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0. Introduction

In this paper, we determine the trivial factors of L-functions of both integral and p-adic sym-
metric products of Kloosterman sheaves.

Let F, be a finite field of characteristic p with ¢ elements, let [ be a prime number distinct from
p, and let ¢ : F; — 6; be a nontrivial additive character. Fix an algebraic closure F of F,. For
any integer k, let F» be the extension of F, in F with degree k. Let n > 2 be a positive integer.

If A lies in Fx, we define the (n — 1)-variable Kloosterman sum by

KL, (Fgr, \) = > U(Trp /5, (21 + -+ 20)).-

Ty Tn=X, T;€F
Such character sums can be studied via either p-adic methods or l-adic methods. In [D1] Théoréme
7.8, Deligne constructs a lisse Q,-sheaf of rank n on A%,q —{0} pure of weight n—1, which we denote
by Kl,, and call the Kloosterman sheaf, with the property that for any = € (A%q —{0})(Fyx) =F

qk‘, )
we have

Tr(Fy, Kl z) = (1)KL, (Fyr, ),

where F, is the geometric Frobenius element at the point x. Let n be the generic point of A%q.

The Kloosterman sheaf gives rise to a Galois representation

Kl, : Gal(F,(T)/F,(T)) — GL((Kl,);)

unramified outside 0 and co. From the p-adic point of view, the Kloosterman sheaf is given by an

ordinary overconvergent F-crystal of rank n over A};q — {0}. See Sperber [S].



For each positive integer k, denote the L-function of the k-th symmetric product of the Kloost-
erman sheaf by L(k,n,T):

L(k,n,T) := L(Ag, — {0}, Sym"Kl,, T) € 1+ TZ[[T]].

We call it simply the k-th symmetric product L-function. This is a rational function whose
reciprocal zeros and poles are Weil g-numbers by theorems of Grothendieck and Deligne. Let
7 A%q - {0} — P%‘q be the canonical open immersion. By definition, we have the following
relation between the L-functions L(k,n,T) and L(Pg_, j. (Sym"(Kl,)), T):
L(k,n,T)
= L(Pg,, j.(Sym"(Kl,)), T)det(1 — FoT, (Sym* (K, )5)™)det(1 — FuoT, (Sym® (KL, )5)">),
where Iy (resp. I) is the inertia subgroup at 0 (resp. o0), and Fy (resp. Fi) is the geometric

Frobenius element at 0 (resp. o). Here we use the fact that
(Sym* (Kl,)y)" = (j.(Sym" (K1,))g, (Sym" (Kl )p)'™ = (j.(Sym* (K1n)))ss.

We call det(1 — FyT, (Sym* (Kl,,);)™) (vesp. det(1 — Fa T, (Sym*(Kl,)5)’>)) the local factor at 0
(resp. 00) of L(k,n,T). On the other hand, by Grothendieck’s formula for L-functions, we have

L(Py,, j.(Sym"(K1,)), T)

det(1 — FT, H (P, j.(Sym* (K1,))))
det(1 — FT, HO(P}, j.(Sym"(KL,))))det(1 — FT, H2(PL, j.(Sym* (Kl,))))

So we get the factorization

L(k,n,T)
det(1 — FT, H (P}, j.(Sym"™(K1,))))det(1 — FyT, ((Sym"Kl,);))det(1 — Fo, T, ((Sym*Kl, );) =)
det(1 — FT, HO(P}L, j.(Sym”*(KL,))))det(1 — FT, H2(P}, j.(Sym"(KL,)))) '

The first factor det(1 — FT, H'(Pk, j.(Sym*(K1,)))) is called the non-trivial factor. It is pure of
weight k(n — 1) + 1 by [D2] 3.3.1. All other factors on the right-hand side of the above expression
are called trivial factors. The zeros of these trivial factors give rise to the trivial zeros or poles of
L(k,n,T).

The aim of this paper is to determine all the trivial factors of L(k,n,T) and their variation with
k as k varies p-adically. As a consequence, we obtain some partial information on the non-trivial
factor and its variation with k as well. In the case n = 2, the trivial factor problem for L(k,2,T)
was first studied by Robba ([R]) via Dwork’s p-adic cohomology. Robba determined the trivial
factors for L(k,2,T) assuming p > k/2.

In [FW], we studied in detail the behavior of the Kloosterman representation at co based on

the work of Deligne and Katz. As a consequence, we completely determined the trivial factor

det(1 — Foo T, ((Sym*Kl,);)=).



See Theorem 2.5 in [FW] for the precise statement. The trivial factor det(I — Fy T, (Sym”(Kl,)5)™)
is easy to determine for n = 2. But in [FW] we were unable to determine it for n > 2. We solve

this problem in the present paper. Our result is as follows.

