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Abstract. Let K be a function field over a finite field k of characteristic p
and let K∞/K be a geometric extension with Galois group Zp. Let Kn be the

corresponding subextension with Galois group Z/pnZ and genus gn. In this
paper, we give a simple explicit formula for gn in terms of an explicit Witt

vector construction of the Zp-tower. This formula leads to a tight lower bound

on gn which is quadratic in pn. Furthermore, we determine all Zp-towers for
which the genus sequence is stable, in the sense that there are a, b, c ∈ Q such

that gn = ap2n + bpn + c for n large enough. Such genus stable towers are

expected to have strong stable arithmetic properties for their zeta functions.
A key technical contribution of this work is a new simplified formula for the

Schmid-Witt symbol coming from local class field theory.

1. Introduction

1.1. Global function fields. Let K be a function field over a finite field k of
characteristic p. Let

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ K∞
be a geometric Zp-tower of function fields such that Gal(Kn/K) = Zp/pnZp. Let
gn denote the genus of Kn. We assume that the tower is only ramified at a finite
number of places of K. In the spirit of Iwasawa theory, an emerging new research
area is to study the possible stable arithmetic properties for the sequence of zeta
functions of Kn as n varies, see [2] and [5] for recent progresses and the relevant
references there. A necessary condition for the sequence of zeta functions to be
arithmetically stable is that the genus sequence gn must be stable in the sense that
gn is a quadratic polynomial in pn for large n. The aim of this paper is to classify
all genus stable Zp-towers of K.

First, we give an explicit construction of all geometric Zp-towers of K using
Witt vectors of K, via an improved presentation of the classical Artin-Schreier-
Witt theory. This explicit construction leads to a simple explicit genus formula
for the genus sequence, see Theorem 4.1. As an application, we derive an explicit
quadratic lower bound in pn for gn, which is tight in many cases. This explicit
formula also allows us to derive a simple criterion for when the genus gn is a
quadratic polynomial in pn for large n.

By the Riemann-Hurwitz formula, the genus can be calculated from local ram-
ification information and we can reduce to the local case where there is only one
ramified prime. To illustrate our result in this introduction, here we consider an
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essential case, that is, K = k(X) is the rational function field and the geometric Zp-
tower K∞ is only ramified at infinity. Then any such Zp-tower K∞ over K = k(X)
can be uniquely constructed from a constant c ∈ Zp and a primitive convergent
power series

f(X) =
∑

(i,p)=1

ciX
i ∈ Zq[[X]], ci ∈ Zq, lim

i
ci = 0,

where Zq = W (Fq) denotes the Witt vectors of Fq, and f(X) is called primitive if
not all ci are divisible by p. The construction is explicitly given by the following
Witt vector equation

K∞ : (Y p0 , Y
p
1 , · · · )− (Y0, Y1, · · · ) = cβ +

∑
(i,p)=1

ci(X
i, 0, · · · ),

where both sides are Witt vectors and β is any fixed element of Zq with trace 1.

Theorem 1.1. Let K∞ be a geometric Zp-tower ramified only at infinity as con-
structed above by a primitive convergent power series f(X). Then, we have

(1). For each integer n ≥ 1, the genus gn is given by the following formula

2gn =

n∑
k=1

(p− 1)pk−1
(
−1 + max

i: vp(ci)<k

{
ipk−1−vp(ci)

})
,

where vp denotes the standard p-adic valuation with vp(p) = 1.
(2). For any ε > 0, there is a constant c(ε) such that for all n > c(ε), we have

gn ≥
p2n

2(p+ 1) + ε
.

(3). The tower K∞ is genus stable in the sense that for all large enough n one
has

gn = ap2n + bpn + c, a, b, c ∈ Q
if and only if

d := max
(i,p)=1

{
i

pvp(ci)

}
exists (and is a thus finite rational number).

Remarks. Part (2) shows that the genus sequence gn grows at least quadratically
in pn. The lower bound in (2) cannot be improved in general. In particular, it
implies that the lower bound for the genus in the literature is incorrect: the ε
cannot be dropped (Remark 4.3). The proof of the above theorem follows from
Corollary 4.2, Proposition 4.4 and Proposition 4.9.

