq+1−k − b cq+1−k(∞) = (0 : · · · : 0 : 1 : −b) are zero, but
the first two components of syn(u(i, a)) = (a : aαi − 1 : . . . )
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cannot both be zero. This shows that the deep hole classes of
the words u(i, a) are distinct from the q classes of Theorem
I.4.

We recall from Lemma II.10, that

{Nq+1−k − acq+1−k(∞) : a ∈ Fq},

is in the PGL2(Fq) orbit of Nq+1−k provided p - k.
If p | k, then the PGL2(Fq) orbits of Nq+1−k and
Nq+1−k + cq+1−k(∞) are distinct, and the latter orbit con-
tains {Nq+1−k − acq+1−k(∞) : a ∈ F×q }. Combining this
with the fact that syn(u(i, a)) is in the PGL2(Fq) orbit of
Nq+1−k − acq+1−k(∞), we conclude:
The q2 + q deep holes of Theorems I.4 and Theorem I.5 put
together form:

1) in case p - k, the PGL2(Fq) orbit of (αk1 , α
k
2 , . . . , α

k
q , 0)

2) in case p | k, the PGL2(Fq) orbits of

(αk1 , α
k
2 , . . . , α

k
q , 0) and (αk1 , α

k
2 , . . . , α

k
q , 1),

of sizes q + 1 and q2 − 1 respectively.

Remark: In terms of the the standard degree (q − k) normal
rational curve in Pq−k(Fq), the projective tangent line to the
curve at cq+1−k(t) for each t ∈ Fq ∪ ∞ has (q + 1) points
with Fq-coordinates given by ck(t) itself and the q points
{c′k(t)−ack(t) : a ∈ Fq}. If t =∞, then these (q+ 1) points
are cq+1−k(∞) and {Nq+1−k − acq+1−k(∞) : a ∈ Fq}. As
shown above, the tangent lines have no pairwise intersection
when k ≤ q − 3. Thus the geometric interpretation of the
(q + 1)q syndromes of the deep hole classes in Theorems
I.4 and I.5, is that these consist of those points with Fq-
coordinates which are not on the curve, but are in the union
of the tangent lines to the curve. �

Proof of Theorem I.6: For each p(X) in the set of (q2−q)/2
monic irreducible quadratic polynomials over Fq , and for each
a ∈ Fq ∪∞, let u(a, p(X)) be the word in Fq+1

q defined by

u(a, p(X)) =

{
( 1
p(α1)

, . . . , 1
p(αq)

, 0) if a =∞
(α1+a
p(α1)

, α2+a
p(α2)

, · · · , αq+a
p(αq)

, 0) if a ∈ Fq
(16)

Assuming ρ(PRS(k)) = q−k, we must show that (q+1)q(q−
1)/2 words given by u(a, p(X)) represent distinct deep hole
classes of PRS(k) for 2 ≤ k ≤ q − 3, and that these are
distinct from the q2 + q classes of Theorems I.4 and I.5. We
begin with two lemmas.

Lemma II.11. The projective syndrome of the word
u(a, p(X)) is

syn(u(a, p(X))) = µa cq+1−k(µ) + µqa cq+1−k(µq),

where µ is a root of p(X) in a quadratic extension Fq2 of Fq ,
and

µa =

{
µ+ a if a ∈ Fq
1 if a =∞

(17)

Proof: Let µ ∈ Fq2 be a root of p(X), and let σ denote
the nontrivial automorphism x 7→ xq of Fq2 over Fq . We have:

1

p(X)
=

1

µ− µq
1

X − µ
+ σ

(
1

µ− µq
1

X − µ

)
, (18)

X + a

p(X)
=

µ+ a

µ− µq
1

X − µ
+ σ

(
µ+ a

µ− µq
1

X − µ

)
.

Using this in (16), we get:

syn(u(a, p(X))) = Gq+1−ku(a, p(X))T

=

{
1

µ−µqw + σ( 1
µ−µqw) if a =∞

µ+a
µ−µqw + σ( µ+a

µ−µqw) if a ∈ Fq
,

where

w = Gq+1−k


1

α1−µ
...
1

αq−µ
0

 =
∑
α∈Fq


1

α−µ
α

α−µ
...

