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ABSTRACT

Determining the minimum distance of a linear code is one
of the most important problems in algorithmic coding the-
ory. The exact version of the problem was shown to be
NP-complete in [14]. In [8], the gap version of the prob-
lem was shown to be NP-hard for any constant factor under
a randomized reduction. It was shown in the same paper
that the minimum distance problem is not approximable in
randomized polynomial time to the factor 208" "1 ynless
NP C RTIME(2p°lyl°g<”)). In this paper, we derandomize
the reduction and thus prove that there is no determinis-
tic polynomial time algorithm to approximate the minimum
distance to any constant factor unless P = NP. We also
prove that the minimum distance is not approximable in
deterministic polynomial time to the factor 218" 71 ynless
NP C DTIME(2P°'¥'°9(")  As the main technical contri-
bution, for any constant 2/3 < p < 1, we present a determin-
istic algorithm that given a positive integer s, runs in time
poly(s) and constructs a code C of length poly(s) with an ex-
plicit Hamming ball of radius pd(C) such that a projection
at some s coordinates sends the codewords in the ball surjec-
tively onto a linear subspace of dimension s, where d(C) de-
notes the minimum distance of C. The codes are obtained by
concatenating Reed-Solomon codes with Hadamard codes.
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1. INTRODUCTION

In the theory of computational complexity, a (Karp) re-
duction from a language A to another language B is a trans-
formation f such that x € A if and only if f(z) € B. After
the fundamental work of Cook [7], polynomial time reduc-
tions are systematically used to identify complete problems
for classes of computational problems. As there is still no
separation between P and many supposedly larger classes
such as PSPACE, we rely on reductions to order the in-
tractability of some well-known computational problems.

Ideally one would like reductions to be deterministic, but
sometimes deterministic reductions are hard to find. One
can then search for randomized reductions. In general a ran-
domized reduction is a randomized algorithm which maps
strings in A to strings in B with high probability, and maps
strings not in A to strings not in B with high probabil-
ity. The probability in the randomized reductions is over
the random coins in the reduction and not over the inputs.
For example, no deterministic reduction from a NP-complete
problem has been found for the shortest vector problem of
integer lattices in L2 norm, but it was shown to be NP-hard
by Ajtai [1] in 1998 under a randomized reduction. His work
was later refined in [4, 11] to show the hardness of approxi-
mating the shortest vector problem, again under randomized
reductions. In those reductions, for any positive integer s,
a gadget is constructed which includes an integer lattice of
dimension poly(s), a ball of radius less than the length of
shortest vectors but containing many lattice points and a
linear map which sends the lattice points in the ball onto
{0,1}°. Randomized algorithms have to be deployed to find
the integer lattice, the center of the ball and the surjective
linear map. Derandomizing the reductions is a long stand-
ing open problem in computational complexity. This can be
done conditionally assuming certain smooth number conjec-
ture which is unfortunately hopeless to prove at present.



The shortest vector problem of integer lattices corresponds
to the minimum distance problem of linear codes in coding
theory. A linear code C of length n and rank k& over a fi-
nite field F, is a k-dimensional linear subspace of Fy. It
is usually represented by a (generating) matrix in Fj**,
whose column vectors form a base of the code. For two vec-
tors x,y in Fy, the Hamming distance d(x,y) is defined to
be the number of positions where these two vectors differ.
The minimum distance of the code, denoted by d(C), is de-
fined to be the minimum Hamming distance between any
two distinct codewords. It equals to the minimum weight of
nonzero codewords. The distance of a vector x € Fy to the
code C, is defined to be ming e d(x,y), denoted by d(C, x).
A Hamming ball with center ¢ € Fy and radius 7, denoted
by B(c, ), is defined to be the set of vectors within distance
r from c, namely,

B(c,r) = {x € Fj|d(x,c) < r}.

The minimum distance problem of linear codes was proven
to be NP-complete [14] in 1997 under a deterministic reduc-
tion. Approximating the minimum distance of a linear code
was proved to be NP-hard [8] for any constant factor, under
a randomized reduction. More precisely the reduction in [8]
is reverse unfaithful random reductions, which maps YES
instances of an NP-complete problem to YES instances in
the gap version of the minimum distance problem with high
probability and always map NO instances to NO instances.

