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1 Introduction

Given a family of algebraic varieties over finite fields, we introduce a sequence
of higher moment zeta functions, called the geometric moment zeta functions,
which measure the distribution of the closed points along the fibres of the family
of varieties. As the moment parameter approaches to certain p-adic limit, one
gets the p-adic limiting moment zeta function, which includes Dwork’s p-adic
unit root zeta function as a special case. We discuss the related results and
open problems on these new functions.

2 Zeta functions over finite fields

Let IF, be the finite field of ¢ elements of characteristic p. Let X be a scheme of
finite type over I, and let |X| denote the set of closed points of X. If z € | X]|
is a closed point, the residue field of X at z is a finite extension field of I,
whose degree of extension is denoted by deg(x). The zeta function Z(X,T) of
X is defined by

Z(X,T) = J] Q-7 e 14 TZ[[T]). (1)
z€|X|

An alternative definition for Z(X,T) is in terms of counting rational points
of X over various finite extensions of F,. Let I, denote a fixed algebraic closure
of F,. The Galois group of F, over IF, is topologically generated by the g-th
power Frobenius map _

Frob:a —a?, a € F,.

For each positive integer k, I, contains a unique subfield of ¢* elements, denoted
by IF ., given explicitly by

F . = Fix(Frob*) = {a € ]Fq|aqk =a}.



We have

Let X (IF,) be the set of geometric points of X. For each positive integer k, let
X (IF ) denote the set of IF, «-rational points. Clearly,

X (F ) = Fix(Frob*| X (F,)).
The alternative definition of Z(X,T) is

k

2(X,T) = exp(Y. = #X (F)), @)
k

&k
=1
where #X (IF x) denotes the number of I, «-rational points of X.

The rationality of Z(X,T) was conjectured by Weil (1949 [34]) and first
proved by Dwork [7] using p-adic analysis. That is, we have

Theorem 2.1 (Dwork, 1960) Let X be a scheme of finite type over F,. Then,
Z(X,T) € Q1.

Write © T
zx,m) = Umll=ed)
I1 j=1 (1- /BJ‘T)
in reduced form, where the a;’s and §;’s are algebraic integers. Taking loga-
rithmic derivative, one obtains an explicit formula for rational point counting;:

#X(]Fq’“) :iﬂ;‘ﬂ_iafa k=1,2,---.
7=1 1=1

The total degree r + s of Z(X,T) can be explicitly bounded, see Bombieri
[2]. In the case of small characteristic p, a polynomial time p-adic algorithm is
recently obtained in [21], see also [30] for an exposition of the algorithmic issues
on zeta functions.

The Riemann hypothesis for Z(X,T) was conjectured by Weil (1949) and
proved by Deligne [5] in the general form.

Theorem 2.2 (Deligne, 1980). Let X be a scheme of finite type over F, of
dimension n. Then,

| = q%/2, 1B;| = q'’%, u; € Z.0 |0, 2n], v; € ZN[0,2n], (3)

where Z,N[0,2n] denotes the set of integers in the interval [0,2n]. Furthermore,
each a; (resp. each (;) and its Galois conjugates over Q have the same complex
absolute value. That is, the a; and B; are Weil g-integers.



As the a; and f; are algebraic integers, one can also ask for their f-adic
absolute values if we fix an embedding of Q to QQ, of f-adic numbers, where
¢ is a prime number. If £ # p, the a; and the j3; are eigenvalues of f-adic
representations and hence they are ¢-adic units:

|aile = |Bjle = 1.
For the remaining prime p, it is easy to prove

|a’i|P = q—m7 |ﬂj|P = q—s]', r; € Q N [0,2”], 85 € Qﬁ [0,2’”],

where we have normalized the p-adic absolute value by |g|, = ¢7'.

integrality theorem [6] implies the following improved information:
r; € QN0,n], s; € QN[0,n].