Theorem 0.1. We have
[k(n2—1)]

det(I — FyT, (Sym"(Kl,);)") = H (1 — g*T)™W),

u=0

where my(u) is determined by

(1—z")---(1— $n+k—2>(1 _ xn+k—1) 0
(1—22) - (1 —2F-1)(1 — zF)

my(u)x®.

u=0
We have
mg(u) = cp(u) — cx(u—1),

where ¢ (u) is the number of elements of the set

{(io,...,in,1>|ij20, ig+1i1+ - +in_1 =k, O~i0+1-i1+~-~+(n—1)~in,1:u}.

The trivial poles of L(k,n,T) can be derived from Katz’s global monodromy theorem and
Grothendieck’s formula for L-functions. For completeness, we include this deduction by working

out the relevant representation theory which should be well-known to experts.

Denote by G the Zariski closure of the image of Gal(F(T)/F(T)) under the representation

Kl, : Gal(F,(T)/F,(T)) — GL((Kl,);).

By [K] 11.1, we have

Sp(n) if n is even,

SL(n) if nis odd, and p # 2.

SO(n) ifnisodd, n#7and p=2,
Go ifn=7and p=2.

G:

If pn is even, we have (—1)" =1 in F,. By [K] 4.2.1, we then have a perfect pairing

When n is even, we have G = Sp(n), the pairing is alternating, and Kl,, is isomorphic to the
standard representation of Sp(n). When n is odd and p = 2, we have G = SO(n) or G = Gq, the
pairing is symmetric, and Kl,, is isomorphic to the standard representation of SO(n) or Go. (The
standard representation of Gso is defined to be the unique irreducible representation of dimension
7.) When pn is odd, Kl,, is isomorphic to the standard representation of SL(n). In the Appendix

of this paper, we will prove the following result.



Lemma 0.2. Let g be one of the following Lie algebras

sl(n),sp(n),s0(n), g,

and let V' be the standard representation of g. In the case where g = sl(n) or sp(n), the repre-
sentation SymkV is irreducible, and in the case where g = so(n) or g,, the representation SymkV
contains exactly one copy of the trivial representation if k is even, and contains no trivial repre-

sentation if k is odd.

By [D2] 1.4.1, we have

HO (P, j.(Sym* (Kl,))) = ((Kly)) S F O/ Fa®) = ((K1,,)5),

Hz(Pi‘a j*(Symk(Kln))) ((Kln)ﬁ)gm(m/pq(t)) (_1) = ((Kln)ﬁ)G(_1)~

Combined with [K] 11.1 and Lemma 0.2, we get the following.

Theorem 0.3. We have

1 if n is even, or k is odd, or pn is odd
det(1 — FT, H*(PL, j. (Sym* (K1, = (i ’ ’ ’
et( »H (P, ji (Sym™ (Kln)))) 1—qk(21)T if p=2, kis even and n is odd,

1 if n is even, or k is odd, or pn is odd
det(1 — FT, H*(PL, j.(Sym* (KL, = (e ’ ’ ’
et (P, (Sym(Kln)))) 1— ¢ =2 if p=2, kis even and n is odd.

In a different but related direction, the p-adic limit of L(k,n,T) when k goes to infinity in
a fixed p-adic direction was shown to be a p-adic meromorphic function in [W1]. This idea was
the key in proving Dwork’s unit root conjecture for the Kloosterman family. See [W1], [W2] and
[W3]. To be precise, for a p-adic integer s, we choose a sequence of positive integers k; which
approaches s as p-adic integers but goes to infinity as complex numbers. Then we define the p-adic
s-th symmetric product L-function to be

L,(s,n,T) = 11320 L(ki,n,T) € 1+ TZ,[[T]].

This limit exists as a formal p-adic power series and is independent of the choice of the sequence k;.
It is a sort of two variable p-adic L-function. Note that even when s is a positive integer, L,(s,n,T)
is very different from L(s,n,T). It was shown in [W1] that L,(s,n,T) is a p-adic meromorphic

function by a uniform limiting argument. Alternatively, it was shown in [W2] that
L,(s,n,T) = L(Ms(c0),T),

where M, (o0) is an infinite rank nuclear overconvergent o-module on Ai,q —{0}. This gives another
proof that L,(s,n,T) is p-adic meromorphic. Combining the above results on trivial factors of

L(k,n,T) with the p-adic limiting argument in [W1], we prove the following more precise result.



Theorem 0.4. Let d; be the coefficient of 27 in the power series expansion of

1
(1 — ZL‘Z)(l — ;173) A (1 _ xnfl)'

For each p-adic integer s, we have the factorization

o
Lyp(s,n,T) = Ay(s,n, T) [ [(1 = ¢'T)*,
i=0
where A,(s,n,T) is a p-adically entire function, (i.e., it has no poles). In particular, the p-adic
series L,(s,n,T) is p-adically entire, and it has a zero at 7' = ¢~7 with multiplicity at least d; for

each non-negative integer j.

We thus obtain infinitely many trivial zeros (if n > 2) for the p-adic s-th symmetric product
L-function Ly(s,n,T). This suggests that there should be an interesting trivial zero theory for the
L-function of any p-adic symmetric product of a pure l-adic sheaf whose p-adic unit root part has

rank one. Our result here provides the first evidence for such a theory.