DEFINITION 1.1. For a prime power q and v > 1, an in-
stance of the gap minimum distance problem GapM D P ., is
a linear code C over Fy, given by its generating matriz, and
an integer t such that

o it is a YES instance if d(C) < 't;
e it is a NO instance if d(C) > ~t,

The reduction in [8] adopted some ideas in the work on the
shortest vector problem [1, 11], and used randomness in a
similar way in two steps:

e For certain codes, a randomized algorithm finds the
center of a Hamming ball which has radius smaller
than the minimum distance by a constant factor less
than 1 but contains subexponentially many codewords.

e Randomness is needed to find a linear map which sends
the codewords in the Hamming ball onto a linear sub-
space of given dimension.

In both places, it was proved that random objects satisfy
the required properties with high probability. Sometimes
a random object possesses certain property but it is hard
to construct an object with the property in a deterministic
manner. It is a recurring theme in combinatorics and al-
gorithm design, and poses a challenge for derandomization
research. It is related to the P vs. RP problem, one of the
central questions in computational complexity.

Like the exact version of the shortest vector problem in
L2 norm, the gap version was proved to be NP-hard to any
constant factor under randomized reductions in [10, 9]. It
is interesting to contrast these problems with the inhomo-
geneous versions, namely, the closest vector problems in Lo
norm for integer lattices and the maximum likelihood decod-
ing problems for linear codes. Both problems were known

to be NP-complete since early eighties [13, 3], and there
are inapproximability results under deterministic reductions
[2]. Their homogeneous versions turn out to be significantly
harder to study.

1.1 Our results

The work in [8] left open a problem whether a determin-
istic reduction can be found to prove the NP-completeness
of the gap version of the minimum distance problem. Fur-
thermore, there is currently no known smooth number type
conjecture which would imply the desired derandomization.

To derandomizes the first part of the reduction in [8], one
needs to construct deterministically a code and a Hamming
ball of radius smaller than the minimum distance by a fac-
tor less than 1 but containing subexponentially many code-
words. Our construction is based on Reed-Solomon codes.

DEFINITION 1.2. Let ¢° be a prime power. Let C1,Ca, -+,
Cqe be a natural ordering of elements in Fqe. The (extended)
Reed-Solomon code of dimension k, denoted by RS[q°, k],
consists of all the vectors

(f(cl)vf(02)7 T 7f(qu))7

where f € Fye[z] is a polynomial of degree at most k — 1.

It is well-known that the minimum distance of RS[q°, k]
is ¢ —k+1. Let p be a real number in (1/2,1). By an aver-
age argument, one can show that for Reed-Solomon codes of
rate approaching one, there exist Hamming balls of radius
pd containing subexponentially codewords, where d is the
distance of the code. In [6], we show that for p € (2/3,1),
such Hamming balls can be found in a deterministic manner.
Continuing this line of research, in this paper, we present
a deterministic reduction from an NP-complete problem to
the gap version of minimum distance problem for any con-
stant factor, thus finalize the NP-completeness proof of lat-
ter problem. We achieve this by an in-depth study of code-
words inside balls constructed in [6], as the balls are explicit
and more information are available to us. As a result, we
show that in fact, for certain Reed-Solomon codes concate-
nated with Hadamard codes, a suitable projection is enough
to send the codewords in the balls surjectively onto a linear
subspace. This simultaneously derandomizes both parts of
the reduction in [8]. Our main technical contribution is the
following theorem

THEOREM 1.3. Let q be a prime power and 2/3 < p < 1
be a constant. There exists a deterministic algorithm that
given an integer s, Tuns in time poly(s) and constructs a
linear code C over ¥y of length n = poly(s), and a vector
w € Fy such that

m1,2,..,s(B(w, pd(C)) N C) = Fy,

e

where Ty iy, g denotes the projection at coordinates i1, iz,

c 5.

Note that the Hamming ball contains at least ¢° many
codewords thus has radius at least linear in s.