Note that each a; (resp. each ;) and its Galois conjugates over Q may have
different p-adic absolute values. The rational number r; (resp. s;) is called
the slope of a; (resp. ;). Its denominator can be greater than 2, but can be
effectively bounded depending on X. The nature of the slopes r; and s; can be
viewed as the p-adic Riemann hypothesis for Z(X,T). It is a very interesting
subject with many open problems. A classical example is the Stickelberger
theorem on Gauss sum. We shall not discuss it further here, see [31] for a
systematic introduction to this slope problem.

Let ¢ be a prime different from p. In terms of the /-adic cohomology with
compact support, one has the Grothendieck ¢-adic trace formula [13]:

Deligne’s

2dim(X) _
Z(X,T)= [] det(I - frobT|Hi(X ® F,, Q)"
i=0
where frob = Frob™! is the geometric Frobenius map. The conjectural indepen-
dence on /£ of the ¢-adic Betti numbers is not known in general. A weak evidence
has recently been obtained by Katz [18] who gave a uniform (independent of £)
explicit upper bound for the f-adic Betti numbers with compact support.

Theorem 2.3 (Katz[18]) Let X be the affine variety defined by the vanishing of
m polynomials {f1(x1, -, Zn), -, fm(x1, -, 2n)} each having degree at most
d. Then, for every prime number £ # p, we have

Y dimg, Hi(X ® F,, Q) < 27"2(3 + md)™+.
i>0

As an immediate consequence of the rationality for Z (X, T, to be used later,
we have

Corollary 2.4 For each positive integer k, we have
Z(X®Fp,T) = exp(d 74;&)((]Fqkd))
d=1

_ H::1 (1 - afT)
= TGy @



3 Moment zeta functions

Let f : X — Y be a morphism of schemes of finite type over F,. We may
view f as a family of algebraic varieties over finite fields parametrized by Y. If
y € Y], the fibre X, = f~!(y) is an algebraic variety defined over the finite
residue field ]queg(y) of y. By the results in the previous section, we know that
each zeta function Z(X,,T) is a rational function and satisfies the Riemann
hypothesis. We would like to understand

Question 3.1 How Z(X,,T) varies when y varies in |Y|? How the zeros and
poles of Z(X,,T) vary when y varies in |Y|?

To make this variation question more precise, a classical procedure is to
understand all the high moments of this family of rational functions. The k-th
moment of each rational function Z (X, T') is obtained by raising each reciprocal
zeros (resp. reciprocal poles) to its k-th power. By Corollary 2.4, this is simply
given by

Z(k, Xy, T) = Z(Xy ® F jacsirr, T).

Thus, we have

Definition 3.2 For each positive integer k, the k-th moment zeta function of
the family f is defined to be the product

Z(k, £,7) = [ 2k, X,,TW)
yelY|
= ][I 2(Xy ®Fjoccirn, T4W)) € 1+ TZ[[T]]. (5)
y€elY|

The k-th moment zeta function can be similarly defined for a morphism
between arithmetic schemes over Z, see [32]. To emphasize that our ground
field is the finite field Py, we can call the moment zeta function of this paper as
the geometric moment zeta function.

The k-th moment zeta function Z(k, f,T') is a special case of a more general
partial zeta function introduced in [29], see [33] and [15] for further work in
this direction. Arithmetically, the k-th moment zeta function can be viewed as
the zeta function associated to a partial rational point counting problem. For a
positive integer d, let

Ma(k, f) = #{z € X(Fyar)|f () € Y (Fya)}.

Then, it is easy to check that

VA = — .
(k, f,T) = exp(}_ ~—Mak, f))
d=1
According to an observation of Faltings (see [29]), the number M,(k, f) is the
number of fixed points of a certain twisted Frobenius. Let f®* be the k-th fibre



product of X over Y. Let o be the right shifting map on the coordinates of
f®k. That is, for a point (z(1),---, z(*)) ¢ fO

o-(a':(l)’ P ,:L'(k)) — (x(k)’x(l)’ PR ’:L'(k_l))‘

The map o is an automorphism of f®* of order k. It commutes with the
Frobenius map. One checks that

Mqy(k, f) = #Fix(o o Frob®| f&*(F,)).

