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Abstract—Computing the minimum distance of a linear code
is one of the fundamental problems in algorithmic coding theory.
Vardy [1] showed that it is an NP-hard problem for general linear
codes. In practice, one often uses codes with additional mathe-
matical structure, such as cyclic codes and algebraic geometry
(AG) codes, etc. In this paper, we study the minimum distance
of a family of AG codes. For AG codes of genus 0 (generalized
Reed-Solomon codes), the minimum distance has a simple explicit
formula. An interesting result of Cheng [2] says that the minimum
distance problem is already NP-hard (under RP-reduction) for
general elliptic curve codes (ECAG codes, or AG codes of genus
1). In this paper, we show that the minimum distance of ECAG
codes also has a simple explicit formula if the evaluation set is
suitably large (at least 2/3 of the group order). Our method is
purely combinatorial and based on a new sieving technique from
Li-Wan [3].

I. INTRODUCTION

Let F; be the n-dimensional vector space over the
finite field F, with ¢ elements. For any vector z =
(w1,29,- -+ ,m,) € Fy, the Hamming weight Wt(z) of z is
defined to be the number of non-zero coordinates, i.c.,

Wt(z) = |{i|1<i<n,z; #0} .

A linear [n,k] code C is a k-dimensional linear subspace
of . The minimum distance d(C) of C'is the minimum
Hamming weight of all non-zero vectors in C, i.e.,

d(C) = min{Wt(c) |c € C\ {0}} .

A linear [n, k| code C C F7 is called a [n, k, d] linear code if
C has minimum distance d. A well-known trade-off between
the parameters of a linear [n, k, d] code is the Singleton bound
which states that

d<n—k+1.

An [n,k,d] code is called a maximum distance separable

(MDS) code if the equality above holds, i.e., d =n — k + 1.

The minimum distance of a linear code determines the
ability of detecting and correcting of the code. Computing the
minimum distance of a linear code is one of the most important
problems in algorithmic coding theory. It was proved to be NP-
hard for general linear codes in [1]]. The gap version of the
problem was also shown to be NP-hard in [4]. And the same
paper showed that approximating the minimum distance of a
linear code cannot be achieved in randomized polynomial time
to the factor 21°¢' "™ unless NP C RTIME(2P°W1os(n))  In
[5l], Cheng and the second author derandomized the reduction
and showed there is no deterministic polynomial time algo-
rithm to approximate the minimum distance to any constant
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factor unless NP = P. And they proved that approximating
the minimum distance of a linear code cannot be achieved
in deterministic polynomial time to the factor 208" ypless
NP C RTIME(2Pel¥los(n)),

Despite the above complexity results, it is more interesting
to compute the minimum distance of linear codes that are used
in practical applications. An important class of such codes
is algebraic geometry (AG) codes with parameters [n, k, d]
as defined in Section 4. The minimum distance of such AG
codes from algebraic curves of genus g is known to satisfy the
inequality

n—k—g+1<d<n—k+1.

In the simplest case g = 0, i.e., generalized Reed-Solomon
codes, the minimum distance has the simple formula d = n —
k + 1. In the next simplest case g = 1, either d = n — k or
d =n — k+ 1, and Cheng [2] showed that determining the
minimum distance of ECAG codes between the two options
is NP-hard under RP-reduction. For genus g > 2, there is
no such complexity result so far. But it is believed to be an
NP-hard problem as well.

We are interested in positive results for determining the
minimum distance of ECAG codes. It was shown in [2], and
also in [6] from a different aspect, that computing the minimum
distance of an ECAG code is equivalent to a subset sum
problem (SSP) in the group of rational points on the elliptic
curve. We now make this more precise.

Let E be an elliptic curve over the finite field F,. Let G
be the group of IF-rational points on the elliptic curve E. The
Hasse bound shows that ||G|—(¢+1)| < 2,/q.Let D C G be a
nonempty subset of cardinality n, which will be our evaluation
set for ECAG code. For a positive integer 1 < k < n <
|G| and element b € G, let N(k,b, D) be the number of k-
subsets T' C D such that ) _ 2z = b. The counting version
of the k-subset sum problem for the pair (G, D) is to compute
N(k,b, D). The minimum distance of the ECAG [n, k]-code
is equal to n — k if and only if the number N(k,b, D) is
positive. This k-subset sum problem is in general NP-hard if
the evaluation set D is small. On the other hand, the dynamic
programming method implies that there is a polynomial time
algorithm to compute N(k,b, D) if n = |D| is large, say,
n = |G|® for some constant § > 0.