THEOREM 1.4. The minimum distance problem cannot be
approximated by a deterministic polynomial time algorithm
to any constant factor greater than one unless NP = P. It
is not approximable by a deterministic polynomial time algo-

rithm to the factor 2108 " ynless NP C DTIM E(2pevtos(m)y,



1.2 Technique overview

Let ¢ be a fixed prime power. Let h(z) be an irreducible
polynomial over Fge of degree h > 2. We start with an ob-
servation in our previous paper [5]. Given f(z) € Fge[z], let
v be the vector in Fg: obtained by evaluating — f(z)/h(x)
over Fge. We proved in the paper [5] that if g = (2 + €)h
and ¢¢ = h*1/9 then for any nonzero f(z) of degree less
than h, there exist subexponentially many monic polynomi-
als t(x) of degree g — h such that f(z) + t(x)h(z) can be
factored completely into distinct linear factors in z + Fe.
By a duality argument [6], there exist many monic t'(z) of
degree ¢° — g — h such that f(z)+t'(z)h(z) can be factored
completely into distinct linear factors in  + Fge. Such a
polynomial ¢'(z) is one-to-one corresponding to a codeword
of RS[q%, q° — g — h| inside the Hamming ball of radius g
and centered at vy. So for RS[¢°%, ¢° — g — h], which has rate
approaching 1, we obtain deterministically Hamming balls
of radius g containing many codewords. Note that the ratio
between the radius and the distance of RS[¢°, ¢° — g — h] is
715> which can be any number in (2/3,1).

REMARK 1.5. For p € (1/2,2/3), one can show by an
average argument that there exist Hamming balls of radius
p(g+h) containing many codewords. However, to determin-
istically find such a Hamming ball requires substantially new
ideas, as our proof does not work if g/h < 2.

Let A generate the finite extension Fge over Fg, that is,
F,e = F,[A]. Based on the above results and a standard
technique of concatenating codes, we reduce the proof of
Theorem 1.3 to the following problem: given f(z) € Fge[z]
and distinct C; € Fge (1 <4< s), for any a; € Fy (1 <4<
s), does there exist t(x) € Fqe[z] such that

o f(z)+t(zx)h(x) can be factored into distinct factors in
T+ Fge,

e and t(C;) = a; + Ab; for 1 <14 < s, where b; € F,?

By expanding the linear product, the existence of such t(x)
can be reduced to the existence of an F4e-rational point of a
rather complicated higher dimensional quasi-projective vari-
ety defined over Fye, involving many elementary symmetric
functions. If this variety is absolutely irreducible (which is
often not easy to prove), then one can apply the Lang-Weil
estimate to obtain the existence of many Fge-rational points
if ¢° is sufficiently large. This approach would result in poor
parameters for coding theory applications as one needs to
assume that ¢° is very large (exponentially large compared
to other parameters). For coding theory applications, one
needs that ¢° to be only polynomial size of other parameters.

We shall keep the compact form of the above problem
and reduce it to the estimate of various partial character
sums along a line in the residue class ring Fge[z]/(h(z)(z —
C1)(x — C2)---(x — Cs)), which is not a field. Via class
field theory over function fields, one finds that such partial
sums along a line can be interpreted as complete character
sums on the affine line and thus one can use Weil’s bound
for character sums to get a good estimate. Together with an
inclusion-exclusion sieving argument, one can then show the
existence of ¢t(x) if ¢° is of certain polynomial size in other
parameters, and hence enough for our present coding theory
applications.

2. MATHEMATICAL PREPARATION

THEOREM 2.1. Let q be a prime power and e > 2, h > 2
and s be positive integers. Let A be an element in Fge satis-
fying Fq[A] = Fge. Let C1,Ca,---,Cs be distinct elements
in Fge. Let h(z) be a monic irreducible polynomial of degree
h over Fge. If

g° > max((g — )% (h+)>7%), g—5> 2+ )(h + ),

for some positive integer g and some constant € > 0, then
for any non-zero f(x) € Fge[x] of degree less than h and
a,az, - ,as € By, there exists a monic polynomial t(z) of
degree ¢° — g — h and bi,ba, -+ ,bs € Fq such that

e f(x) + t(x)h(z) can be split into a product of ¢° — g
many distinct linear factors from x + Fye;

e and t(C;) = a; + Ab; for 1 <i<s;

PROOF. Let

Since Ah(C;) # 0, we can choose b; € F; (1 < i < s) such
that

f(Cy) + (a; + Ab;)h(C;) # 0.
Write
t(x) = t1(z) + 7m(x)t2(2),

where ¢1(z) € Fgelz] is the unique polynomial of degree
smaller than s such that ¢1(C;) = a; + Ab; for all 1 < ¢ < s,
and t2 € Fge[z] is a monic polynomial of degree ¢ — g —
h — s, to be determined. Thus, t(z) always satisfies the
interpolation ¢(C;) = a; + Ab; for 1 <14 < s.