This formula together with the general /-adic trace formula implies that Z (k, f,T)
is nearly rational in the sense of [29], as noted by Faltings.

The sequence of moment zeta functions Z(k, f,T) (k = 1,2,---,) contains
critical information about the variation of the family Z(X,,T) parametrized by
y. From a different point of view, Z(k, f,T) captures the distribution of the
closed points (or geometric points) of X along the fibres of f.

Our standard questions are then the rationality and Riemann hypothesis
for these moment zeta functions. The rationality implies the existence of good
structural distribution law. The Riemann hypothesis gives sharp information
about the distribution law. As in the previous section, we have the following
general result which is a special case from [29] on partial zeta functions.

Theorem 3.3 (Wan[29]) Let f : X — Y be a morphism of schemes of fi-
nite type over F,. For each positive integer k, the k-th moment zeta function
Z(k, f,T) is a rational function in Q(T), whose reciprocal zeros and reciprocal
poles are Weil g-integers.

Proof. We include a proof here since it is very simple. Let £ be a prime
number different from p. Let F; = R'fiQ, be the relative f-adic cohomology
with compact support, which is a constructible £-adic sheaf on Y. The fibre F; ,
at y is the f-adic cohomology group H:(X, ® F;, Q,) with compact support.
Applying the Grothendieck trace formula fibre by fibre, we have

Z(k,X,,T) = H det(I — F;T|]-‘iiy)(—1)i—17
i>0
where F, denotes the geometric Frobenius map at y. Let FF denote the k-th
Adams operation of F;. It is a vitual sheaf. For example, one can write
FF = (1) iSym* I Fi @ AV F.
Jj20
Then,
Z(k,X,,T) = [ det(I — F,T|Sym* =9, @ N Fy, )05
4,j>0
This and the product definition of Z(k, f,T) give
Z(k, f,T) = H L(Sym* 1 F; @ /\j]_-i,T)(fl)i+j—1j7
,j>0



where the L on the right side denotes the L-function of the given sheaf. The the-
orem then follows from Grothendieck’s general rationality theorem and Deligne’s
general theorem on Riemann hypothesis.

The above theorem gives only qualitative information about the nature of
the moment zeta function. To be useful in applications, one needs to have a
good control on the weights of the zeros (resp. poles) and the total number of
zeros (resp. poles). Both questions are far from being well understood.

Let D(k, f) denote the total degree of the rational function Z(k, f,T). The
first question to ask is to give a good estimate for D(k, f). A crude explicit
upper bound for D(k, f) can be derived from the bound in Fu-Wan [14] for
more general partial zeta functions. We now state this explicit bound in our
current case of moment zeta functions.

Without loss of generality, we may assume that X — A" s defined by:

( i@y, T, Tag1s 5 Trgenr) = 0,
< Im(®1, Ty Trg1s 7, Trgnr) = 0,
o1 (@ng1, -, Tngnr) =0,
L frtm? (Tn41,- " Tngnr) =0,

Y < A" is defined by the last m' equations and the map f is given by the
projection

f : (wla"'7$n7$ﬂ+17"'7wn+"’) eX — ('Z.TL+17"'7$TL+"’) € YJ

where the polynomials f; have coeflicients in F,; with degrees at most d. Then,
we have

Theorem 3.4 (Fu-Wan [14]) In terms of the above notations, the total degree
of Z(k, f,T) is bounded by

D(k, f) < 2™ F2(3 4 (mk + m')d)"* '+,

Proof. Let X* denote the k-fold product of X, embedded in Ak whoge
coordinates are denoted by

= (W, 2®) = (), 1<i<(n+n'), 1<j <k,

where () is the column vector (%14, T(ngn);)- Recall that o is the cyclic
shift
oz, 2y = (2 ) o k=1,

Let f®* be the algebraic subset of X* cut out by the additional linear equations

Til = Tjg = -+ = Tik, n+1§i§n+n’.