1.2. Local function fields. Set K = k((T )), where k is a finite field of characteris-
tic p and cardinality q. Local class field theory studies the abelian Galois extensions
of K. Combining local class field theory and the theory of Artin-Schreier-Witt ex-
tensions gives us the so-called Schmid-Witt symbol

[ , )n : Wn(K)×K∗ → Zp/pnZp,

where Wn(K) is the ring of Witt-vectors of K of length n, and 1 ≤ n ≤ ∞. The
strongest case is when n = ∞, in which case the symbol [ , )∞ will be simply
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denoted by [ , ). In the simplest classical case n = 1, the symbol [ , )1, coming
from Artin-Schreier theory, has the following beautiful simple formula:

[ , )1 : K ×K∗ →Z/pZ
(x, y) 7→Trk/Fp (Res(x · dy/y))

where dy is the derivative of y (see [9]).
As n grows, the situation becomes more complicated. Various formulas for [ , )n

for finite n were essentially known, but none of them completely seem to capture
the simplicity of the formula for n = 1. Furthermore, these formulas have not been
generalized to [ , ). See [10, Proposition 3.4, Proposition 3.5, Proposition 4.3] for
some of these formulas. We have found a new, simple and practical formula for [ , )
(and thus for [ , )n for all n). In the formula below, x̃ and ỹ are very explicit (see
Theorem 3.2).

Theorem 1.2.

[x, y) = TrZq/Zp (Res(x̃ · dỹ/ỹ)).

The simple nature of the above formula allows for easy computation of conductors
and higher ramification groups of all Zp-towers, as in Proposition 3.3. These are
the key technical results for our genus calculations, which might be of independent
interests.

Remark 1.3. Many proofs in this paper, mostly regarding Artin-Schreier-Witt
theory and Schmid-Witt symbols, have been removed since these results are mostly
known or can be derived easily from known results. For an extended version of this
paper with complete proofs, see [4].

2. Artin-Schreier-Witt extensions

2.1. Witt vectors. For a detailed description, see [8], or follow the exercises from
[6, Chapter VI, Exercises 46-48]. We will give a brief summary which we will use
as a black box.

Let p be a prime number. Let R be a commutative ring with identity. We define
the ring of p-typical Witt vectors W (R) = W∞(R) as follows.

Definition 2.1. Let C be the category of commutative rings with identity. Then
there is a unique functor W : C → C such that the following hold:

• For a commutative ring R, one has W (R) = RZ≥0 as sets.

• If f : R → S is a ring morphism, then the induced ring morphism satisfies
W (f)((ri)i) = (f(ri))i.

• The map g = (g(i))i : W (R)→ RZ≥0 defined by

(ri)i →

 i∑
j=0

pjrp
i−j

j


i

.

is a ring morphism (where RZ≥0 has the product ring structure).
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In W (R) one has

(r0, . . .) + (r′0, . . .) = (r0 + r′0, . . .),

(r0, . . .) · (r′0, . . .) = (r0 · r′0, . . .),
where the formulas for the later coordinates are quite complicated. The zero element
of W (R) is (0, 0, . . .) and the identity element is (1, 0, 0, . . .). One has W (Fp) = Zp.
If k is a finite field of q elements, then W (k) is isomorphic to the ring Zq of integers
of the unramified field extension of Qp with residue field k.

The above map g is called the ghost map, and this map is an injection if p is
not a zero divisor in R. This ghost map, together with functoriality, determines
the ring structure. Furthermore, we have the Teichmüller map

[ ] : R→W (R)

r 7→(r, 0, 0, . . .),

This map is multiplicative: for r, s ∈ R one has [rs] = [r][s]. We have the so-called
Verschiebung group morphism

V : W (R)→W (R)

(r0, r1, r2, . . .) 7→(0, r0, r1, r2, . . .).

We make W (R) into a topological ring as follows. The open sets around 0 are the
sets of the form V iW (R). We call this the V -adic topology. With this topology,
W (R) is complete and Hausdorff. Furthermore, a ring morphism R→ S induces a
continuous map W (R) → W (S). Any r = (r0, r1, . . .) ∈ W (R) can be written as
r =

∑∞
i=0 V

i[ri].
Now let us restrict to the case where R = K is a field of characteristic p. The

ring W (K) has the subring W (Fp) = Zp. Witt vectors (x0, x1, . . .) ∈ W (K) with
x0 6= 0, have a multiplicative inverse (note that W (K) is not a field, since p is not
invertible). The Frobenius map x 7→ xp on K induces a ring morphism

F : W (K)→W (K)

(r0, r1, . . .) 7→(rp0 , r
p
1 , . . .).

