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Abstract—Let Fq be the finite field of q elements. In this paper
we obtain bounds on the following counting problem: given a
polynomial f(x) ∈ Fq[x] of degree k + m and a non-negative
integer r, count the number of polynomials g(x) ∈ Fq[x] of
degree at most k−1 such that f(x)+g(x) has exactly r roots in
Fq . Previously, explicit formulas were known only for the cases
m = 0, 1, 2. As an application, we obtain an asymptotic formula
on the list size of the standard Reed-Solomon code [q, k, q−k+1]q .

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

A. Motivations

This paper is motivated by the following fundamental cod-
ing theory problem:

Problem 1.1: Let C be a linear code over Fq . Given a
received word u, determine the distance distribution having u
as the center. That is, for integer i ≥ 0, compute the number
Ni(u) of codewords in C whose distance to u is exactly i.

When the received word u is a codeword, this is the
classical weight distribution problem, which is generally NP-
hard and only well understood for certain special codes such
as MDS codes and some special families of cyclic codes.
When the received word is not a codeword, it is equivalent
to the coset weight distribution problem. The coset weight
distribution was determined for a few very special classes of
linear codes including t-error-correcting BCH codes for t ≤ 3
(cf. [4], [5], [6]), external self-dual binary codes of length n
for n ≤ 20, n = 28, 40, 46, 56 (cf. [12], [13], [20], [21]) and
the second-order Reed-Muller code of length 64 (cf. [1], [22]).

The distance distribution problem can be viewed as the
counting version of list decoding and is much harder and
widely open even for standard Reed-Solomon codes. In this
paper, we make the first attempt to study this problem and
obtain an asymptotic formula for standard Reed-Solomon
codes.

A special case of our problem is computing the error
distance from a received word u, that is, finding the smallest
non-negative integer i such that Ni(u) > 0. This can be
reduced to the decision version of the maximal likelihood
decoding problem in coding theory. As Reed Solomon codes
are constructed using polynomials, all such problems on Reed-
Solomon codes can be reduced to polynomial factorization
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problems. Details will be explained in Section 2. To be more
precise in this introduction, we now introduce some notations.

Let Fq be the finite field of q elements with characteristic p.
Let 1 ≤ n ≤ q be a positive integer, D = {x1, . . . , xn} ⊂ Fq
be a subset of cardinality |D| = n > 0. For 1 ≤ k ≤ n, the
Reed-Solomon code RSn,k has the codewords of the form

(f(x1), . . . , f(xn)) ∈ Fnq ,

where f runs over all polynomials in Fq[x] of degree at most
k−1. It is well-known that the minimum distance of the Reed-
Solomon code is n−k+1. If D = Fq (resp., F∗q), then the code
RSq,k(resp., RSq−1,k) is called the standard (respectively the
primitive) Reed-Solomon codes. All our results for standard
Reed-Solomon codes extend to primitive Reed-Solomon codes
with minor modification. For this reason, we shall focus on
the standard Reed-Solomon codes in this paper.

For any word u = (u1, u2, . . . , un) ∈ Fnq , one can efficient-
ly compute a unique polynomial u(x) ∈ Fq[x] of degree at
most n− 1 such that

u(xi) = ui, for all 1 ≤ i ≤ n.

Explicitly, the polynomial u(x) is given by the Lagrange
interpolation formula

u(x) =

n∑
i=1

ui

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

.

The degree deg(u) of u is then defined as the degree of
the associated polynomial u(x). It is easy to see that u is
a codeword if and only if deg(u) < k.

For a given word u ∈ Fnq , the distance from u to RSn,k is
defined by

d(u,RSn,k) := min
v∈RSn,k

d(u, v).

The maximum likelihood decoding of u is to find a code-
word v ∈ RSn,k such that d(u, v) = d(u,RSn,k). Thus,
computing d(u,RSn,k) is essentially the decision version for
the maximum likelihood decoding problem, which is NP-
complete for general subset D ⊂ Fq , see Guruswami-Vardy
[11] and Cheng-Murray [7]. For standard Reed-Solomon code
with D = Fq , the complexity of the maximum likelihood
decoding is unknown to be NP-complete. This is an important
open problem. It was shown by Cheng-Wan [9], [10] that
decoding the standard Reed-Solomon code is at least as hard
as the discrete logarithm problem in a large extension of the
finite field Fq .

If deg(u) ≤ k − 1, then u is a codeword and thus
d(u,RSn,k) = 0. We shall assume that k ≤ deg(u) ≤ n− 1.
The following simple result gives an elementary bound for
d(u,RSn,k).
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Theorem 1.2: [16] Let u ∈ Fnq be a word such that k ≤
deg(u) ≤ n− 1. Then,

n− deg(u) ≤ d(u,RSn,k) ≤ n− k.