To prove the theorem, it suffices to show that the congru-
ence
q°—g
[] (z—w) (mod m(2)h(x)), us € Fee

=1

f(@) +ti(2)h(z) =

has solutions with the u;’s being distinct. Now, the condi-
tion that f(x) is not divisible by h(z) and the conditions
f(Cs) + (ai + Ab;)h(C;) # 0 for all ¢ imply that (f(z) +
t1(z)h(z), m(x)h(x)) = 1. This also implies that any solu-
tion automatically satisfies u; ¢ {C1,...,Cs}. One could try
to apply the character sum estimate in next theorem to the
above congruence, but the number ¢ — g of linear factors is
too large and this would result in poor (useless) parameters.
To get around this difficulty, we shall use the “dual” ver-
sion of the above congruence, which will have much smaller
number of linear factors.

Let
W(z) = II

a€F e—{C1,...,Cs}

(z —a).

This is a polynomial in Fge[z] relatively prime to 7(z)h(z).
Dividing W (x) by the above desired congruence, we are re-
duced to showing that the dual congruence

W@ e o) (mod (e k(). o e Fo
b ) = 11— v) (med m(@)h(@), v; € Fye

j=1



has solutions with the v;’s being distinct. This dual congru-
ence now has only g — s linear factors. It does have solutions
by the following general theorem under the condition

¢ >max((g—s)*, (h+35)7%), g =5 > (2+)(h+5).
The theorem is proved. O

THEOREM 2.2. Let H(z) € Fy4[z] be a non-zero polyno-
mial of degree H > 1. Assume that

g > max(g®, H**%), g > (2+ ) H

for some constant € > 0. Then, every element 3 in the
multiplicative residue group (Fq[z]/H(z))* can be written
as

ﬂ = 1_[(‘r - vj)7

where v; € Fy are distinct.

PRrOOF. This result is the extension of Theorem 3 in our
earlier paper [5] from irreducible H(z) to arbitrary non-zero
polynomial H(z). For the reader’s convenience, we include
a sketch of the proof for this extension.

Let ¢(H) denote the number of the elements in the group
(F,[z]/H(z))*. Tt is clear that ¢(H) < ¢. Let G be
the complex character group of the multiplicative group
(Fq[z]/H(x))*. If x € G, then x can be extended to a mul-
tiplicative map on the full residue class ring F,[z]/H(z) by

defining x(a)) = 0 for non-invertible elements « in F, [z] /H(z).

If x is non-trivial, then Weil’s character sum bound on the
affine line can be simply stated as:

| > x(z =)l < (H =1)va,

vGFq
see [15] for a fuller exposition of this estimate and its various
incarnations.

Let N4(0) denote the number of ordered g-tuple (v1, ...
F{ with distinct coordinates such that 3 = [[_, (z — v;).

The sum
> x(@

acF [z]/H(z)

is either 0 or ¢(H) depending on the character x is trivial
or not. Thus, we obtain the counting formula

Ng(ﬁ)zi Z ZX((val)"'(x*'Ug)).

¢( ) vj €Fq,distinct x€G ﬁ
1<j<g

(2.0.1)
Applying the principle of inclusion-exclusion sieving and the
inequality ¢(H) < ¢, we deduce

Ng(g)>qu{( S )ZX((w—Ul)-é.(m—vg))}

vj EFq V=V XEG
1<j<g 1<i<j<g
1 (x—v1) - (z —vg)
V(ISP IRNEE )l
q XEG  vj€EFq vi=vj
1<j<g 1<i<j<g

Separating the trivial character and using the above Weil
bound for non-trivial characters, arguing exactly as in [5],
we obtain

N> TR <~;’>><H —1yg

7v9) €

In order for Ny(B) > 0, it suffices to have

‘- (g) 14 (g) 2 S (1)

One checks that these two inequalities are indeed satisfied
under the assumption of the theorem. O

3. THE GADGET

In this section, we present a deterministic algorithm that
given a positive integer s, constructs a linear code C over F,
and a Hamming ball of radius pd(C) such that the projection
at the first s coordinates maps the codewords inside the
Hamming ball surjectively onto F;. The algorithm runs in
time poly(s).