αq−k

α−µ

 .

Using the partial fraction expansions

Xj

Xq −X
=
∑
α∈Fq

−αj

X − α
,

we get

w =
1

µq − µ

 1
µ
...

µq−k

 =
1

µq − µ
cq+1−k(µ).

Multiplying syn(u(a, p(X))) by −(µ−µq)2 ∈ F×q does not
change the projective syndrome. Therefore,

syn(u(a, p(X))) = µa cq+1−k(µ)+σ(µa cq+1−k(µ)) ∈ Pq−k(Fq),

where µa is as defined in (17).

Lemma II.12. The group PAut(PRS(k)) preserves the set of
(q + 1)q(q − 1)/2 words of the form u(a, p(X)) .

Proof: We know from (10) that

gq+1−k(µacq+1−k(µ) + σ(µacq+1−k(µ))

= λcq+1−k(ν) + λqcq+1−k(νq),

where ν = (γ+δµ)/(α+βµ), and λ = (α+βµ)q−kµa. Since
µ ∈ Fq2 \ Fq , the same is true for ν, and hence any element
of Fq2 is of the form r + sν for some r, s ∈ Fq . In particular
any element of F×q2/F

×
q is represented by one of the (q + 1)

elements

νb =

{
ν + b if b ∈ Fq
1 if b =∞

.

Thus we may take λ = νb for some b ∈ Fq ∪∞.

Next we show that the u(a, p(X)) are deep holes of
PRS(k) when ρ(PRS(k)) = q−k. By Lemma II.2, we must
show that syn(u(a, p(X))) is not in the Fq-span of (q−1−k)
columns of Gq+1−k(Fq). Consider the (q+ 1− k)× (q2 + 1)
matrix

Gq+1−k(Fq2) = [cq+1−k(t1)| . . . |cq+1−k(tq2+1)],
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where t1, . . . , tq2+1 is a listing of Fq2 ∪∞. We know that any
(q + 1 − k) columns of this matrix are linearly independent
over Fq2 . In particular

syn(u(a, p(X))) = µacq+1−k(µ) + µqacq+1−k(µq),

is not in the Fq-span of (q−1−k) columns of Gq+1−k(Fq), as
was to be shown. Moreover for k ≤ q−3, we have 4 ≤ q−k+
1, and hence any four columns of Gq+1−k(Fq2) are linearly
independent over Fq . This shows that if (a, p(X)) 6= (b, p̃(X))
then their projective syndromes

µacq+1−k(µ) + µqacq+1−k(µq) and
νbcq+1−k(ν) + νqb cq+1−k(νq),

(where p̃(X) = (X − ν)(X − νq)) are distinct. This proves
that the (q+ 1)q(q− 1)/2 words u(a, p(X)) of (16) represent
distinct deep hole classes of PRS(k).

Next, we show that the q2+q deep hole classes of Theorems
I.4 and I.5 are distinct from those of Theorem I.6. The
projective syndromes of the former deep hole classes are in the
PGL2(Fq)-orbit of Nq+1−k or Nq+1−k + cq+1−k(∞), where
as by Lemma II.12, the projective syndromes of words in the
PGL2(Fq)-orbits of the latter deep hole classes are of the
form (µacq+1−k(µ)+µqacq+1−k(µq)). Since we have assumed
k ≤ q− 3. i.e q+ 1− k ≥ 4, it follows that the first two coor-
dinates of Nq+1−k, Nq+1−k + cq+1−k(∞) are zero. However
the first two coordinates of (µacq+1−k(µ) + µqacq+1−k(µq)),
namely

µa + µqa and µµa + µqµqa,

are both zero only if µ ∈ Fq which is not the case.