The word u is called a deep hole if d(u,RSn,k) = n− k,
that is, it achieves the covering radius. When deg(u) = k, the
upper bound and the lower bound agree and hence u is a deep
hole. This gives (q − 1)qk deep holes. For a general Reed-
Solomon code RSn,k, it is already difficult to determine if a
given word u is a deep hole. Even for the special case that
deg(u) = k + 1, the deep hole problem is equivalent to the
(k + 1)-subset sum problem over Fq which is NP-complete
[7].

For the standard Reed-Solomon code, that is, D = Fq and
thus n = q, there is the following deep hole conjecture of
Cheng-Murray [7].

Conjecture 1.3: For the code RSq,k with p > 2, the set
{u ∈ Fnq

∣∣deg(u) = k} gives the set of all deep holes.
Many results were proved towards this conjecture. Please refer
to [2], [14], [19], [26] and the references there.

The deep hole problem is to determine when the upper
bound in the above theorem agrees with d(u,RSn,k). One
is also interested in the situations when the lower bound
n − deg(u) agrees with d(u,RSn,k). We call u ordinary
if d(u,RSn,k) = n − deg(u). A basic problem is then to
determine when a given word u is ordinary. This is equivalent
to determining if Nn−deg(u)(u) > 0. This problem will be
studied in a future paper.

Since k ≤ deg(u) ≤ n− 1, we can write deg(u) = k + m
for some non-negative integer m ≤ n−k−1. Then, the word
u is represented uniquely by a polynomial u(x) ∈ Fq[x] of
degree k+m. For 0 ≤ r ≤ k+m, let ND(f(x), r) denote the
number of polynomials g(x) ∈ Fq[x] with deg g(x) ≤ k − 1
such that f(x) + g(x) has exactly r distinct roots in D. It is
clear that Ni(u) = ND(u(x), n − i). Thus, it is enough to
study ND(f(x), r).

From now on, we only work with the standard Reed-
Solomon codes RSq,k. Since D = Fq , we can write
N(f(x), r) = NFq (f(x), r) and Ni(u) = N(u(x), q− i). It is
clear that without loss of generality, we can assume that f(x)
is monic with no terms of degree less than k. Our distance
distribution problem for the standard Reed-Solomon code is
reduced to the following number theoretic problem.

Problem 1.4: Let 1 ≤ k ≤ q and −k ≤ m ≤ q − k − 1.
Given a monic polynomial f(x) ∈ Fq[x] of degree k+m and
an integer 0 ≤ r ≤ k + m, count N(f(x), r), the number of
polynomials g(x) ∈ Fq[x] with deg g(x) ≤ k − 1 such that
f(x) + g(x) has exactly r distinct roots in Fq .

Not much is known about this problem. Elementary explicit
formulas for m ≤ 2 were known before. Exponential lower
bounds and asymptotic formula for N(f(x), r) have been
studied in [8], [9], [10], [17] in the extreme case r = m+ k.
Our contribution of this paper is to prove results for all
0 ≤ r ≤ k + m. If k is very small (say logarithmic in q),
one can use the Chebotarev density theorem to derive a good
asymptotic formula. However, in coding theory application,
k is the code dimension which can be as large as a linear
function of q. The problem then becomes more difficult. The

main purpose of this paper is to prove nontrivial results for
large k and a wide range of r if m is not too large.

B. Known Cases for m ≤ 2

When m < 0, f(x) represents a codeword and thus we may
assume f ≡ 0, or equivalently u = 0. By a famous theorem
of Mac Williams, for 0 ≤ r ≤ k − 1 we have

N(0, r) =

(
q

r

)
qk−r−1(q−1)

k−r−1∑
j=0

(−1)j
(
q − r − 1

j

)
q−j

 .

If m = 0, then deg(f) = k. In this case, u is a deep hole. An
explicit formula for N(xk, r) was given by A. Knopfmacher
and J. Knopfmacher [15].

If m = 1, then deg(f) = k + 1. We may assume f(x) =
xk+1 +axk. It turns out that N(xk+1 +axk, r) depends on a.
An explicit formula for N(xk+1+axk, r) was given by Zhou,
Wang and Wang [25]. A more complicated explicit counting
formula for the case m = 2 is also given in the same paper.

When m > 2, it is no longer reasonable to expect an explicit
formula for N(f(x), r), but we can hope for an asymptotic
formula. This is the aim of the present paper.

C. Main Result

For an integer s ≥ 0, define the alternating sum

µs =

s∑
j=0

(−1)j
(
q − r
j

)
q−j = 1− q − r

q
+

(
q − r

2

)
1

q2
−· · · .

The absolute value of the j-th term is decreasing in j. It
follows that if r = cq for some constant 0 < c < 1, then

0 < c ≤ r

q
= 1− q − r

q
≤ µs ≤ 1.