In fact, one has V F = FV = ·p. One also sees that W (K) is a torsion-free Zp-
module. Let K ′/K be a Galois extension and let g ∈ G = Gal(K ′/K). Then
we have a map W (g) : W (K ′) → W (K ′). If K ′/K is finite Galois, we define the
following W (K)-linear trace map

TrW (K′)/W (K) : W (K ′)→W (K)

x 7→
∑
g∈G

W (g)x.

2.2. Artin-Schreier-Witt theory. For a full treatment of Artin-Schreier-Witt
theory, see [4].

Fix a prime p and let K be a field of characteristic p. Let Ksep be a separable
closure of K. We define a group morphism

℘ = F − id : W (Ksep)→W (Ksep)

x 7→Fx− x,

with kernel Zp. One can easily show that this map is surjective. For a ∈ W (K)
and x = (x0, x1, . . .) ∈ ℘−1a ⊂ W (Ksep), we set K(℘−1a) = K(x0, x1, . . .). This
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extension does not depend on the choice of x. In fact, K(℘−1a) = K(℘−1b) if a ≡ b
(mod ℘W (K)).

We endow W (K)/℘W (K) with the induced topology, which is the same as the p-
adic topology (where a basis of open sets around zero is given by {pi(W (K)/℘W (K)) :
i ∈ Z≥0}). We endow Galois groups with the Krull topology. The main theorem
we need from Artin-Schreier-Witt theory is the following.

Theorem 2.2. Let K be a field of characteristic p with absolute abelian Galois
group G = Gal(Kab/K) and with p-part Gp. Then as topological groups one has

W (K)/℘W (K) ∼= Homcont(Gp,Zp)
a = ℘x 7→ (g 7→ gx− x) .

Furthermore, the field extension of K corresponding to a = ℘x ∈ W (K)/℘W (K)
under this bijection and Galois theory is equal to K(℘−1a) and the map

Gal(K(℘−1a)/K)→Hom(Zpa,Zp)
g 7→ (ra 7→r(gx− x))

is an isomorphism of topological groups.

Proof. See [4, Theorem 3.4, Theorem 3.6] �

Let H be an abelian group. We define its p-adic completion, a Zp-module, to be

Ĥ = lim
←
i

H/piH.

We make Ĥ into a topological group by giving a basis
{
piĤ : i ∈ Z≥0

}
around 0.

We call this the p-adic topology.
For x ∈ K, we set ℘x = xp − x. One easy proposition is the following.

Lemma 2.3. Let K be a field of characteristic p. Let B be a basis of K/℘K over
Fp. Then the map ⊕̂

B

Zp →W (K)/℘W (K)

(ab)b∈B →
∑
i

ab[b] (mod ℘W (K))

is an isomorphism of topological groups.

Proof. See [4, Proposition 3.10]. �

Example 2.4. In certain cases, one can easily find a basis of K/℘K over Fp.
Below we will construct a subset D of K which injects into K/℘K and such that
its image forms an Fp-basis of K/℘K. For this purpose, it is enough to show that
SpanFp(D) ∩ ℘K = 0 and SpanFp(D) + ℘K = K.

• Assume K is a finite field. Take any vector b with b 6∈ ℘K, that is, take any
b ∈ K with TrK/Fp(b) 6= 0. One can take D = {b}.

• Assume K = k((T )) for a perfect field k. Let B be a subset of k giving a
basis of k/℘k over Fp and let C be a basis of k over Fp. Then one can take

D = B t {cT−i : c ∈ C, (i, p) = 1, i ≥ 1}.
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Let us prove this result. If f ∈ Tk[[T ]], then set g = −
∑∞
i=0 f

pi ∈ Tk[[T ]].

One has ℘g = f . Note that aiT
−ip ≡ a

1/p
i T−i (mod ℘K) (where we use

that k is perfect). Hence we find SpanFp(D) + ℘K = K. Let f =
∑
i aiT

i.

One has ℘f =
∑
i a
p
i T

ip −
∑
i aiT

i. We find SpanFp(D) ∩ ℘K = 0.

• Assume K = k(X) for some perfect field k. Let B be a subset of k giving a
basis of k/℘k over Fp and let C be a basis of k over Fp. Then one can take

D = Bt
⊔
f

{
bXi

f j
: (j, p) = 1, j ≥ 1, 0 ≤ i < deg(f), b ∈ C

}
t{bXj , (j, p) = 1, j ≥ 1, b ∈ C},

where f ∈ k[X] runs over monic irreducible polynomials. One can easily
show this by using partial fractions.