In this paper, we obtain an asymptotic formula for
N(k,b,D) if n = |D| is suitably large, say, |D| > (2 +¢)|G]|.
As an application, we show that if the cardinality n of the
evaluation set is suitably large (at least 2/3 of the group size),




then the minimum distance of an ECAG code [n, k] is always
n — k. We conjecture that the condition |D| > (2 + ¢€)|G| in
our results can be improved to |D| > (1 + €)|G|. Our main
technical tool is the sieve method of Li-Wan [7].

__ Let G be the group of additive characters of G. Note that
G is isomorphic to G. Denote the amplitude by

(D) = > x(a)|.

acD

_ max
x €G,x is non-trivial

Our main technical result is the following asymptotic formula
for N(k,b, D).

Theorem 1.1: Notations as above. We have
|S| (®(D)+k—1 1 :
<) )

n+&(D
%J’_k}_l

—|—ﬁ Z 2<d<k ¢(d)( &

d|exp(G)

|N(k,b, D) — |G| (1)]

where § is the set of characters in G which have order greater
than % and exp(G) is the exponent of G.

We apply this theorem to determine the minimum distance
of ECAG codes (for details see Section and obtain

Theorem 1.2: Suppose that n > (2 + €)g and ¢ > 3,

where ¢ is positive. There is a positive constant C such that
if Cclng < k <n—C¢lng, then ECAG codes [n, k| have the
deterministic minimum distance n — k.

In other words, if an elliptic curve code [n,k] over F,
is an MDS code, then the length n should not exceed (% +

€)q. Munuera [8]] got an upper bound % + /q + k for the
length of MDS elliptic curve codes. For fixed k, when ¢ is
sufficiently large, Munuera’s bound tends to about %q. But
for large k, saying cq, Munuera’s bound becomes looser and
looser when ¢ becomes larger and larger, and it turns to the
MDS conjecture when c is close to % However, compared
with Munuera’s bound, our result holds for almost all & in the
range [1,n]. Especially, our bound performances better than
Munuera’s bound when k is large.

If we allow the length of the codes to be larger, we then
have a better bound on k.

Theorem 1.3: If n > g+ 2, then for ¢ > 64 and 3 < k <
g—1, then ECAG [n, k] codes have the deterministic minimum
distance n — k.

Note that one can check the cases ¢ < 64 by a computer
search, we have a complete result for the minimum distance
of the ECAG code [n, k] if n > ¢+ 2. This gives a new proof
of MDS conjecture on ECAG codes, in a purely combinatoric
method. For recent progress on MDS conjecture on general
codes and related problems, please see [9].

This paper is organized as follows. Section 2 recalls the
sieve method of Li-Wan. Section 3 uses the sieve method to
get an estimate of counting subset sum problems on any large
subset of the rational point group of an elliptic curve. And
Section 4 describes the relation between minimum distance of
ECAG codes and subset sum problems on the evaluation set
of the ECAG code. The main result of this paper then follows.

II. A DISTINCT COORDINATE SIEVING FORMULA

For the purpose of the proof, we introduce a sieving for-
mula discovered by Li-Wan [3]], which significantly improves
the classical inclusion-exclusion sieve in many interesting
cases. We cite it here without any proof. For details and related
applications, we refer to [3[, [7].

Before we present the sieving formula, we introduce some
notations valid for the whole paper. Let D be an alphabet
set, X a finite set of vectors of length £ over D. Denote
X ={(z1,22,- - ,2p) € X | a; # x;,Vi # j} the pairwise
distinct component subset. Let S; be the symmetric group
on {1,2,---  k}. For 7 € S, the sign function is defined
to be sign(t) = (—1)*=U7), where I(7) is the number of
cycles of 7 including the trivial cycles which have length
1. Let 7 = (i192ta,)(J12"* Jas) -+ (l1l2 -+ - 1a,) with
1 <a;,1 <14 < s be any permutation, denote the 7-symmetric
subset

X, = {(xl,...,zk)€X|zi1:~--:xia1,~~, 0
i, :...:xlas},
Let f(x1,22,...,2%) be a complex valued function defined

on X. Denote the distinct sum

F = Zf(x17.’172,...

z€X

LTk,

and the 7-symmetric sum

F, = Z f(mlax%"'vxk)'

zeX,

We now state our sieve formula. We remark that there
are many other interesting corollaries of this formula. For
interested reader we refer to [3].