Since µs is a truncation of (1 − q−1)q−r, µs is close to
(1/e)1−c when q and s are both large, and r ≈ cq. Our main
result is the following bound on N(f(x), r), which holds for
all k,m, and r.

Theorem 1.5: Let f(x) ∈ Fq[x] be a polynomial of
deg(f) = k + m ≤ q − 1. For integers 0 ≤ r ≤ k + m,
we have∣∣∣∣N(f(x), r)− µk+m−r

(
q

r

)
qk−r

∣∣∣∣
≤

k+m∑
j=k+1

(
j

r

)( q
p +m

√
q + j

j

)(
m− 1

k +m− j

)
√
q
k+m−j

.

Our technique to establish Theorem 1.5 is based on a distinct
coordinates sieving technique discovered by the authors [17],
[18], a weighted inclusion-exclusion sieving formula, and a
character sum bound on constant degree polynomials defined
over a suitable residue ring.

The number
√
q in the error term comes from the application

of the Riemann hypothesis over finite fields (Weil’s bound).
The number of non-zero error terms in the error estimate is
k +m−max{k + 1, r}. This means that if either m is small
or k +m− r is small, then there are only a few terms in the
error estimate. The theorem also becomes stronger in the case
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q = p is a prime since then the number q
p becomes 1. We now

derive a few corollaries and explain how they are related to
previous results.

When m = 0, we may suppose f(x) = xk. In this case,
there is no error term in our asymptotic formula and we thus
obtain the following explicit formula first proved in [15], as
reported in the above known cases.

Corollary 1.6:

N(xk, r) =

(
q

r

)
qk−r

k−r∑
j=0

(−1)j
(
q − r
j

)
q−j

 .

When r = k+m, there is only one term in the error estimate
and we obtain the following corollary, which was first proved
in [17].

Corollary 1.7: Let f(x) ∈ Fq[x] be a polynomial of
deg(f) = k +m ≤ q − 1. Then,∣∣∣∣N(f(x), k +m)− 1

qm

(
q

k +m

)∣∣∣∣ ≤ ( q
p +m

√
q + k +m

k +m

)
.

When r = k + m − 1, there are two terms in the error
estimate. Combining the two terms, we obtain the following
corollary, which is already a new result.

Corollary 1.8: Let f(x) ∈ Fq[x] be a polynomial of
deg(f) = k +m ≤ q − 1. Then,∣∣∣∣N(f(x), k +m− 1)− k +m− 1

qm

(
q

k +m− 1

)∣∣∣∣
≤
( q
p +m

√
q + k +m

k +m

)
((m− 1)

√
q + k +m).

For general r, there will be more terms in the error estimate.
This makes it harder to estimate the error term. However, as
we shall see, the above j-th error term in the error estimate
is sometimes increasing in j and thus we can combine all the
error terms into a single error term. This helps in obtaining a
much simpler asymptotic formula, as done in next subsection.

The paper is organized as follows. In the end of this in-
troductory section, some asymptotic analysis for some special
parameters are given. In section 2, we prove the main result
Theorem 1.5 by a key counting formula given in Lemma 2.2.
In section 3 and 4, we introduce a sieving technique and a
character sum derived by the Weil bound respectively. The
proof of Lemma 2.2 will be given in Section 5.

D. Asymptotic Analysis

As an illustration, we show that our bound above can be
used to give a nontrivial asymptotic formula. We assume q = p
is prime for simplicity. Then we find simple conditions under
which the error term can be significantly simplified. Please
note that the binomial coefficients for real numbers are defined
by (

a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
.

Corollary 1.9: Let q = p and f(x) be a polynomial of
degree k + m. Suppose k = cp,m = pδ, r = k + pλ, where

c ∈ (0, 1), δ ∈ (0, 1/4), λ ∈ (0, δ) are constants. As p goes to
infinity, we have

N(f(x), r) = µk+m−r

(
p

r

)
pk−r(1 + o(1)).

Proof: By Theorem 1.5, we have∣∣∣∣N(f(x), r)− µk+m−r
(
p

r

)
pk−r

∣∣∣∣
≤
k+m∑
j=r

(
j

r

)(
m
√
p+ 1 + j

m
√
p+ 1

)(
m− 1

k +m− j

)
p
k+m−j

2

≤ m · max
r≤j≤k+m

Ej ,

where

Ej =

(
j

r

)(
m
√
p+ 1 + j

m
√
p+ 1

)(
m− 1

k +m− j

)
p
k+m−j

2 .

One computes that for r ≤ j < k +m,

Ej+1

Ej
=

(j + 1)

(j + 1− r)
·

(m
√
p+ j + 2)

(j + 1)
· (k +m− j)

(j − k)
√
p
.