Thus, f®* can be embedded in the smaller affine space A™*" with (mk +m')
defining equations. Geometrically, f®* is the k-fold fibre product of X over Y:

% = X xy X x ---xy X.
As noted before,
Mgy(k, f) = #Fix(o o Frob?| f®*(F,))
and

.- ix(o o d| Fk (F
2k, £,7) = exp(y) T BV ED),

d=1

One can then use the general f-adic fixed point formula to conclude

D(k, f) <Y dimq, Hi(f®* @ F,, Qo).

i>0

Let
d= max deg(f:)-

As noted above, the algebraic set f®* can be defined by (mk+m') equations in
(nk +n') variables, each having degree at most d. By Katz’s estimate for £-adic
Betti numbers, the desired bound for D(k, f) follows. The theorem is proved.

The above total degree bound however grows exponentially in k. We expect
that the true size of D(k, f) is much smaller. In fact, a special case of a result
in Fu-Wan [15] says that the total degree D(k, f) is bounded by a polynomial
function in k. That is, we have

Theorem 3.5 (Fu-Wan[15]) Let f : X — Y be a morphism of schemes of finite
type over ;. There are two positive constants c1(f) and c2(f) such that for
every positive integer k, we have the polynomial bound

D(k, f) < e (k).

The power constant ¢z (f) is explicit. But the coefficient ¢; (f) is not effective
yet. For example, in the special case that f is the universal family of elliptic
curves over [F, the total degree D(k, f) is bounded by a linear polynomial in
k, since the dimension for modular forms of weight k grows linearly in k. No
non-trivial lower bound for D(k, f) is known even in this elliptic family case.

We believe that the coefficient ¢1 (f) can also be made to be effective using
the representation theoretic approach in the proof of Theorem 3.3 together with
delicate p-adic arguments on Newton polygons. The above theorem is important
in deriving good archimedian estimate of My(k, f) for large k, which is in turn
crucial in the statistical study of rational points along the fibres of f, see Katz
[19] and also [15] for some examples in this direction.

Another very interesting question is to understand the slopes of the zeros
and poles of Z(k, f,T), corresponding to the p-adic Riemann hypothesis for



Z(k, f,T). This is in general quite difficult, already so in the special case of
the unversal family of elliptic curves where the slopes reflect crucial arithmetic
information about modular forms [23] and where the total degree D(k, f) is
already unknown (except for an upper bound linear in k).

We can further ask how the sequence Z(k, f,T) varies when the integer k
varies. This is treated in next section. It is related to Dwork’s conjecture.

4 Limiting moment zeta functions

Let f : X — Y be a morphism of schemes of finite types over ;. For each
positive integer k, we have the k-th moment zeta function Z(k, f,T) which
is a rational function satisfying the Riemann hypothesis. We would like to
understand how the moment zeta function Z(k, f,T) varies as the integer k
varies arithmetically.

To be more specific, we fix a prime number ¢ (which may be equal to the
characteristic p). We let k vary £-adically and want to understand how Z(k, f,T)
varies f-adically. An initial property would be possible £-adic continuity.

Let Kz = Q,(ai(y), B;(y)), the extension field of Q, obtained by adjoining
all {-adic unit zeros a;(y) and all f-adic unit poles B;(y) of Z(X,,T) for all
y € |Y|. The uniform upper bound [2] for the total degree of Z(X,,T) together
with a standard algebraic number theory argument implies

Proposition 4.1 The extension K;, over Q, is finite.

Denote the uniformizer of K7, by 7. Let dy, be the unramified degree of
Ky over Q,. Let
D¢y = e 1, (6)

This is simply the order of the multiplicative group of the residue field of Ky ,.
Then, for each ¢-adic unit « in Ky 4 (such as those ¢-adic unit ;(y) and those
f-adic unit 3;(y)), the power aP7¢ is an f-adic 1-unit in K ,. In particular, we
have the limiting formula
lim oPrt" =1.
m— oo

For any two integers ki and ko satisfying k1 = ks (modDy ™ ') for some
positive integer m, we have the congruences

k1

a® = o*2 (mod 7™),

and
Z(k1,Xy,T) = Z(ke, Xy, T) (mod 7™).