Remark 0.5.. Grosse-Klonne [GK] showed the p-adic meromorphic continuation of Ly, (s,n,T)
to some s € Q,, with [s|, < 1+ € for some small ¢ > 0. We do not know if Theorem 0.4 can be

extended to such non-integral p-adic s.

The paper is organized as follows. In §1, we recall the canonical form of the local monodromy
of the Kloosterman sheaf at 0. In §2, we summarize the basic representation theory for s((2). In
83, we prove Theorem 0.1 using results in the previous two sections. In §4, we use Theorem 0.1
and a p-adic limiting argument to prove Theorem 0.4. In section 5, we derive some consequences
for the non-trivial factors and its variation with k. In the appendix, we sketch a proof of Lemma

0.2 which implies Theorem 0.3.
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1. The Canonical Form of the Local Monodromy

Let K be a local field with residue field F,, and let

p: Gal(K/K) — GL(V)



be a Q,-representation. Suppose the inertia subgroup I of Gal(K /K) acts unipotently on V. Fix

a uniformizer 7 of K, and consider the [-adic part of the cyclotomic character

i
ty: I —Z,(1), 0 — (U(,nﬁ)) .
Note that for ¢ in the inertia group, the {"-th root of unity U(lly\?//;) does not depends on the

choice of the I™-th root \/m of 7. Since the restriction to I is unipotent, there exists a nilpotent
homomorphism

N:VQ1)—-V

such that
p(o) = exp(t;(o).N)

for any o € I. Fix a lifting F' € Gal(K/K) of the geometric Frobenius element in Gal(F/F,). We

have
t(F~oF) = t)(0)".
So
exp(ti(o).N)p(F) = p(o)p(F)

= p(oF)

= p(FF'oF)

= p(F)p(F~loF)

= p(F)exp(t)(F~*oF).N)

= p(F)exp(gti(o).N)
Therefore

p(F) " exp(ti(a).N)p(F) = exp(gti(0).N).

Hence

p(F) "} (t(0)-N)p(F) = qts(0).N.

Fix a generator ¢ of Z;(1). Choose o € I so that ¢;(0) = (. For convenience, denote p(F) by F,
and denote the homomorphism
V-oVuo— Nuvc()

by N. Then the last equation gives
F~INF =¢N,

that is,
NF = qFN.



Now we take K to be the completion of F,(T) at 0, let V = (Kl, )7, and let p : Gal(K/K) —
GL(V) be the restriction of the representation Kl,, : Gal(F,(T)/F,(T)) — GL((Kl,);) defined
by the Kloosterman sheaf. In [D1] Théoréme 7.8, it is shown that the inertia subgroup Iy at
0 acts unipotently on (Kl,); with a single Jordan block, and the geometric Frobenius Fyy at 0

o of the inertia subgroup. With the above notations, this

acts trivially on the invariant ((Kl,)7)
means the nilpotent map N has a single Jordan block, and F acts trivially on ker(N). By [D2]
1.6.14.2 and 1.6.14.3, the eigenvalues of F are 1,q,...,¢"~!. Let v be a (nonzero) eigenvector of
F with eigenvalue ¢"~!. Using the equation NF = qF' N, we see N(v) is an eigenvector of F' with
eigenvalue ¢"~2. Note that if n > 2, then N(v) can not be 0. Otherwise v lies in ker(N) but F
does not act trivially on v. This contradicts to the fact that F' acts trivially on ker(/N). Similarly,
if n > 3, then N2(v) is a nonzero eigenvector of F with eigenvalue ¢" =3, ..., and N"71(v) is a
nonzero eigenvector of F with eigenvalue 1, and N"(v) = 0. As v, N(v),..., N"~!(v) are nonzero
eigenvectors of F' with distinct eigenvalues, they are linearly independent and form a basis of V.

We summarize the above results as follows.

Proposition 1.1. Notation as above. For the triple (V, F, N) defined by the Kloosterman sheaf,

there exists a basis eg,...,e,_1 of V such that
F(eg) = eg, Fle1) =qe1, ..., Flen_1) =q" ten_1
and
N(eo) = 0, N(el) = €0y +--y N(en,l) = €p—2.

2. Representation of sl(2)

In this section, we summarize the representation theory of the Lie algebra sl(2) of traceless

matrices over the field Q. Denote

1 0 0 1 00
= h) = (aa) = (0 0)
The following result is standard. (See, for example, [FH] §11.1.)

Proposition 2.1. Let V be a finite dimensional irreducible Q,-representation of s[(2). Then there
exists a (nonzero) eigenvector v of H such that Xv = 0. Such a vector is called a highest weight

vector for the representation V. Let n = dim(V') — 1. For any highest weight vector v, we have

Hv = no.



We call n the weight of the representation. Moreover, the set {v,Yv,...Y™v} is a basis of V, and

we have

(n—2i)Y'% (i=0,1,...,n),
iln—i+ 1Yt (i=01,...,n),
= YT (i=0,1,...,n—1),

= 0.