3. Local function fields

Let k be a finite field of cardinality q and characteristic p. We set Zq = W (k).
Let K = k((T )). The field K has a natural valuation. If f =

∑
i≥v aiT

i with

av 6= 0, then the valuation is v. We set p = Tk[[T ]], the unique maximal ideal of
k[[T ]].

Let Kab be the maximal abelian extension of K. Let G = Gal(Kab/K) with

p-part Gp, all endowed with the Krull topology. Set K̂∗ = lim
←
n

K∗/(K∗)p
n

, the

p-adic completion of K∗ with its natural p-adic topology. Note that K̂∗ ∼= TZp×U1

where U1 = 1 + p are the one units of K. We usually identify K̂∗ with TZp × U1.

We have a natural map K∗ → K̂∗, with kernel k∗.
The Artin map (or Artin reciprocity law) from class field theory is a certain

group morphism K∗ → G (see [9]). This map is usually the best way to understand
the group G and to understand ramification in abelian extensions of K. This Artin
map induces a homeomorphism

ψ : K̂∗ → Gp.

Theorem 2.2 gives an isomorphism W (K)/℘W (K)→ Homcont(Gp,Zp). If we com-
bine both maps, we obtain a Zp-bilinear, hence continuous, symbol

[ , ) : W (K)/℘W (K)× K̂∗ → Zp
(℘x, y) 7→ψ(y)x− x.

This symbol is often called the Schmid-Witt symbol. For 1 ≤ n ≤ ∞, reducing
module pn gives the level n Schmid-Witt symbol

[ , )n : Wn(K)/℘Wn(K)× K̂∗ → Zp/pnZp
mentioned in the introduction, where Wn(K) denotes the length n Witt vectors.

Note that the group W (K)/℘W (K) can be described as follows.

Proposition 3.1. Let α ∈ k with Trk/Fp(α) 6= 0 and set β = [α] ∈ Zq ⊂ W (K).
Then any x ∈W (K) has a unique representative in W (K)/℘W (K) of the form

cβ +
∑

i≥1,(i,p)=1

ci[T
−i].

with c ∈ Zp and ci ∈ Zq with ci → 0 as i→∞.
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Proof. This follows from Lemma 2.3 and Example 2.4. �

Combining known formulas for [ , ) as in [10] together with our insight of Propo-
sition 3.1 allows one to prove a simple formula for [ , ), which we now describe.

Consider the ring

R =

{∑
i∈Z

aiT
i : ai ∈ Zq, lim

i→−∞
ai = 0

}
= lim
←
i

Zq/piZq((T ))

of two sided power series with some convergence property. We have a residue map

Res : R→ Zq∑
i

aiT
i → a−1.

Let x ∈ W (K). Let cβ +
∑

(i,p)=1 ci[T ]−i be its unique representative modulo

℘W (K) as in Proposition 3.1. We define a map

˜: W (K)/℘W (K)→R

cβ +
∑

(i,p)=1

ci[T ]−i (mod ℘W (K)) 7→cβ +
∑

(i,p)=1

ciT
−i.

Any element y ∈ K̂∗ ∼= TZp × (1 + Tk[[T ]]) can uniquely be written as (with some
abuse of notation)

y = T e ·
∏

(i,p)=1

∞∏
j=0

(1− aijT i)p
j

with e ∈ Zp and aij ∈ k. We define another map

˜: K̂∗ ∼= TZp × (1 + Tk[[T ]])→TZp × (1 + TZq[[T ]])

T e ·
∏

(i,p)=1

∞∏
j=0

(1− aijT i)p
j

7→T e ·
∏

(i,p)=1

∞∏
j=0

(1− [aij ]T
i)p

j

.

Furthermore, we define the group morphism

dlog : TZp × (1 + TZq[[T ]])→Zq((T ))

T e · f 7→ e

T
+
df

f

where df is the formal derivative of f . We have the following formula for [ , ),
which resembles formulas for the simpler symbol [ , )1 as in [9].

Theorem 3.2. Let x ∈W (K) and y ∈ K̂∗. Then one has

[x, y) = TrZq/Zp (Res(x̃ · dlogỹ)) .