Write j = r+ j′, where 0 ≤ j′ < k+m− r = pδ − pλ. Then

Ej+1

Ej
=

(m
√
p+ r + j′ + 2)

(j′ + 1)
· (pδ − pλ − j′)

(pλ + j′)
√
p
.

Since 0 ≤ j′ < pδ − pλ, we deduce

Ej+1

Ej
>

(m
√
p+ r)

(pδ − pλ)
· 1

pδ
√
p
.

Note that r ≥ cp and λ < δ < 1
4 . It follows that for p

sufficiently large, we have Ej+1/Ej > 1 for all j, thus Ej is
increasing in j and

max
r≤j≤k+m

Ej =

(
k +m

r

)(
m
√
p+ k +m+ 1

m
√
p+ 1

)
.

As noted in the beginning of this section,

0 < c ≤ r

p
= 1− p− r

p
≤ µk+m−r ≤ 1.

To complete the proof of the corollary, it suffices to show

lim
p→∞

m
(
k+m
k+m−r

)(m√p+1+k+m
m
√
p+1

)(
p
r

)
pk−r

= 0.

Since k+m− r ≤ m ≤ (k+m)/2 and 1 ≤ r− k ≤ m, it is
enough to prove

lim
p→∞

m
(
k+m
m

)
pm
(m√p+1+k+m

m
√
p+1

)(
p
r

) = 0.

By the inequalities

(
n

l
)l ≤

(
n

l

)
≤ (

en

l
)l,

it is sufficient to have

lim
p→∞

m(e(k +m)p)m(e+ e k+m
m
√
p+1 )m

√
p+1

(pr )r
= 0.
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Since k = cp,m = pδ, r = cp + pλ and c ∈ (0, 1), δ ∈
(0, 1/4), λ ∈ (0, δ), by taking logarithm, it is equivalent to
have

lim
p→∞

(
δ ln p+ 2pδ ln p+ p1/2+δ ln(e+ 2cp1/2−δ) + cp ln c

)
= −∞.

This is clearly satisfied since 0 < c < 1. We obtain the desired
asymptotic formula

N(f(x), r) = µk+m−r

(
p

r

)
pk−r(1 + o(1)).

Note that our asymptotic analysis here only considers the
case q = p, k is large, m is small and r is large. It is
certainly possible to find other range of parameters for which
the same asymptotic formula holds. However, note that m
must be bounded by

√
q in order for our estimate gives a non-

trivial estimate. To keep this paper focused, such finer analysis
together with its applications to list decoding and bounded
distance decoding will be discussed in a future work.

Beside coding theory, our result may have potential appli-
cations in number theory and graph theory. In number theory,
it is a classical problem to understand the factorization pattern
of a family of polynomials. In graph theory, it is related to the
spectrum distribution of Wenger type graphs, see [3].

II. PROOF OF THE MAIN THEOREM

In this section we prove the following main result (Theorem
1.5 in Section 1).

Theorem 2.1: Let f(x) ∈ Fq[x] be a polynomial of
deg(f) = k+m ≤ q− 1. For all integers 0 ≤ r ≤ k+m, we
have∣∣∣∣N(f(x), r)− µk+m−r

(
q

r

)
qk−r

∣∣∣∣
≤

k+m∑
j=k+1

(
j

r

)( q
p +m

√
q + j

j

)(
m− 1

k +m− j

)
√
q
k+m−j

.

The main technique of the proof is a weighted sieving formula
and the following counting lemma, which will be proved in
Section 5.

Lemma 2.2: Let f(x) ∈ Fq[x] be a monic polynomial of
degree d = k+m ≤ q−1. Let M(f, r) denote the number of
pairs (Dr, g(x)) with Dr being a r-subset in Fq and g(x) ∈
Fq[x] of degree at most k − 1 satisfying

(f(x) + g(x))|Dr ≡ 0.

Then for k + 1 ≤ r ≤ d, we have∣∣∣∣M(f, r)−
(
q

r

)
qk−r

∣∣∣∣ ≤ ( q
p +m

√
q + r

r

)(
m− 1

d− r

)
√
q
d−r

.

Proof of Theorem 2.1: The proof is based on two
different kinds of inclusion-exclusion sievings. We shall let
g(x) ∈ Fq[x] denote a polynomial of degree at most k − 1.
For c ∈ Fq , let Pc denote the property that f(x) + g(x) has c
as a root. For a subset C ⊆ Fq , let NC be the number of g(x)
such that f(x) + g(x) has property Pc for each c ∈ C. The

|C|×|C| Vandermonde matrix formed using the elements of C
is non-singular. It follows by linear algebra that for |C| ≤ k,
we have NC = qk−|C|. In the case r = 0, the inclusion-
exclusion sieving [23] implies that

N(f, 0) = qk −
∑
c∈Fq

N{c} + · · ·+ (−1)d
∑

{c1,c2,...,cd}⊂Fq

N{c1,c2,...,cd}

= qk −
(
q

1

)
qk−1 +

(
q

2

)
qk−2 − · · ·+ (−1)k

(
q

k

)
q0

+

d∑
j=k+1

(−1)jNj ,

where Nj is the number of pairs (Dj , g(x)) with Dj being
a j-subset in Fq and g(x) ∈ Fq[x] of degree at most k − 1
satisfying

(f(x) + g(x))|Dj ≡ 0.