S

A g

T
<

~— N N~
I

Remark 2.2. The trivial representation Vy = Q, of s[(2) is the irreducible representation of weight

0. Let ¥ = 612 be the standard representation of s[(2) on which sl(2) acts as the multiplication

of matrices on column vectors. It is the irreducible representation of weight 1, and fy = < (1) >

is a highest weight vector. Let V,, = Sym"(V;) be the n-th symmetric product of Vj. It is the

irreducible representation of weight n, and f§' is a highest weight vector.

Let V,, be the irreducible representation of s[(2) of weight n. Note that the eigenvalues n,n —
2,n—4,...,—n of H form an unbroken arithmetic progression of integers with difference —2, and
each eigenvalue has multiplicity 1. Moreover, the space ker(X) has dimension 1 and coincides with
the eigenspace of H corresponding to the eigenvalue n. For any integer w, let V¥ be the eigenspace

of H corresponding to the eigenvalue w. We then have

1 ifw=nmod2and —n<w<n,

am(v) = {

otherwise.
Moreover, we have
Vi, Nker(X) = V7,
" - Vnw if w= n,
ViNker(X) = { 0 otherwise.

In general, any finite dimensional representation V' of s[(2) is a direct sum of irreducible represen-
tations. Let
V=mgVo®miVi® - --®miVi

be the isotypic decomposition of V. For any integer w, let V" be the eigenspace of H corresponding

to the eigenvalue w. If w is non-negative, then we have
Vv = meJ)U fas) mw+2vww+2 @D

and

dim(V"™) = my + mypyo + - -



Moreover, we have

ker(X) = (moVpNker(X))® (miViNker(X))®- - @ (mg Vi Nker(X))

= mo‘/oo@mlvll @"'@mkvk{(:.

and hence
ker(X)NVY =m, V.’ .

It follows that
kerX = (ker(X)NV%) @ (ker(X) NV @ - @ (ker(X) N VF)

and
dim(ker(X) N V?) = my, = dim(V"?) — dim(V**2).

We summarize these results as follows.

Proposition 2.3. Let V be a finite dimensional Q,-representation of s[(2). For any integer w, let

V™ be the eigenspace of H corresponding to the eigenvalue w. Then we have
kerX = (ker(X)NV) @ (ker(X)NVH @,
and for any non-negative w, we have

dim(ker(X) N V%) = dim(V") — dim(V**2).

3. The Local Factor at 0

In this section, we calculate the local factor
det(I — Fyt, (Sym* (Kl,))!*)

at 0 of the L-function of the k-th symmetric product of the Kloosterman sheaf. Let (V, N, F) be
the triple defined in §1 corresponding to the Kloosterman sheaf. Then the above local factor is
simply

det (I — Ft,ker(N : Sym* (V) — Symk(V))) .

Let V] = 612 be the standard representation of s[(2). Set

- (8)o=(2)



We have

H(fo) = fo, H(f1) = —fi,
X(fo) =0, X(f1) = fo-

Let V,,_1 = Sym”fl(Vl), and set

e :% ol (i =0,1,...,n —1).
We have
H(eg) =(n—1)ey, H(er) =(n—3)eq, ..., H(ep—1) = —(n— 1)en—1
and
X(eg) =0, X(e1) =¢€g, ..., X(en—1) = €n_oa.

Comparing with Proposition 1.1, we can identify V,,_; with V coming from the triple (V, F, N)
defined by the Kloosterman sheaf such that N is identified with X, and the eigenspace of F' with
eigenvalue ¢’ is identified with the eigenspace of H with eigenvalue n — 2i — 1.
Consider the k-th symmetric product Sym*(V;,_1). It has a basis
{etelt - ein=1]i; > 0,ig + iy + - +in_1 = k}.

We have

H(efel ey =((n—1)ig+ (n—38) viy + -+ (—(n— 1)) -in_1)efel et

So elvell .. -ei”_’f is an eigenvector of H with eigenvalue (n—1)-ig+(n—3)-i14+- -+ (—(n—1)) 4p_1.

It is also an eigenvector F' with eigenvalue

g0t Lint k(1) B (= Dk= (=10t (n=3) it (= (n=1)) in 1))

Here we use the fact that

20 g+ 1-i14+4+m—=1) ip_1)+((n=1)-do+n=3) i1+ +(—=(n—=1)) ~in_1)

(n—=1)(o+ i1+ 4+ in1)
= k(n-1).