Equivalently, let x ≡ cβ +
∑

(i,p)=1 ci[T ]−i (mod ℘W (K)) as in Proposition 3.1,

and y = T e ·
∏

(i,p)=1

∏∞
j=0(1 − aijT i)p

j ∈ K̂∗ with aij ∈ k and e ∈ Zp. Then one

has:

[x, y) = ceTrZq/Zp(β)−
∞∑
j=0

pjTrZq/Zp

 ∑
(i,p)=1

ci
∑
l|i

l[alj ]
i/l

 ∈ Zp.
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Proof. For a complete proof, see [4, Theorem 4.7]. Les us sketch the main idea of
the proof. A formula for [ , )n is given in [10, Proposition 3.2]. In this formula,
there is a choice of a lift of x and y to characteristic 0. With our choices of lifts x̃
and ỹ and a simple computation, the formula simplifies and allows for a uniform
formula in n for [ , )n. This gives us our new formula, which we initially found
using more abstract class field theory. �

For a finite abelian extension L/K, the Artin map induces a map ψL : K∗ →
Gal(L/K). The conductor of L/K is defined to be f(L/K) = pi where i is minimal
such that Ui ⊆ ker(ψL), where Ui = 1 + pi for i ≥ 1 and U0 = k[[T ]]∗. The explicit
formula above allows one to easily compute conductors.

Proposition 3.3. Let x = ℘(y0, y1, . . .) ∈ W (K) with x ≡ cβ +
∑

(i,p)=1 ci[T ]−i

(mod ℘W (K)) as in Proposition 3.1. Let n ∈ Z≥1. One has

fn := f(K(y0, y1, . . . , yn−1)/K) = pun

with

un =

{
1 + max{ipn−v(ci)−1 : i such that v(ci) < n} if ∃i : v(ci) < n

0 otherwise.

Proof. The result follows from Theorem 3.2 after some combinatorial computations.
See [4, Proposition 4.14] for the details. �

Remark 3.4. Let us give an essentially equivalent version of Proposition 3.3 in
terms of upper ramification groups. Let x ∈ W (K) as in Proposition 3.3. For
r ∈ Z≥0 consider the r-th upper ramification group

Hr = ψK(℘−1x)(Ur) ⊆ Gal(K(℘−1x)/K) ∼= Hom(Zpx,Zp).
One then has

Hr =
{
τ : τx ∈ pbrZp

}
⊆ Hom(Zpx,Zp),

where

br =

{
min{v(ci) + dlogp

(
r
i

)
e : (i, p) = 1} if r ≥ 1

min{v(ci) : (i, p) = 1} if r = 0.

See [4, Proposition 4.14] for the details.

Remark 3.5. Let us briefly discuss the similarities and improvements on the es-
sentially 2 formulas for [ , )n given in [10]. Let x ∈ W (K) and y ∈ K∗. The first
formula, in Proposition 3.4 and Proposition 3.5 in [10], looks as follows:

[x, y)n = πn

(
TrZq/Zp(Res(

dY

Y
X(n−1)))

)
.

Here Y ∈ Zq((T ))∗ is a lift of y, X ∈ W (Zq((T ))) is a lift of x, X(n−1) ∈ Zq((T ))
is the (n − 1)-st ghost component of X and πn is the reduction modulo pnZp.
This formula resembles the classical formula for [ , )1, and it has flexibility for the
choices of lifts, which is very convenient. Unfortunately, this formula does depend
on n with the term X(n−1) and hence does not directly give a formula for [ , ).
Furthermore, it is hard to directly use the formula to obtain information about
ramification groups and conductors. For the latter reason, a second formula for
[ , )n is derived ([10, Proposition 4.3]). This formula also only seems to work for a
fixed n, but its upside is that it is very explicit and easy to understand. The formula
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only works for x which are in ‘reduced form’. An element x ∈ W (K) has many
different reduced forms, which are all equivalent modulo ℘W (K). Unfortunately,
this formula is much less conceptual and does not resemble the formula for [ , )1.

In our exposition, we associate to each element of W (K) a unique reduced form.
We can do this because of our understanding of W (K)/℘W (K) as in Proposition
3.1. This allows us to combine strenghts from both formulas: our formulas for [ , )n
in Theorem 3.2 look conceptual and are still very usable. As an extra bonus, our
approach gives us one formula for [ , ).

In [10], especially in Corollary 1.1 and Corollary 5.1, formulas for ramification
groups and conductors can be found. Our results in Proposition 3.3 and Remark
3.4 are very similar, but we have formulated them in a convenient way for our
applications later in this paper.