Applying Lemma 2.2, we have∣∣∣∣∣N(f, 0)−
k+m∑
i=0

(−1)i
(
q

i

)
qk−i

∣∣∣∣∣
≤

d∑
j=k+1

( q
p +m

√
q + j

j

)(
m− 1

d− j

)
√
q
d−j

.

This proves the theorem in the case r = 0. More generally,
for 0 ≤ r ≤ d, using the weighted inclusion-exclusion sieving
formula, we deduce

N(f, r) =
∑

{c1,c2,...,cr}⊂Fq

N{c1,c2,...,cr}

−
(
r + 1

r

) ∑
{c1,c2,...,cr+1}⊂Fq

N{c1,c2,...,cr+1} + · · ·

=

k∑
j=r

(−1)j−r
(
j

r

)(
q

j

)
qk−j +

d∑
j=k+1

(−1)j−r
(
j

r

)
Nj .

Applying Lemma 2.2 again, we have∣∣∣∣∣∣N(f, r)−
d∑
j=r

(
j

r

)(
q

j

)
(−1)j−rqk−j

∣∣∣∣∣∣
≤

d∑
j=k+1

(
j

r

)( q
p +m

√
q + j

j

)(
m− 1

d− j

)
√
q
d−j

.

By the elementary properties of binomials, the main term can
be rewritten and we obtain the following final form∣∣∣∣∣∣N(f, r)−

(
q

r

)
qk−r

d−r∑
j=0

(−1)j
(
q − r
j

)
q−j

∣∣∣∣∣∣
≤

d∑
j=k+1

(
j

r

)( q
p +m

√
q + j

j

)(
m− 1

d− j

)
√
q
d−j

.

The theorem is proved.
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III. A DISTINCT COORDINATE SIEVING FORMULA

In this section we introduce a sieving formula, which is a
main technique for establishing Lemma 2.2 and might have
its own interests. Roughly speaking, this formula significantly
improves the classical inclusion-exclusion sieve in many dis-
tinct coordinates counting problems. We cite it here without
proof. For details and related applications please refer to [17],
[18].

Let Ω be a finite set, and let Ωk be the Cartesian prod-
uct of k copies of Ω. Let X be a subset of Ωk. Define
X = {(x1, x2, . . . , xk) ∈ X | xi 6= xj ,∀i 6= j}. Let
f(x1, x2, . . . , xk) be a complex valued function defined over
X and

F =
∑
x∈X

f(x1, x2, . . . , xk).

Many problems arising in number theory and coding theory
are reduced to evaluate F very carefully. However, the direct
inclusion-exclusion sieving has too many terms and thus
usually produces too much errors. Roughly speaking, our
formula describes what happens for those cancellations and
make it possible to compute F explicitly.

Let Sk be the symmetric group on {1, 2, . . . , k}. Each
permutation τ ∈ Sk factorizes uniquely as a product of disjoint
cycles and each fixed point is viewed as a trivial cycle of length
1. Two permutations in Sk are conjugate if and only if they
have the same type of cycle structure (up to the order). For τ ∈
Sk, define the sign of τ to sign(τ) = (−1)k−l(τ), where l(τ)
is the number of cycles of τ including the trivial cycles. For
a permutation τ = (i1i2 · · · ia1)(j1j2 · · · ja2) · · · (l1l2 · · · las)
with 1 ≤ ai, 1 ≤ i ≤ s, define

Xτ =
{

(x1, . . . , xk) ∈ X,xi1 = · · · = xia1 , . . .
}
. (1)

Similarly, for τ ∈ Sk, define Fτ =
∑
x∈Xτ f(x1, x2, . . . , xk).

Now we can state our sieve formula. We remark that there
are many other interesting corollaries of this formula. For
interested reader we refer to [17].

Theorem 3.1: Let F and Fτ be defined as above. Then

F =
∑
τ∈Sk

sign(τ)Fτ . (2)

Note that the symmetric group Sk acts on Ωk naturally
by permuting coordinates. That is, for τ ∈ Sk and x =
(x1, x2, . . . , xk) ∈ Ωk, τ ◦ x = (xτ(1), xτ(2), . . . , xτ(k)). A
subset X in Ωk is said to be symmetric if for any x ∈ X and
any τ ∈ Sk, τ ◦x ∈ X . For τ ∈ Sk, denote by τ the conjugacy
class determined by τ and it can also be viewed as the set of
permutations conjugated to τ . Conversely, for given conjugacy
class τ ∈ Ck, denote by τ a representative permutation of this
class. For convenience we usually identify these two symbols.