This equality also shows that
m=1)-dg+(n—3)- i1+ -+ (—(n—1)) - ip—1 =k(n—1) mod 2.
For each non-negative integer w, let

Dk(’UJ) = {(io, PN ,in_1)|ij Z 0, Z0+Zl+ . °+Z‘n_1 = k, (n71)10+(n73)11+ . +(*(7’L*1))’Ln_1 = ’LU},

10



and let di(w) be the number of elements of Dy(w). We have di(w) = 0 if w # k(n — 1) mod 2 or
if w > k(n —1). Note that

{6606111"' - |(Z.0,i17...,7;n,1) GDk(U))}

is a basis of the eigenspace (Sym”(V,,_1))* of H with eigenvalue w. By Proposition 2.3, we have

k(n—1)
ker(X @ ker(X) N (Sym*(V,,_1))®
w=0
and
dim(ker(X) N (Sym* (V,_1))*) = dy(w) — dp(w + 2).
Now (Sym”(V,,_1))® is also the eigenspace of F' on Sym*(V) with eigenvalue qk("le)fw. So we
have
k(n—1) o )
det (1 — Ft,ker(N : Sym*(V) — Symk(V))) = ] @—q = ph-dlet2),
w=0
As di(w) =0if w # k(n — 1) mod 2 or if w > k(n — 1), we have
(2]
det (I . Ft,ker(N . Symk(v) N Symk(V))> _ H (1 _ qut)dk(k:(n—l)—2u)—dk(k(n—1)—2u+2).
u=0
Set
crp(u) = di(k(n —1) — 2u)
so that we have
[k(anl)]
det (1 — Ft,ker(N : Sym*(V) — Symk(V))) = I - qom-entn,
u=0

In the following, we find an expression for ¢ (u) — cx(u — 1).

Note that cx(u) is the number of elements of the set
{(io,...,in,1)|7;j 20, ’L.(]+i1+"'+in,1 :k, 020+121++(n—1)ln,1 :’LL}.

Taking power series expansion, we get

1
1—y) (1 —ay) - (L -z 1y) chk

k=0u=0

Since
1 1

1—y)(1—ay) - (1 — 21y :(1_mny)(1—xy)--~(1—x”y)’

we have

(1= erlway®) = (1 —a"y) (Y ex(w)a" (zy)"),

k,2u k,2u

11



that is,
S etwary — 3 alwaty = 3 a3 ey,
k,u kau k,u kau

Comparing the coefficients of y*, we get
Z cp(u)x® — Z cr—1(u)z" = (Z cr(u)z)zk — (Z cp_1(w)z)z e
u u u u

that is,
n+k—1

1—=
Z Ck(U)(Eu = W Z Ck;,l(u).’lfu.
u u
Applying this expression repeatedly, we get
n+k—1

1—=2
ch(u)xu = T chfl(uﬂ“

_ (1 _ xn+k—2)(1 _ xn—&-k—l) . (u)x
- (1—ak- (1 —ak) =77

U

(17 In) . (1 _ xn+k72)(1 _ anrkfl)
(T—z)- (1= 2F 1) (1 =2

Therefore
Z(ck(u) —cp(u—1))z" = Z cp(u)x" —x Z c(u)z
= (1 —x)ch(u)x“

(1 —2n) - (1 — 2ntk=2)(1 — gnth-1)
(1—xz)-- (1 —ak1)(1—2k)

(1 —am).-- (1 — antk=2)(1 — gnth-1)
(1—a2)-- (1 —axk=1)(1 —zF)

= (I1-=)

Y1 ntk— ondk—
So ¢k (u)—ck (u—1) is the coefficients of 2% in the power series expansion of (1_”{11£2()17(”1_+$k2()1(1_”“£; )

This proves Theorem 0.1 in the introduction.

4. p-adic Symmetric Product L-functions

Let s be a p-adic integer. Recall that the p-adic s-th symmetric product L-function is the p-adic
limit

Ly(s,n,T) = lim L(Sym* (Kl,),T),

11— 00

12



where k; is any sequence of positive integers going to infinity as complex numbers and approaching
to s as p-adic integers. Since Kl,, is pure of weight n—1, for each positive integer k;, Grothendieck’s
formula for L-functions implies that we can write

P(kz, n, T)
(1 — =Dk /2T)(1 — ¢((n=Dki+2)/2T))es”

L(ki,n,T) := L(Ag, —{0},Sym"™ (K1,), T) =
where
P(k;,n,T) = det(1-FT, H' (P, j.(Sym"(K1,))))det(1— FyT, ((Sym"Kl, ) ;)7 )det(1— Fo T, ((Sym*Kl,)7) =),

and e; is the multiplicity of the geometrically trivial representation in Sym®i (Kl,,). In fact, by
Theorem 0.3, we know that e; = 0 unless p = 2, k; even and n odd, in which case we have e¢; = 1.
Taking the limit, we deduce that

L,(s,n,T)= lim P(k;,n,T).