LEMMA 3.1. Let q be a prime power. Let 2/3 < p < 1
be a constant. There exists a deterministic algorithm that,
given an integer s > 2, constructs a Reed-Solomon code C’
over Fye and a received word w' € ng such that

e ¢ = O(log, s);

o Let A be an element in Fge satisfying Fq[A] = Fge.
Such an A, or more precisely, its minimum polynomial,
can be found in deterministic time poly(qe) [12]. For
any elements a1, az, -+ ,as € Fy, there exist elements

bi,b2,--- ,bs € Fy and elements ui,uz, -+ ,uge—s €
Fqe such that
(b1A+ a1, b0A+az, - ,bsA+as,u1, - ,Uge—s)

€ C'nBWw, pd(C"));

o the minimum distance of C' is greater than s>.

PROOF. Set h = 5% and g = Llpfhpj. We have

. g—Ss P
lim = —>2.
smooh4+s 1—p
Thus when s is large enough, we can find a positive constant

€, e.g.

P 3p—2
= (L —92)/2=
=G, 2=55,

so that g — s > (2+ €)(h + s). Let e be the least positive
integer such that

q° > max((g — 5)2, (h+ s)2+%).

It is easy to verify that e = O(logq s). Let C1,Ca, -+ ,Cye
be a natural ordering of elements in F,c. Now consider the
Reed-Solomon code C' = RS[q°, ¢° —g—h~+1]. Find a monic
irreducible polynomial h(z) of degree h over Fye, which can
be done in deterministic time poly(geh) [12]. Let

w' = (=1/h(C1),=1/h(C2), -+, —1/h(Cqe)).

According to Theorem 2.1, taking f(z) = 1, for any a1, az,
-+ ,as € Fg, there exists a polynomial ¢(z) of degree ¢° —
g — h, such that

e 1+ t(z)h(z) can completely split into distinct factors
in z 4+ Fge;

e t(C;) = b;A+ a; for some b;, 1 <i < s;



This means that
(t(Cl)7 T 7t(cqc))

is a codeword, and it shares at least ¢ — g many coordinates
with w’. Therefore it is a codeword in the Hamming ball
B(w’, g). The ratio between the radius of the Hamming ball
B(w',g) and the minimum distance of the Reed-Solomon
code is

9 _ 9 _,

d¢)  g+h ~

The code we construct above is a Reed-Solomon code, and
thus its field size cannot be fixed. Next we use the idea of
concatenation with a Hadamard code to obtain a code in a
fixed field. An element in Fge can be represented uniquely as
a0+ a1 A+ +ae_1 A" with a; € Foforall0 <i<e—1.
Define the map

¢:Fge —FI

by sending ag+ a1 A+---+a._1A°"! to a vector in FZE that
consists of evaluations of the multilinear polynomial

AT + 41%1 + -+ + Qe—1Te—1 (3.0.1)

at all the points in F;. W.l.o.g, we assume that the first
position of ¢(ag + a1 A+ --- + aeflAefl) is the evaluation
of (3.0.1) at (1,0,---,0), so

mi(¢(ao +arA+ -+ aeflAe’l)) = ap.

It is easy to see that d(¢(u), p(v)) = ¢“ (g — 1) if u # v,
because two distinct hyperplanes of dimension e intersect at
a hyperplane of dimension e — 1. We extend ¢ to vectors
over Fge by letting ¢ act on each coordinate, namely,

¢(U17U27' t 71]71) = (¢(U1)7¢(U2)7 e 7¢(Un))7
where v; € Fge for 1 <i < n.

PROOF. (of Theorem 1.3): Let C’ be the code constructed
in Lemma 3.1. We define a code

C// = {(¢(’U1)7¢(U2)7' o ,¢(vqe))|(U1,U2,- o 7”‘16) € CI}

It is easy to verify that C” is a linear code of length (¢)? and
minimum distance ¢°~'(g — 1)d(C’). Let w" = ¢(w’). For
any ai,as, - ,as € Fg, there exist b1,bo,--- ,bs € Fy such
that a codeword ¢’ in B(w’, pd(C")) has a; + Ab; as the i-th
coordinates for 1 < i < s. Then ¢” = ¢(c’) is a codeword in
the ball B(w", pd(C")) and

T 14q¢,142q% - 14 (s—1)qe (") =(a1,a2, - ,as).