In particular, if X is symmetric and f is a symmetric
function under the action of Sk, we then have the following
simpler formula than (2).

Corollary 3.2: Let Ck be the set of conjugacy classes of
Sk. If X is symmetric and f is symmetric, then

F =
∑
τ∈Ck

sign(τ)C(τ)Fτ , (3)

where C(τ) is the number of permutations conjugated to τ .

IV. BOUNDS ON CHARACTER SUMS

Let f(x) ∈ Fq[x] be a monic polynomial of degree n > 0.
Let χ be a group homomorphism from (Fq[x]/(f(x)))∗ to C∗.
We extend this definition to Fq[x]/(f(x)) by defining χ(g) =
0 for gcd(g, f) 6= 1. Define

Mk(χ) =
∑

g∈Fq [x],monic,deg(g)=k

χ(g).

Lemma 4.1: Assume that χ is non-trivial. Then for k ≥ 0,

|Mk(χ)| ≤
(
n− 1

k

)
√
q
k
.

Furthermore, if χ(F∗q) = 1, then for n ≥ 2, we have∣∣∣∣∣∣
∑

g∈Fq [x],monic,deg(g)≤k

χ(g)

∣∣∣∣∣∣ ≤
(
n− 2

k

)
√
q
k
.

Proof: The Dirichlet L-function of χ is

L(χ, t) =
∑

g∈Fq [x],monic

χ(g)tdeg(g)

=

∞∑
k=0

Mk(χ)tk ∈ 1 + tC[[t]].

If k ≥ n, for monic g of degree k, we can write uniquely
g = g1f + h, where g1 is monic in Fq[x], deg(g1) = k − n
and h ∈ Fq[x],deg(h) ≤ n− 1. Thus in this case,

Mk(χ) =
∑

g1∈Fq [x],monic,deg(g1)=k−n

∑
deg(h)≤n−1

χ(h)

= qk−n
∑

h∈Fq [x]/(f(x))

χ(h)

= 0.

This implies

L(χ, t) =

r∏
i=1

(1− ρit)

is a polynomial of degree ≤ n − 1, i.e., r ≤ n − 1. By the
Weil bound ([24] Theorem 2.1),

|ρi| ≤
√
q.

It follows that for 0 ≤ k ≤ n− 1,

|Mk(χ)| ≤
(
r

k

)
√
q
k ≤

(
n− 1

k

)
√
q
k
. (4)

Now, note that
∑
g∈Fq [x],monic,deg(g)≤k χ(g) is the coeffi-

cient of T k in L(χ, T )/(1 − T ). Let now χ be a non-trivial
character but trivial on F∗q . Then L(χ, T ) has the trivial factor
(1− T ) since L(χ, 1) = 0. This means that L(χ, T )/(1− T )
is a polynomial of degree n− 2 [24]. Then by (4) one has∣∣∣∣∣∣

∑
g∈Fq [x],monic,deg(g)≤k

χ(g)

∣∣∣∣∣∣ ≤
(
n− 2

k

)
√
q
k
.
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V. PROOF OF LEMMA 2.2

In this section we will prove Lemma 2.2. For convenicnec
we state it again as the following independent theorem.

Theorem 5.1: Let f(x) ∈ Fq[x] be a monic polynomial of
degree d = k+m ≤ q−1. Let M(f, r) denote the number of
pairs (Dr, g(x)) with Dr being a r-subset in Fq and g(x) ∈
Fq[x] of degree at most k − 1 satisfying

(f(x) + g(x))|Dr ≡ 0.

Then for k + 1 ≤ r ≤ d, we have∣∣∣∣M(f, r)−
(
q

r

)
qk−r

∣∣∣∣ ≤ ( q
p +m

√
q + r

r

)(
m− 1

d− r

)
√
q
d−r

.

We first establish two lemmas which allows us to compute
M(f, r) through the method of character sums defined over a
residue polynomial ring.

For k ≥ 0, let Pk denote the set of all polynomials h(x) ∈
Fq[x] of degree at most k with h(0) = 1. Let χ be a character
from (Fq[x]/(xm+1))∗ to C∗. We extend this definition to
Fq[x]/(xm+1) by defining χ(g) = 0 for (g, xm+1) 6= 1. Let G
denote the group of all characters χ such that χ(F∗q) = 1. This
is an abelian group of order |G| = qm. For any real number x
and a positive integer r, define (x)r = x(x−1) · · · (x−r+1)
and let (x)0 = 1.