11— 00

Fix a positive integer r. By the results in [W1] (Theorem 5.7 and Lemma 5.10), the number of
zeros and poles of the L-function L(k;, n,T) as k; varies is uniformly bounded in the disk |T'], < p".
In particular, the number of zeros of the polynomial P(k;,n,T) (the numerator of L(k;,n,T)) as

k; varies is uniformly bounded in the disk |T'|, < p". Under the condition k > n, we have

(1 _ xn) . (1 _ x"+k—2)(l _ x"+k_1) (1 _ xk+1) . (1 _ x”+k_2)(1 _ xn-&-k—l)

(I—a2) (-2 )1—aF) (1-a2)-(1—ar2)(1—a")

It follows that my(j) = d; for j < k, where my(j) is defined in Theorem 0.1, and d; is defined in
Theorem 0.4. So we have my,(j) = d; for all 1 < j < r provided that k; > max(r,n). Then by
Theorem 0.1, we can write

P(ki,n,T) = B,(ki,n, T) [J(1 = ¢T)%,
j=0
where B,.(k;,n,T) € 1+ TZ[T) is a polynomial in T. Furthermore, the number of the zeros of
B, (ki,n,T) in the disk |T|, < p" is uniformly bounded as k; varies. This implies that the limit

. L,(s,n,T)
ConT) = f Bt ) = (e
j=0

exists and is p-adically analytic in the disk |T'|, < p". In particular, L,(s,n,T) is p-adically analytic
in the disk ||, < p" and has a zero at T = ¢~/ with multiplicity at least d; for 0 < j <r. As we

can take r to be an arbitrarily large integer, we deduce that

L _ Ly(s,n,T)
Ap(s,n,T) := Tlirrolo Cr(s,n,T) = H]o-io(l — TV

is p-adically entire. This proves Theorem 0.4.

13



Note that Theorem 2.5 in [FW] shows that for (n,p) = 1, the limit of the local factors at
infinity disappears and hence has no contribution to the zeros of p-adic s-th symmetric product
L-function. This together with the above proof implies that

Ay(s,n,T) = lim det(1 — FT, H*(Pg, j.(Sym"™ (K1,)))),

11— 00

that is, A,(s,n,T) is the p-adic limit of the non-trivial factor of L(A%,q — {0}, Sym"*(K1,,),T) as k;
approaches to s. It is a p-adic entire function. Its zeros are called non-trivial zeros of Ly, (s,n,T).

Some partial results on the distribution of the zeros of L,(s,n,T) were obtained in [W2].

Remark. The same proof shows that the entireness property for L,(s,n,T’) can be extended to any
p-adic s-th symmetric product L-function of a lisse pure positive weight [-adic sheaf whose p-adic
unit part has rank one. The Kloosterman sheaf is just the first such example. The ordinary family

of Calabi-Yau hypersurfaces is another important example, see [RW] for a complete treatment.
5. Variation of the non-trivial factor

In this section, we derive some consequences for the non-trivial factor
K,(k,n,T) := det(1 — FT, H (Pg, j.(Sym”*(Kl1,)))) € 1 + TZ[T].

This is a polynomial with integer coefficients, pure of weight k(n — 1) + 1. Its degree can be
computed explicitly by the degree formula for L(k,n,T) (Theorem 0.1 in [FW]) and the degree
formulas for the trivial factors of L(k,n,T) as implicit in Theorem 2.5 in [FW], Theorem 0.1 and
Theorem 0.3.

In the simplest case n = 2 and ¢ = p, the polynomial K, (k,n,T) is the Kloosterman analogue
of the p-th Hecke polynomial acting on weight k + 2 modular forms. It would be interesting to
understand how the polynomial K,(k,n,T) varies as p varies while & is fixed or as k varies while
p is fixed.

For fixed k and n, the polynomial K, (k,n,T) should be the p-th Euler factor of a motive My,
over Q. Tt would be interesting to construct explicitly this motive (its underlying scheme) or its
corresponding compatible system of Galois representation or its automorphic interpretation. In
the case when n = 2 and k < 4, it is easy, see [CE]. In the case n = 2 and k = 5, 6, the polynomial
K,(k,n,T) has degree 2 and is known to be the Euler factor at p of an explicit modular form, see
[PTV] for the case k = 5 and [HS] for the case k = 6.

Just like the case for L(k,n,T), we are interested in how the polynomial K,(k,n,T) varies as

k varies p-adically. The first simple result is a p-adic continuity result.
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Proposition 5.1. Let ki, ks and ks be positive integers such that ky = ko + p™ks with k1 not

divisible by p. Then we have the congruence

Kp(kl,n, T) = Kp(kQ’n,T)(mOd pmin(m,kQ/Q)).

Proof: Let ¢ = p. The Frobenius eigenvalues of the Kloosterman sheaf at each closed point are
all divisible by p except for exactly one eigenvalue which is a p-adic 1-unit (i.e., congruent to 1
modulo p). From this and the Euler product definition of the L-function L(k,n,T), we deduce the

slightly stronger congruence:
L(k1,n,T) = L(kg,n, T)(mod p™nm:+2)),

To prove the proposition, it remains to check that the same congruence in the proposition holds for
the trivial factors. This follows from the explicit results stated in Theorem 2.5 in [FW], Theorem
0.1 and Theorem 0.3.