Remark: Consider the standard normal rational curve of
degree (q−k) in projective space Pq−k(FQ) over an extension
field FQ of Fq . Let P ′, P ′′ be two distinct points on the
curve such that not both of them have Fq-coordinates. Let
P /∈ {P ′, P ′′} be a point on the secant line joining P ′, P ′′.
Since any (q+ 1−k) columns of the matrix Gq+1−k(FQ) are
linearly independent over FQ, it follows in particular, that P
cannot be written as a Fq-linear combination of (q − k − 1)
columns of Gq+1−k(Fq). Thus P ∈ S(k) provided P has
Fq-coordinates. For P to have Fq-coordinates, Q must be an
even power of q so that there is a quadratic extension Fq2 of
Fq in FQ, and we must have P ′′ = σ(P ′) where σ is the
nontrivial automorphism of Fq2 over Fq . Thus the geometric
interpretation of the (q+ 1)q(q− 1)/2 syndromes of the deep
hole classes u(a, P (X)) is as follows: there are (q2 − q)/2
pairs of distinct points {P ′, σ(P ′)} on the curve, and on the
secant line joining P ′, σ(P ′), there are (q+ 1) points with Fq
coordinates.

III. COMPLETE DEEP HOLES OF PRS(q − 3)

In this section, we will show that the deep holes con-
structed in Theorems I.4, I.5 and I.6 form all the deep
holes of PRS(q − 3). Since PRS(k) for k = 1 has been
treated in §II-A, we assume q ≥ 5. Since Conjecture I.2
is true for PRS(k) when k ≥ b(q − 1)/2c, it follows that

ρ(PRS(q− 3)) = 3 provided q− 3 ≥ b(q− 1)/2c i.e. q ≥ 4,
which is the case here. For PRS(k), even the problem of just
determining the number of deep hole classes (not necessarily
determining all of them) is very difficult for k < q − 3.
If ρ(PRS(k)) = q − k, this reduces to the problem of
determining the number of points of Pq−k(Fq) which are not
in the span of any q−k−1 columns of Gq+1−k. For k = q−3,
we can calculate this number:

Theorem III.1. There are (q3 + 2q2 + q)/2 classes of deep
holes of PRS(q − 3).

Proof: The number of deep hole classes of PRS(q − 3)
is

(1 + q + q2 + q3)−
|{v ∈ P3(Fq) : v is in the span of some 2 columns of G4}|.

There are (q + 1) points in P3(Fq) which are in the span of
less than two columns of G4 (namely {c4(t) : t ∈ Fq ∪∞}).
For each of the

(
q+1
2

)
pairs of columns G4, there are q − 1

points which are in the span of these two columns but are
not in {c4(t) : t ∈ Fq ∪ ∞}. Since any 4 columns of G4

are linearly independent, a point of P3(Fq) which is not in
{c4(t) : t ∈ Fq ∪∞}, cannot be in the span of two different
pairs of columns of G4. Therefore, the number of deep hole
classes of PRS(q − 3) is

(1 + q+ q2 + q3)− (1 + q)−
(
q+1
2

)
(q−1) = (q3 + 2q2 + q)/2.

We have shown in Theorem I.5 that the q2 deep hole classes
constructed in this theorem are distinct from the q deep hole
classes constructed in Teorem I.4. We have also shown in
Theorem I.6, that the (q + 1)q(q − 1)/2 deep hole classes
constructed in this theorem are distinct from the q2 + q deep
hole classes of Theorems I.4 and I.5. Since

(q3 + 2q2 + q)/2 = q + q2 + (q + 1)q(q − 1)/2,

we conclude that all deep hole classes of PRS(q − 3) have
been found.

IV. CONCLUSION

The foremost open problem about deep holes for Projective
Reed-Solomon (PRS) codes, is to determine the covering
radius of these codes – i.e. to settle Conjecture I.2, or equiva-
lently Conjecture II.5. This is a special and important case of
the well known MDS conjecture. For dimensions k in which
Conjecture I.2 is known to be true, the next important problem
is to determine the deep holes of the code PRS(k). This is
a difficult problem. The oldest known deep holes of PRS(k)
are those generated by the polynomial Xk. By applying the
full automorphism group of PRS(k) to these deep holes we
obtained in this work the deep holes of Theorems I.4 and
I.5. In Theorem I.6, we obtained new deep holes of PRS(k)
using some words having error distance 2 from the the Fq2 -
linear code PRS(q2 − q + k). We determined the number of
deep holes of PRS(q − 3) and showed in Theorem I.7, that
the above two constructions account for all the deep holes of
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PRS(q − 3). For k < q − 3 it seems increasingly difficult to
enumerate the deep holes of PRS(k). The case k = q − 4
will be discussed in a forthcoming work.
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