Therefore rearranging the coordinates of C” and w” will
produce a code C and w satisfying the requirements. O

4. THE REDUCTION

In this section we first reduce the gap maximum likelihood
decoding problem with a large factor to the gap minimum
distance problem with factor close to 3/2. Then we use
tensor product to boost the gap to prove Theorem 1.4.

DEFINITION 4.1. For a prime power q and a real constant
v > 1, an instance of the gap mazimum likelihood decoding
problem GapM LP, ., is a linear code C, given by its gener-
ating matriz, a received word v and an integer t, such that

e it is a YES instance if d(C,v) < ¢;
e it is a NO instance if d(C,v) > ~t;
The following theorem was proved in [2].

THEOREM 4.2. For any prime power q and constant v >
1, there is a polynomial time deterministic reduction from
3SAT to GapMLP, .

THEOREM 4.3. Let q be a prime power. There exists a
deterministic polynomial time reduction from the gap maz-
tmum likelihood decoding problem over ¥ with factor v to
the gap version of the minimum distance problem of linear
codes with factor v =3/2+ O(1/7).

PRrROOF. Given an instance of the gap maximum likeli-
hood decoding problem (C,v,t), let A € F;** be the gener-
ator matrix for C. Set s’ = max(s,7t) and let B the parity
check matriz for the code C1 constructed in Theorem 1.3
with input s’, and let w be the center of the Hamming
ball with many codewords. Denote d(C1) by d. Note that
d > (s')? > (yt)? and the matrix B has size poly(s’). Let Ca
be the code with the following generator matrix M:

A v

A v

B 0

B 0
1

1
1 w
1
1
Z1 e Zs Zs+1 Zs+42 e Zn Yy

where the number of A’s is [%1 and the number of B’s is
d. Now consider a nonzero codeword c generated by the
column vectors of M with z1,--- , z,,y as the coefficients.

[d/(vt)] d
(A(th?a"' 7ZS)T7“
[d/(vt)]
~ =
+y( Ve 707"' 7W)

C =

If the gap maximum likelihood decoding problem is YES
instance, then there exists a vector (z1,---,2s) € Fj such
that

d(A(z1,--- ,2)",v) < L.
According to Theorem 1.3, we can find 2541, -+ , 2, € Fg so
that z1, -+, 2z, is a codeword in the Hamming ball centered

at w and of radius 2d/3. Let y = —1. We can verify that
the weight of ¢ is at most

2d/3+t[d/(v1)] = (2/3+ O(1/7))d.

Now assume that the gap maximum likelihood decoding
problem is a NO instance. We want to show that c has

T
~,B(Z1,22,~“ ;Zn) Sy 21,22,



weight at least d. If y = 0, then zq,---
zeros. If (z1, -+ ,2,) € C1, then

B(217Z2a"' 72”7«)T #07

so the weight of c is at least d, as there are d many B’s. If
(#1, -+ ,2n) € C1, then its weight is at least d, thus is the
weight of c.

If y # 0, w.l.o.g, assume that y = —1. Then the weight of
¢ would be at least ’yt(%] > d.

In summary, the ratio of the minimum distance of C» at
NO instance of GapM LP, ~ over the minimum distance at
YES instance is

, Zn, cannot be all

d
@B oM /2T oun.

O

PROOF. (of Theorem 1.4) We shall use the tensor product
to boost the gap, following the idea in [8]. The details will
be left in the full paper. O

5. CONCLUDING REMARKS AND OPEN
PROBLEMS

The gap minimum distance problem was proved to be NP-
hard in [8] under a randomized reduction. It left open the
question whether the reduction can be derandomized. In
this paper, we settle the problem affirmatively and thus fi-
nalize the proof of the NP completeness of the gap minimum
distance problem to any constant factor.

Although the idea in Ajtai and Micciancio’s work on the
shortest vector problem in L2 norm inspired the results on
the gap minimum distance problem, the reduction for the
latter problem is now derandomized, while finding a deter-
ministic reduction for the NP-completeness of the former
problem, even for the exact version, remains open. We hope
that some of the ideas in this paper can contribute to the
ultimate solution of the problem.

The code constructed in Theorem 1.3 has a relative dis-
tance approaching 0. It would be an interesting problem to
construct codes with positive relative distance. Also can we
prove a similar theorem for 1/2 < p < 2/37
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