Theorem 2.1: Let F and F; be defined as above. Then
F= Z sign(t)F;. 2)

For 7 € Sk, denote by 7T the conjugacy class determined by
T whose elements are permutations conjugate to 7. Conversely,
for given conjugacy class 7 € C}, denote by 7 a representative
permutation of this class. For convenience we usually identify
these two symbols. Since two permutations in .Sy are conjugate
if and only if they have the same type of cycle structure (up
to the order), C}, is exactly the set of all partitions of k.

The symmetric group Sy, acts on D* naturally by permuting
coordinates. That is, for 7 € Sy and x = (z1,22,...,2k) €
DF, rox = (T+(1), T7(2), . - -, (). A subset X in D* is said
to be symmetric if for any x € X and any 7 € S, Tox € X.
In particular, if X is symmetric and f is a symmetric function
under the action of Sy, we then have the following simpler
formula for (2).

Proposition 2.2: Let C}, be the set of conjugacy classes of
Sk. If X is symmetric and f is symmetric, then

F =" sign(r)C(7)F-, 3)
T7€CL

where C(7) is the number of permutations conjugate to 7.



For the purpose of evaluating the above summation, we
need several combinatorial formulas. A permutation 7 € Sy, is
said to be of type (c1,co, - ,ci) if 7 has exactly ¢; cycles
of length . Note that Zle ic; = k. Let N(c1,¢a,...,c1) be
the number of permutations in Sy, of type (c1,¢a,...,c,) and
it is well-known that

k!
1¢1¢q12¢2¢5! -

N(Cl,CQ,...,Ck)

k(/kck'

Lemma 2.3: Define the generating function

Z N(Clvc%"'v

Ck(tlatQa"'atk) = Ck)tiltgztzk

Z’LCZZk
If ty =ty = --- =t = ¢, then we have
Ck(an7 R 7Q) = ZZici:k N(Cl,CQ, .. .,Ck)qclq02 .. q(’k

In another case, if t; = g for d | i and t; =
we have

s for d 1 i, then

d—1 d—1
—N—
Ck(sa B 37q,"')
Zzici:k N(Clac2a"' 7C]€)qclq62 ... 8
k/d| 95244 ok di
MY (L) ()
kl(é+k+(q s)/d 1)

—
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III. SUBSET SUM PROBLEM IN A SUBSET OF THE
RATIONAL POINT GROUP

Lemma 3.1 (Hasse-Weil Bound): Let E be an elliptic
curve over the finite field F,. Then the number of rational
points on E has the following estimate

[#E(F,) —q—1] <24

It is well-known that the rational points E(F,) form a finite
group and more precisely, it has the structure G = E(F,) =
Z/ny x Z/nsy for some nq|ng. By Lemma [3.1} G has order
q + 1+ ¢\/q, with |c| < 2. Denote by exp(g the exponent
of G. Let D C G be a nonempty subset of cardinality n. Let
G be the group of additive characters of G with the trivial
character yo. Note that G is isomorphic to G. Denote the
partial character sum s, (D) = ) x(a) and the amplitude
®(D) =max, g, 2., Isx(D)]- Lot N(k,b, D) be the number
of k-subsets 7' C D such that ) s = b. In the following
theorem we will give an asymptotic bound for N(k,b, D)
which ensures N (k,b, D) > 0 when G — D is not too large
compared with G.

Theorem 3.2: Let N(k,b

D)
G172 é%(q"D)J’“*)ﬂGA )

7L+'1’( ) k—1

o psezs ST )

“)

where S is the set of characters which has order greater than
k.

be defined as above.

n+1>( )

|N(k,b, D) —

Proof: Let X = D x D x X D be
the Cartesian product of %k copies of D. Let

X = {($1,$27-~ xy) € DF |y # xj, Vi#j}}. Tt is

clear that | X| = n* and | X| = (n)x. We have
KIN (k,b, D)
2

|-

x(x1+x2+---

(z1,22,...7;)EX x€G

= Lty Y%

XFX0 (21,22, T, )EX

= 1()k+\g| > X Hb) >

+ T — b)
x(@1) -+ x(zx)x " (b)
T, x(@i).