4. Global function fields

Let k be a finite field of characteristic p. Let K = K0 be a function field over
k (a finitely generated field extension of k of transcendence degree 1) with full
constant field k. Let x = (x0, x1, . . .) = ℘(y0, y1, . . .) ∈ W (K). This Witt vector
defines a field extension K∞/K. For simplicity, we assume that x0 6∈ ℘K. Set
Ki = K(y0, y1, . . . , yi−1). One then has a tower of fields K = K0 ⊂ K1 ⊂ K2 ⊂
. . . ⊂ K∞ = K(y0, y1, . . .) with Gal(Kn/K) ∼= Z/pnZ and Gal(K∞/K) ∼= Zp.

4.1. Genus formula. Let p be a place of K with residue field kp and uniformizer
πp. Then, locally, this extension is given by x = (x0, x1, . . .) ∈ W (Kp) where
Kp
∼= kp((πp)) is the completion at p (by the Cohen structure theorem). Let

αp ∈ kp with Trkp/Fp(αp) 6= 0. Set βp = [αp] ∈W (kp). One has

x ≡ cpβp +
∑

(i,p)=1

cp,i[πp]−i (mod ℘W (Kp))

with cp ∈ Zp and cp,i ∈ W (kp) and cp,i → 0 as i → ∞ (Proposition 3.1). Propo-
sition 3.3 then shows that the conductor at p of Kn/K is equal to fp,n = pup,n

with

up,n =

{
1 + max{ipn−v(cp,i)−1 : i such that v(cp,i) < n} if ∃i : v(cp,i) < n

0 otherwise.

The conductor of Kn/K is the formal expression

fn = f(Kn/K) =
∏
p

fp,n,

which is a finite product.
Let gn be the genus of Kn, where the genus is the genus of the corresponding

smooth projective curve defined by Kn over the the integral closure of k inside Kn.
We let nc be maximal such that Knc/K is a constant field extension.

Theorem 4.1. For n ∈ Z≥1, we have

pmin{nc,n}(2gn − 2) = pn(2g0 − 2) +
∑
p

[kp : k]

n∑
i=1

ϕ(pi)up,i.

Proof. This is an application of the Riemann-Hurwitz formula, together with the
Führerdiskriminantenproduktformel. See [4, Theorem 5.2]. �
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4.2. Genus lower bound. We assume that the tower is not a constant extension,
otherwise, the genus gn will be a constant. This means that nc is finite. Since
K∞/K is abelian and infinite, by class field theory, the extension K∞/K must be
ramified at some prime. Let nu be maximal such that Knu/K is unramified. Then
nc ≤ nu <∞.

Corollary 4.2. Let n ≥ nu. The following statements hold:

i.

pnc(2gn − 2) ≥ pn(2g0 − 2) + pn − pnu + pnu
p2(n−nu) − 1

p+ 1
.

ii.

lim inf
n→∞

gn
p2n
≥ 1

2pnu+nc(p+ 1)
.

iii. For any ε > 0, there is an integer m such that for all n ≥ m one has

gn ≥
p2n−nu−nc

2(p+ 1) + ε
≥ p2n−nu−nc−1

3 + ε
.

Proof. We try to make the genus as small as possible in the genus formula. The
smallest genus is obtained if only one prime p is ramified with [kp : k] = 1, such
that up,n = 1 + pn−nu−1 for n > nu, and up,n = 0 for n ≤ nu (see Proposition 3.3).
One finds for n ≥ nu by Theorem 4.1:

pnc(2gn − 2) ≥pn(2g0 − 2) +

n∑
i=nu+1

ϕ(pi)
(
1 + pi−nu−1

)
=pn(2g0 − 2) + pn − pnu + pnu

p2(n−nu) − 1

p+ 1
.

The first part is proved. The second and third part follow by looking at the last
term of the formula from the first part. �

Remark 4.3. The bounds in Corollary 4.2 are often sharp when the p-part of the
class group of K is 0. In particular, the bounds are sharp when K = k(X), the
projective line. We will give explicit examples later.

Gold and Kisilevsky in [3, Theorem 1] state that for large n, if nc = 0 one has:

gn ≥
p2(n−nu)−1

3
.

This result contains a small error which makes the result incorrect for p = 2, g0 = 0
(one really needs the ε in that case, see Proposition 4.9). Secondly, in their proof
they reduce to the case nu = 0, but they forget that if nu > 0, then more primes
must ramify and hence the genus will grow faster.