Let s be a p-adic integer. Choose a sequence of positive integers k; going to infinity as complex
numbers and approaching s as p-adic integers. The above congruence for K,(k,n,T) implies that
the limit

Ap(s,n,T) := llirgo K,(ki,n,T)

exists and it is exactly the non-trivial factor A,(s,n,T) in Theorem 0.4. It follows that A,(s,n,T)
is a p-adic entire function. It would be interesting to determine the p-adic Newton polygon of the
entire function A,(s,n,T). This would give exact information on the distribution of the zeros of
Ap(s,n,T).

The rigid analytic curve in the (s,T’) plane defined by the equation A,(s,n,T) = 0 is the
Kloosterman sum analogue of the eigencurve in the theory of p-adic modular forms studied by
Coleman-Mazur [CM]. It would be interesting to study the properties of the rigid analytic curve

Ap(s,n,T) = 0 and its relation to p-adic automorphic forms.
6. Appendix

In this section, we sketch a proof of Lemma 0.2 in the introduction. The main reference for

this section is [FH].

First recall the dimension formula for irreducible representations of simple Lie algebras. Let
¢ be a simple Lie algebra (over Q;). Choose a Cartan subalgebra b of g, and let R be the set of

roots. We have the Cartan decomposition

s=bP(EPs.)

a€ER
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For each o € R, let H,, be the unique element in [g,,, g_,] such that a(H,) = 2. The weight lattice
Aw is the lattice in h* generated by those linear functionals 3 with the property 5(H,) € Z for all
a € R. Fix an ordering of R. Let RT be the set of positive roots, and let W be the Weyl chamber.

Set )
pP=35 Z .

a€ERTt

For any A € Ay NW, the dimension of the irreducible representation I'y with highest weight A is

given by
| A+ p,0) (4 pa)
d F = = s
() ag+ (p, ) OLL (p, @)
where (, ) is the Killing form on h*, and
_ _2(B, )
<ﬁ)a>_ﬁ(H(¥)_ (a,a)

for any 8 € h* and a € R. See [FH] Corollary 24.6.
For each pair 1 < 4,5 < n, let E;; be the (n x n)-matrix whose only nonzero entry is on the
i-th row and j-th column, and this nonzero entry is 1. For each 1 < i < n, let L; be the linear

functional on the space of diagonal matrices with the property

1 ifi=j,
Li(Efj){ 0 ifi#j.

Consider the Lie algebra sl(n) of traceless (n x n)-matrices. Let b be the space of diagonal

matrices in sl(n). It is a Cartan subalgebra of sl{(n). The set of roots of sl(n) are
R={L; - L;li # j}
and
Hy,—1; = Eyi — Ejj (i # j).
Choose an ordering of roots so that

R* ={L; - L;li < j}

is the set of the positive roots. We have

(To deduce this formula, we use the fact that Ly +--- 4+ L, = 0 for sl(n).) By the dimension
formula, for any
A=Al +--+ L,
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lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible

representation T'y of s[(n) with highest weight A is

: (A+pa)
dim(Ty) = “Wtpa)
’ 11 (p, )
_ (A +p)(Eii — Ejj)
- g p(Eii — Ejj)

- 11 (22N + (n—9)Li))(Eii — Ejj)
(Xi(n =) Li)(Eii — Ej5)
Ny
_ H;jfiﬂ

1<j

i<j

In the case where A = kLq, we have
kooifi=1,
A = { 0 ifi>2.

So we have

dim(I‘kLl) = H

1<j

k+j-1 (k+n-1
j—1 n—1 :

Note that the dimension of T'yr, is exactly the dimension of Sym*(V), where V is the standard
representation of sl(n). Since the weights of V are Lq,..., L,, the representation Symk(V) has a

highest weight kL;. So we must have
Symk(V) = Fk‘Ll'

In particular, Sym* (V) is irreducible.

Now suppose n = 2m is an even number and consider the Lie algebra sp(n) of matrices of the

(¢5)

where A, B,C, D are (m x m)-matrices, B and C are symmetric and A* + D = 0. Let h be the

form

space of diagonal matrices in sp(n). It is a Cartan subalgebra of sp(n). The set of roots of sp(n)
are

Choose an ordering of roots so that
RY ={L; - Ljli < j} U{L; + L;|i < j}
is the set of the positive roots. Using the dimension formula, one can show that for any

A=MLi+ -+ AnLnm
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lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible

representation T'y of sp(n) with highest weight X is
Ni—Xi+j—i i+ +2 2—i—j Ai 1—1
i<j J—t i<j mt2-1-7 i m+1—z
From this formula, we deduce
. k+2m—1
dim(Tyr,) = ( o — 1 )
Note that the dimension of T'yr, is exactly the dimension of Sym*(V), where V is the standard

representation of sp(n). As above, this implies
Symk(V) = FkLl'

In particular, Sym* (V) is irreducible.
Now consider the cases where g = so(n) or g,. In these cases, there is a symmetric non-

degenerate g-invariant bilinear form @Q(, ) on V. Consider the contraction map
Sym* (V) —  Sym"2(V),

Ul...vk — ZQ(Ui7Uj)v1...ﬁi...ﬁj...vk.
i<j
It is an epimorphism of representations of g. We will show the kernel of the contraction map is
irreducible.