Lemma 5.2: Let N2 be the number of tuples
(x1, . . . , xr, h) ∈ Frq × Pd−r such that (1 − x1x) · · · (1 −
xrx)h(x) ≡ f(x)(mod xm+1)}, where the xi’s are required
to be distinct. Assume that f(0) = 1. Then∣∣N2 − (q)rq

k−r∣∣ ≤ (
q

p
+m
√
q + r − 1)r

(
m− 1

d− r

)
√
q
d−r

.

Proof:

N2 =
1

qm

∑
(x1,...,xr)∈Frq ,xi 6=xj

∑
h∈Pd−r∑

χ∈G
χ((1− x1x) · · · (1− xrx)h(x)/f(x))

= (q)rq
k−r +

1

qm

∑
16=χ∈G

χ−1(f(x))W (χ),

where

W (χ)

=
∑

(x1,...,xr)∈Frq ,xi 6=xj

∑
h∈Pd−r

χ((1− x1x) · · · (1− xrx)h(x)).

For each character χ, the function χ((1− x1x) · · · (1− xrx))
is clearly symmetric in the xi’s. Recall that for a permutation
τ = (i1i2 · · · ia1)(j1j2 · · · ja2) · · · (l1l2 · · · las) in the symmet-
ric group Sr with 1 ≤ ai, 1 ≤ i ≤ s, the subset Xτ of X = Frq
is defined as in 1. Then a complex function Fτ (χ) is defined:

Fτ (χ) =
∑

(x1,...,xr)∈Xτ

∑
h∈Pd−r

χ((1− x1x) · · · (1− xrx)h(x)).

Thus by the sieving formula (2), one has

N2 = (q)rq
k−r +

1

qm

∑
16=χ∈G

χ−1(f(x))
∑
τ∈Sr

sign(τ)Fτ (χ).

Thus it suffices to estimate Fτ (χ) for non-trivial χ, where

Fτ (χ) =

 ∑
(x1,...,xr)∈Xτ

r∏
i=1

χ(1− xix)

·
 ∑
h∈Pd−r

χ(h(x))

 .

We first estimate the second factor. Since χ is non-trivial,
χ(F∗q) = 1 and χ(x) = 0, by Lemma 4.1 we deduce

|
∑

h∈Pd−r

χ(h(x))|

= |
∑

h∈Fq [x],monic,deg(h)≤d−r

χ(h(x))|

≤
(
m− 1

d− r

)
√
q
d−r

.

To estimate the first factor, we suppose τ is of type
(c1, c2, . . . , cr), where ci is the number of i-cycles in τ for
1 ≤ i ≤ r. Then the first factor of Fτ (χ) is

Gτ (χ) =
∑

(x1,...,xr)∈Xτ

r∏
i=1

χ(1− xix)

= (
∑
a∈Fq

χ(1 + ax))c1(
∑
a∈Fq

χ2(1 + ax))c2 · · · (
∑
a∈Fq

χr(1 + ax))cr

=

r∏
i=1

(
∑
a∈Fq

χi(1 + ax))ci .

Define mi(χ) = 1 if χi = 1 and mi(χ) = 0 if χi 6= 1. By
the Weil bound (see [24] Theorem 2.1) we deduce that

|Gτ | ≤ q
∑r
i=1 cimi(χ)(m

√
q)

∑r
i=1 ci(1−mi(χ)).

Since X = Frq is symmetric, by (3) we have

N2 − (q)rq
k−r

=
1

qm

∑
1 6=χ∈G

χ−1(f(x))
∑
τ∈Sr

sign(τ)Fτ (χ)

=
1

qm

∑
1 6=χ∈G

χ−1(f(x))
∑
τ∈Cr

sign(τ)C(τ)Fτ (χ)

=
1

qm

∑
χd 6=1,∀2≤d≤r

χ−1(f(x))
∑
τ∈Cr

sign(τ)C(τ)Fτ (χ)

+
1

qm

∑
χ 6=1,χd=1, for some 2≤d≤r

χ−1(f(x))
∑
τ∈Cr

sign(τ)C(τ)Fτ (χ).

Let S = #{χ ∈ G | χ 6= 1, χd = 1 for some 2 ≤ d ≤ r}.
The last two terms were estimated by a combinatorial counting
argument (see [18] page 2361). We thus obtain∣∣N2 − (q)rq

k−r∣∣ ≤ w(S)

(
m− 1

d− r

)
√
q
d−r

,

where

w(S) =
qm − S
qm

((m−1)
√
q+r−1)r+

S

qm
·(q
p

+(m−1)
√
q+r−1)r.