Assume from now on that nu = 0. In fact Gold and Kisilevsky prove in an
intermediate step

lim inf
n→∞

gn
p2n
≥ p− 1

2p2
.

Our result actually gives the tight bound

lim inf
n→∞

gn
p2n
≥ 1

2(p+ 1)
.
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Li and Zhao in [7] construct a Zp-tower with the property

lim
n→∞

gn
p2n

=
1

2(p+ 1)
.

Li and Zhao furthermore write “It would be interesting to determine if the bound
of Gold and Kisilevsky is the best and find some Zp-extension which realizes it.”
Our results show that their tower actually attains our limit.

4.3. Genus stability. We will now introduce a special class of Zp-extensions of
K. We are interested in classifying the cases when gn for large enough n stabilizes.
Note that gn is bounded below by a quadratic polynomial in pn by Corollary 4.2.
We will now study the case where gn at some point becomes a quadratic polynomial
in pn. A Zp-tower K∞/K is called geometric if nc = 0.

Proposition 4.4. Let K∞/K be a geometric Zp-extension. Then the following are
equivalent:

i. There are a, b, c ∈ Q, m ∈ Z≥0 such that for n ≥ m one has

gn = ap2n + bpn + c.

ii. The extension K∞/K is ramified at only finitely many places and for all p
the set

{ip−v(cp,i) : (i, p) = 1}

has a maximum.
iii. The extension K∞/K is ramified at only finitely many places and for each

p which ramifies there are ap ∈ Q>0 and np ∈ Z≥0 such that for n ≥ np
one has

up,n = 1 + app
n.

Proof. i ⇐⇒ iii: This follows easily from Theorem 4.1.
ii ⇐⇒ iii: This follows directly from the definition of the up,n. �

Definition 4.5. A geometric Zp-extension K∞/K is called genus-stable if one of
the equivalent conditions of Proposition 4.4 is satisfied.

Remark 4.6. Let L be a finite extension of Qp with prime p and ramification index
e = e(L/Qp). Let L∞/L be a Zp-extension. In that case one has the following
stability result for the discriminants (which can be seen as the analogue of the
genus). There are A,B ∈ Q such that disc(Ln/L) = prn with rn = e(npn)+Apn+B
for n large enough. See [11, Section 3.1] for a proof. The reason that such a simple
formula always holds is that U1 is a finitely generated Zp-module in this case.

Remark 4.7. The definition of genus stability might look a bit arbitrary. However,
it turns out that one can prove interesting results about genus stable towers. Here
is an example. The L-functions of genus stable covers of the projective line behave
nicely in a p-adic way. One can show that the p-adic valuations of the inverses of
the zeros of such L-function are uniformly distributed and form a finite union of
arithmetic progressions in many cases. The latter result can only hold for genus
stable covers. See [2] and [5] for details.

For future reference, let us discuss the degree of such L-functions. Let K∞/K be
a geometric Zp-tower. Let χ : Gal(K∞/K) → C∗p be a non-trivial finite character
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of order pmχ > 1. This character will factor through Gal(Kmχ/K). Then one can
associate to this character an L-function

L(χ, s) =
∏
p

1

1− χ(Frob(p))sdeg(p)
∈ 1 + sCp[[s]],

where the product is taken over all primes of K which are unramified in the exten-
sion Kmχ/K. Here Frob(p) ∈ Gal(Kmχ/K) is the Frobenius element of p. By [1,
Theorem A] L(χ, s) is a polynomial of degree

deg(L(χ, s)) =2g(K)− 2 + deg(fmχ) = 2g(K)− 2 +
∑
p

deg(p)up,mχ ,

where up,mχ are as before. Assume now that K∞/K is genus stable and only
ramified at rational primes. Let p1, . . . , pr be the ramifying primes in K∞/K and
set

djp
−mj = max{ip−v(cpj ,i) : (i, p) = 1}.

where dj ,mj ∈ Z≥0 and with p - dj . Let m = max{mj : j = 1, . . . , r}. Then if
mχ > m, one has

deg(L(χ, s)) = 2g(K)− 2 + r +

r∑
j=1

djp
mχ−mj−1.

Hence the degree of L(χ, s) is a linear polynomial in pmχ for large enough mχ.
Conversely, if the degree of L(χ, s) is a linear polynomial in pmχ for large enough
mχ, then the tower is genus stable.