[
9~ a

X#X0 (z1,T2,...x)EX
Denote fy(x) = fy(x1,22,...,25) = Hle x(x;). For 7 €
Sk, let
k
= > h@ =Y [[x@
zeX ze€Xr i=1

where X is the 7-symmetric subset which is defined as in
Obviously X is symmetric and fy(z1,Z2,...,z)) is normal

on X. Applying in Corollary we get
k'N(k b, D)
=G+ i 2 X7 Y sian(r)CF (),

X#X0 TECK

where C}, is the set of conjugacy classes of Sk, C(7) is
the number of permutations conjugate to 7. If 7 is of type

(c1,¢2,...,cx), then
k
= > [Ixt)
ze€X, 1=1
Z HX T H 4501-0-21)
:EEX,-Z 1
k
“HX (Terteatothi)
i=1
k .
=11 X' (@)
i=1 a€D
:nzCimq,(X)SX(D)Z67‘,(1—77%'0())7

where m;(x) = 1 if x* = 1 and otherwise m; () = 0.

Now suppose ord(x) = d with d | nyns. Note that C(7) =
N(ci,c9,...,cx). In the case d = 2, s, (D) is an integer.
Applying Lemma 2.3] we have

S sign(r)C(r)Fx (x)

TECk
Z C(r Eczmi(x)(_SX(D))ZCi(l_m'i(X))
T7€C)
k/2] [/ —nts ; .
—(=1)"k! Lij 7+2X(D) +i—1\[—sy(D)+k—-2i—1
B B i k— 2

lk/2] /n—s
S =N (D)
i i k—2i
n+®(D)
<k! 2 .
<kl 2

The last inequality in the case s, (D) > 0 is from the identity




In the case s, (D) < 0, since the summation has alternative
signs, the inequality follows from a simple combinatorial
argument.

In the case 3 < d <k, since |s,(D)| < ®(D), we have

> sign(T)C(r) Fr(x)
T7€Ck
< Z C(T)animi(x)(I)(D)ZCi(l—mi(X))
T7€C)
n+®(D)
gk!(d k+k1>.

Similarly, if ord(x) is greater than k, then

Z sign(T)C(T)Fr(x) < k! ((I)(D) k- 1).

k
T€CK

Let S be the set of characters which have order greater
than k. Summing over all nontrivial characters, we obtain

: B nt®(D)
V(D) =[G )] < Y + i (F)

i 2 acaze $(d) (T 7 TP

dlexp(G)

where ¢(d) is the number of characters in G of order d. This
completes the proof. ]

Corollary 3.3: We have

n M
N(k,b,D)— |G| <
weo o) -6 (7)< (0).
where M is defined as

B (D) +k—1) (2B [nteD) 4 g q
Mmax{( i ),( i , & ,

and d is the smallest nontrivial divisor of |G| that is not equal
to 2.

Corollary 3.4: Let ¢ > 64 and n = g+ 2. For 6 < k <
g — 1, we have N(k,b, D) > 0 for every b € G.

Proof: By symmetry it is sufficient to consider the case
3 <k < n/2. To ensure N(k,b, D) > 0, by () it suffices to

have
n O(D)+k—1 2+ 8(D)
()= (") (5

ap> <z>(d)(n+3(mk+k_l)-

2<d<k
dlexp(G)

For a nontrivial character x, > .5 X(g) = 0 and it follows
that (D) = ®(G — D) < |G| — [D| < 2,/q + 1.

Since G is the product of at most two cyclic groups, by the
definition of ¢(d) we have ¢(d) < d? — 1. For simplicity, set
K = k% — 2k2 — I + 2. For the case k < q1/3, it is sufficient

to have
("17) - wrava- o (M

q+2+2\/§ q+2\/§ B
() )

When k£ = 3, one has
125/216¢° — 379/36¢°/% — 589/18¢>
+593/27¢%/2 + 149/2q + 67/3¢/% > 0.
Similarly, when & = 6, one has ¢ > 64. This is done by
first taking K = k% — 2k% — k + 2 = 140, we solve that
q > 97. But notice that now K should be < 117. Then taking

K = 117, we solve ¢ > 79. Iteratively, we can get ¢ > 64
finally.

One checks that when k < ¢'/3 this function is unimodal
on k. For ¢'/3 < k < (q+2,/9)/6, it then suffices to have

9 q+2+2\/§
<q:>>(q+2+2\/§)< 2 )

and for (¢ +2,/q)/6 <k < (¢+2)/2,

2 2V 4
(q—;)>(q+2+2\/§)( 3 ;jk )

It follows from a simple asymptotic analysis and the proof is
complete. ]

A similar argument gives

Corollary 3.5: Suppose that n > (% + €)q and ¢ > ;%,

where € is positive. Then there is a positive constant C such
that N(k,b, D) > 0 for every b € G provided C.lng < k <
n — C¢lng.