If S is 0, we have the stronger estimate∣∣N2 − (q)rq
k−r∣∣ ≤ ((m− 1)

√
q + r − 1)r

(
m− 1

d− r

)
√
q
d−r

.
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In general, we have the weaker estimate∣∣N2 − (q)rq
k−r∣∣ ≤ (

q

p
+(m−1)

√
q+r−1)r

(
m− 1

d− r

)
√
q
d−r

.

Similarly, if we consider the counting problem in F∗q , then
we will have a slightly different formula.

Lemma 5.3: Let N∗2 be the number of tu-
ples (x1, . . . , xr, h) ∈ F∗q

r × Pd−r such that
(1−x1x) · · · (1−xrx)h(x) ≡ f(x)(mod xm+1)}, where we
require that the xi’s are distinct. Then for f(0) = 1, we have∣∣N∗2 − (q − 1)rq

k−r∣∣
≤ ((q − 1)/p+m

√
q + r − 1)r

(
m− 1

d− r

)
√
q
d−r

.

Now, we assume that f(x) ∈ Fq[x] is a monic polynomial
of degree d. Suppose the top s coefficients of f are α =
(ad−1, . . . , ak), i.e.,

fα(x) = xd + ad−1x
d−1 + · · ·+ akx

k + · · · .

For integer k ≥ 0, let Fq[x]k denote the set of polynomials
g ∈ Fq[x] of degree at most k.

Proof of Theorem 5.1: Note that M(f, r) equals the
number of pairs (Dr, g(x)), where Dr = (x1, . . . , xr) is an
r-subset of Fq and g ∈ Fq[x]k−1 such that there is a unique
monic w(x) ∈ Fq of degree d− r satisfying

xd + ad−1x
d−1 + · · ·+ akx

k + g(x)

= (x− x1) · · · (x− xr)w(x). (5)

Clearly M(f, r) = Nα,1
r (d,m) + Nα,2

r (d,m), where
Nα,1
r (d,m) equals the number of such pairs (Dr, g(x)) with

Dr ⊆ F∗q and Nα,2
r equals the number of such pairs (Dr, g(x))

with Dr containing 0.
Suppose x1 = 0, by dividing x on both sides of (5), it is

easy to check Nα,2
r (d,m) = Nα,1

r−1(d− 1,m). It then suffices
to count Nα,1

r (d,m).
Since now we have xi ∈ F∗q , Substitute x by 1/x one has

1

xd
+ ad−1

1

xd−1
+ · · ·+ ak

1

xk
+ g(

1

x
)

= (
1

x
− x1)(

1

x
− x2) · · · ( 1

x
− xr)w(

1

x
).

Multiplying xd on both sides we then have

1 + ad−1x+ · · ·+ akx
s + xdg(

1

x
)

= (1− x1x)(1− x2x) · · · (1− xrx)xd−rw(
1

x
).

Note that h(x) = xd−rw( 1
x ) is a polynomial of degree ≤ d−r,

xdg( 1
x ) is a polynomial divisible by xm+1 and degree bounded

by d. It suffices to count the number of pairs (Dr, h(x)), where
Dr = (x1, . . . , xr) is an r subset of F∗q and h(x) ∈ Fq[x] of
degree ≤ d− r such that

1 + ad−1x+ · · ·+ akx
s

≡ (1− x1x)(1− x2x) · · · (1− xrx)h(x)(mod xm+1).

Thus, if we let N∗2 be defined as in Lemma 5.3, then

Nα,1
r (d,m) =

1

r!
N∗2 .

It follows that∣∣∣∣Nα,1
r (d,m)−

(
q − 1

r

)
qk−r

∣∣∣∣
≤
( q−1

p +m
√
q + r − 1

r

)(
m− 1

d− r

)
√
q
d−r

.

Similarly, by the estimate in Lemma 5.2 one has∣∣∣∣Nα,2
r (d,m)−

(
q − 1

r − 1

)
qk−r

∣∣∣∣
≤
( q−1

p +m
√
q + r − 2

r − 1

)(
m− 1

d− r

)
√
q
d−r

.

Finally we conclude∣∣∣∣M(f, r)−
((

q − 1

r

)
+

(
q − 1

r − 1

))
qk−r

∣∣∣∣
≤
( q−1

p +m
√
q + r − 1

r

)(
m− 1

d− r

)
√
q
d−r

+

( q−1
p +m

√
q + r − 2

r − 1

)(
m− 1

d− r

)
√
q
d−r

≤
( q−1

p +m
√
q + r

r

)(
m− 1

d− r

)
√
q
d−r

.

Remark: As we mentioned in the first section, our main
results for standard Reed-Solomon codes extend to primitive
Reed-Solomon codes with minor modification. In fact, in this
case, things are simpler. What we need to count is exactly
1
r!N

∗
2 , which is given in Lemma 5.3.
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