First consider the case where n = 2m is even, and the Lie algebra is so(n) of matrices of the

(¢5)

where A, B,C, D are (m x m)-matrices, B and C are skew-symmetric and A® + D = 0. Let b be

form

the space of diagonal matrices in so(n). It is a Cartan subalgebra of so(n). The set of roots of
so(n) are
R={£L;+Lj1<ij<m,i#j}

Choose an ordering of roots so that
Rt ={L;— Ljli < j} U{L; + L;|i < j}
is the set of the positive roots. Using the dimension formula, one can show that for any
A= ML+ + ALy,

lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible

representation I'y of so(n) with highest weight A is

dim('y) = [ [

1<J

/\if)\j+j*i1—[>\i+>\j+2m7i7j

j—1 i< 2m —i—j
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From this formula, we deduce

(k+m—1)(k+2m - 3)!

dim(Ter,) = == om — 3y

Note that

dim(Tyy,) = ( i QIT -1 > — ( K +k27—712_ 3 ) = dim(Symk(V)) - dim(Symka(V)).

Since the contraction map Symk(V) — Symk_z(V) is surjective, and its kernel has a highest weight

kLy, it follows that 'y, coincides with the kernel of the contraction map. So we must have
Sym" (V) = Tz, ® Sym* (V).

Using this expression repeatedly, we get

(5]
k
Sym*(V) = @F(k—Zi)Ll-
i=0
In particular, when k is even, Symk(V) contains one copy of the trivial representation, and when
k is odd, it contains no trivial representation.

Next consider the case where n = 2m + 1 is odd, and the Lie algebra is so(n) of matrices of the

form
A B FE
C D F |,
G H 0

where A, B,C, D are (m X m)-matrices, E and F are (m x 1)-matrices, G and H are (1 x m)-
matrices, B and C are skew-symmetric, A + D =0, E* + H =0, and F' + G = 0. Let b be the
space of diagonal matrices in so(n). It is a Cartan subalgebra of so(n). The set of roots of so(n)
are

R={£L;+ L;]1<ij<m, i#j}U{£L]1<i<m}.

Choose an ordering of roots so that
Rt ={L; — Ljli < j}U{L; + Lj]i < j} U{L;}
is the set of the positive roots. Using the dimension formula, one can show that for any
A=MLi+ -+ ApLp,

lying in the intersection of the weight lattice and the Weyl chamber, the dimension of the irreducible

representation I'y of so(n) with highest weight A is

dim(Ty) =
im(Ty) =[] j—i om+1—i—

i<j 1<J

Ai—)\j+jfiH)\i+)\j+2m+1—i—jH)\i—&-m—f—%—i
Lomt g -0
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From this formula, we deduce

(2k +2m — 1)(k + 2m — 2)!
(2m — 1)!k!

k+2m \ [ k+2m—2
k k—2

= dim(Sym*(V)) — dim(Sym*~2(V)).

dim(FkLl ) =

The same argument as before shows that

(5]
Symk(V) = @ Lik—2iyr, -
i=0

In particular, when k is even, Symk(V) contains one copy of the trivial representation, and when
k is odd, it contains no trivial representation.
Finally let n = 7 and consider the Lie algebra g,. The following points on the real plane form

the root system R of g,:

—
(=}
=

Oélz(

—~

= N w
—

Q2

Q
S
|
—
—

£

I

o
SelG el

1 V3
a5 = (_5’7)a
33
g = (_5’7)a
1= —a1, B2 =—ag, B3 =—az, f1=—a4, b5 = —as, B = —as.

Moreover, the Killing form induces the canonical inner product on the real plane spanned by the
roots. Choose an order on R so that «; (i = 1,...,6) are the positive roots. The Weyl chamber
W is the positive cone generated by a3 and ay4, and the weight lattice Ay is the lattice generated
by a; and ag. Any element in Ay N W is of the form
1 3
A =aas + bay = <2a, \/7—@ + \/§b> ,
where a and b are non-negative integers. Using the dimension formula, one can show that the

dimension of the irreducible representation I'y with highest weight A = aas + bay is

: _(a+1)(a+b+2)(2a+3b+5)(a+20+3)(a+3b+4)(b+1)
dim(Ty) = 120 .

In particular, the dimension of the irreducible representation I'y, is
_2:3-7-4-5-1

dim(To,) = =5 —— =T
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So I',, is the standard representation V. The dimension of the irreducible representation 'y, is

dim(Tp,) = FEDE+ 2)(21;2455)% +3)(k +4)

- (1) ()

= dim(Sym*(V)) — dim(Sym*~2(V)).

The same argument as before shows that

[NE

]

Sym* (V) = @O T (h—2:)as-
=0

In particular, when k is even, Symk(V) contains one copy of the trivial representation, and when

k is odd, it contains no trivial representation. This finishes the proof of the proposition.
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