4.4. Example: the projective line. Let K = k(X) be the function field of the
projective line where k is a finite field. We will study Zp-towers over K which
ramify only at rational points. For x ∈ k, we set πx = X − x ∈ K and we set
π∞ = 1/X ∈ K. Let α ∈ k with Trk/Fp(α) 6= 0. Set β = [α]. Analogous to
Example 2.4, one can prove the following. Let a = ℘y ∈ W (K) which gives rise
to the extension K(y) of K which ramifies only at rational points (see [4] for the
slightly more general case).

Lemma 4.8. The element a is equivalent modulo ℘W (K) to a unique element of
the form

cβ +
∑

x∈k∪{∞}

∑
(i,p)=1

cx,i[πx]−i ∈W (K)

with c ∈ Zp, cx,i ∈ Zq such that cx,i → 0 as i→∞.

Proof. See [4, Lemma 5.8]. This follows from Example 2.4. �

Note that a, a′ ∈ W (K) give the same tower if and only if a = a′c with c ∈ Z∗p.
One can easily see when this happens in Lemma 4.8. We will now deduce data of
the extension given by a.

Proposition 4.9. Let a = cβ +
∑
x∈k∪{∞}

∑
(i,p)=1 cx,i[πx]−i = ℘(y0, y1, . . .) ∈

W (K) as in Lemma 4.8. Assume

min({v(cx,i) : x ∈ k ∪ {∞}, (i, p) = 1} ∪ {v(c)}) = 0.
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Consider the tower K∞/K corresponding to a with subfield Kn = K(y0, y1, . . . , yn−1)
of genus gn. For x ∈ k ∪ {∞}, set

ux,n =

{
1 + max{ipn−v(cx,i)−1 : (i, p) = 1 s.t. v(cx,i) < n} if ∃i : v(cx,i) < n

0 otherwise.

Then the extension Kn/K is Galois with group isomorphic to Z/pnZ. One has

nu = nc = min{v(cx,i) : x ∈ k ∪ {∞}, (i, p) = 1}
and

fn =
∏

x∈k∪{∞}

(πx)ux,n

and

pmin{nc,n}(2gn − 2) = −2pn +
∑

x∈k∪{∞}

n∑
j=0

ϕ(pj)ux,j .

Proof. The results follows from the discussions before, and most importantly, The-
orem 4.1. �

In the above proposition, one can easily deduce when the tower is genus stable
with the help of Proposition 4.4.

Example 4.10. Consider the unit root Zp-extension (called the Artin-Schreier-
Witt extension in [2]) given by the unit root coefficient polynomial

x =

d∑
(i,p)=1

[biX
i] =

d∑
(i,p)=1

[bi][X
i] ∈W (K)

with bi ∈ k and bd 6= 0, d > 0 not divisible by p. By the above equation, this defines
a Zp-extension which is totally ramified at ∞. One finds for n ≥ 1:

u∞,n = 1 + dpn−1.

and this gives

2gn − 2 =
d

p+ 1
p2n − pn − p+ 1 + d

p+ 1
.

This is an example of a genus-stable tower.

Remark 4.11. Let a = (a0, a1, . . .) ∈ W (K) with a0 6∈ ℘K. Consider the cor-
responding Zp-extension given by a. Let p be a prime of K(X) of degree d′ over
Fp which does not ramify in the tower. We give a geometric way to compute the

Frobenius element (p,K∞/K). Let z ∈ P1(k) be a representative of p. Assume
that z is not a pole of the ai (otherwise, we have to find another representative
of a (mod ℘W (K)); or one can assume a is in our unique reduced form). Set
a(z) = (a0(z), a1(z), . . .) ∈W (k(z)). Let y ∈ ℘−1z ∈W (k). One has

F d
′
y = y +

d′−1∑
j=0

F j(Fy − y) = y + TrW (k(z))/W (Fp)(a(z)).

This shows that the Frobenius is equal to

(p,K∞/K) =
(
a 7→ −TrW (k(z))/Zp(a(z))

)
⊆ Hom(Zpa,Zp) ∼= Gal(K(℘−1a)/K).
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A similar formula works for primes which are not ramified in say Kn/K. Further-
more, this formula generalizes when K is replaced by another function field.

5. Thanks

We would like to thank Chris Davis for his help with Witt-vectors and for his
proofreading of parts of this manuscript. We would also like to thank the referee
for comments on this paper.

References

[1] Bombieri, E. On exponential sums in finite fields. In Les Tendances Géom. en Algèbre et
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