Proof: Similarly as above, we only consider the case k <
n/2. To ensure N (k,b, D) > 0, by () it suffices to have

() =11 (" ) (?m)

+ D ¢(d)(n+<5w),jl€ - 1>~

2<d<k
dlexp(G)

For a nontrivial character x, » . X(¢g) = 0 and it follows
that (D) = ®(G — D) < |G| — |D| < (5 — €)g+2,/7 + 1.
For small k£ < ¢/6 it suffices to have

(k) - <q+2\/c7>(q+2§ﬁ) >0,

which holds when k > C'In ¢ for some constant C'.
For ¢/6 < k <n/2 = (3 + §)g, it suffices to have

((3 qu) > (q+2\/§)((§ - 52‘” ﬁ),

which holds when ¢ > ;% and k > C,Inq for some constant
Ce. So the proof is complete. ]

From the proof of the above corollary, if follows that

Corollary 3.6: Suppose n > (% + €)g, where € is positive
and € < 1/3. When ¢ is large enough (in application we need
to use long length codes, so it is reasonable to assume g is
large), then there is a positive constant C' (independent of
and ¢) such that N(k,b, D) > 0 for every b € G provided
Clng<k<n—Clng.



IV. MINIMUM DISTANCE OF ELLIPTIC CODES AND SSP

In this section, we discuss the relationship between the
minimum distance of ECAG code and SSP on the group of
rational points of the elliptic curve. Using the results in the
previous section, our main theorems in Introduction follow
automatically.

Let E/F, be an elliptic curve over the finite field Fy with
function field F,(E). Let E(F,) be the set of all F,-rational
points on E. Suppose D = {P,Ps,---,P,} is a proper
subset of rational points E(F,;), and G is a divisor of degree
k (29 — 2 < k < n) with Supp(G) N D = (). Without any
confusion, we also write D = P, + P> + - - -+ P,. Denote by
Z(G) the Fy-vector space of all rational functions f € F,(E)
with the principal divisor div(f) > —G, together with the zero
function (cf. [10]).

The functional AG code C(D,G) is defined to be the
image of the following evaluation map:

ev: Z(G) = Fy; [ (F(P), f(Po), -, f(Pa))-

It is well-known that C» (D, G) has parameters [n, k, d)
where the minimum distance d has two choices:

d=n—k, ord=n—k+1.

Suppose O is one of the F,-rational points on £ . The
set of rational points E(F,) forms an abelian group with zero
element O (for the definition for the sum of any two points,
we refer to [11]]), and it is isomorphic to the Picard group
div’(E)/Prin(F,(E)) where Prin(F,(E)) is the subgroup
consisting of all principal divisors. Denote by & and & the
additive and minus operator in the group E(F,), respectively.

Proposition 4.1 ([2l], [6]]): Let E be an elliptic curve over
Fy, D = {P,P,,---,P,} a subset of E(F,) such that
rational points (not necessarily distinct) O, P ¢ D and let
G =(k-1)0+P (0 < k < n). Endow E(F,) a
group structure with the zero element O. Then the AG code
C (D, G) has minimum distance d = n — k + 1 if and only
if

N(k,P,D)=0.
And the minimum distance d = n — k if and only if

N(k,P,D)>0 .

Proof: We have already seen that the minimum distance
of C» (D, G) has two choices: n—k, n—k+1. So C¢(D,G)
is not MDS, i.e., d = n — k if and only if there is a function
f € Z(G) such that the evaluation ev(f) has weight n — k.
This is equivalent to that f has k zeros in D, say F;,,--- , FP;,.
That is

le(f) 2_(k_1)O_P+(P11 ++Plk)7
which is equivalent to

div(f) = ~(k = 1)0 — P+ (B +---+ P,).
The existence of such an f is equivalent to saying

Po---®oPF, =P

Namely, N(k,P,D) > 0. It follows that the AG code
C(D,G) has minimum distance n — k + 1 if and only if
N(k,P,D) = 0. »

Proposition [.1] establishes the relation between minimum
distance of ECAG code and SSP on the rational point group
of the elliptic curve. Together with Corollaries [3.4] and [3.5] we
obtain the main result of this paper, Theorem [I.3]
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