This ¢-adic continuity result and the Euler product definition of Z(k, f,T) show
that the limit in the following definition exists as an £-adic formal power series.

Definition 4.2 Given a morphism f : X — Y over F,, a prime number ¢,
an integer k, we define the limiting moment zeta function by

Zo(k, f,T) = lim Z(k+Dyet™, f,T) € 1+ TZe[[T]). (7)



Note that Z,(k, f,T) is very different from Z(k, f,T) in general. Let
Md,z(k‘, f) = Tr}gnoo #{a: € X(qu(k+uf,£em))|f(x) € Y(qu)}.

This limit exists as an £-adic integer. It can be viewed as the “infinite” number
of IF a-rational points on a certain infinite dimensional variety defined over [F,.
The additive definition of the limiting moment zeta function can be written as

o d
Zl(k7 f7 T) = exp(z %Md,f(k7 f))

d=1

The series Z,(k, f,T) with £-adic integral coefficients is clearly ¢-adic analytic
in the open unit disk |T'|, < 1. It can be viewed in certain sense as the zeta
function of a certain infinite dimensional variety over I, counted in certain
direction. Our first fundamental question is to ask if the limiting moment zeta
function Z,(k, f,T) is an £-adic meromorphic function on the whole ¢-adic plane
|T|z < o0.

If Zy(k, f,T) is indeed f-adic meromorphic everywhere, then there are £-adic
numbers «; and j3; approaching to zero such that

12,1 - T)
152, (1= 8,T)

In terms of the f-adic sequence Mg ,(d, f) parametrized by d, this means that
for each integer d > 0, we have the formula

Mok, f) =B =) af.
7j=1 =1

Conversely, the existence of such a formula is equivalent to the /-adic meromor-
phic continuation of Zy(k, f,T) to the whole £-adic plane.

If ¢ # p, the a;(y),B;(y) are always f-adic units. In this case, we deduce
that if k£ is a positive integer, then

Zf(k7fyT) = Z(kaJT)J

Zl(kafa T) =

which is a rational function in (Q(7') whose reciprocal zeros and reciprocal poles
are Weil g¢-integers, by the results in the previous section. If k is negative, it
can be proved in a similar way using contragradient representations.

If £ = p, the situation is more complicated. Assume that k is a positive
integer. Then, Z,(k, f,T) is exactly the k-th power unit root zeta function of
Dwork attached to the family f. Denote this k-th power unit root zeta function
by Zp_unit(k, f,T). This is a p-adic power series, whose coefficients are not
contained in a fixed number field and hence not a rational function any more in
general. Dwork [9] conjectured that Z,_unit(k, f,T) is p-adic meromorphic in
the whole p-adic plane |T'|, < co. This was proved recently in [25][26][27]. Note
that here we only consider the slope zero (unit root) part. Similar results hold
for higher slopes, see [28] for a simple introduction.

In summary, our first question has a positive answer. That is, we have



Theorem 4.3 (Wan [26][27]). Let £ be a prime. Let k be an integer. Then, the
limiting moment zeta function Zy(k, f,T) is £-adic meromorphic everywhere. If
0 # p, it is rational over Q, whose reciprocal zeros and reciprocal poles are Weil
q-integers.

The integer domain of the variable k in the function Z,(k, f,T) can be ex-
tended to a larger {-adic domain as follows. Write k¥ = ky + Dy ¢k>. Then, it
is easy to check that the formal power series Zy(k1 + Dy ko, f,T) is ¢-adically
continuous in k2. This continuity implies that we can define

Definition 4.4 Let k; be a fixed integer. Let ko be any £-adic integer. We
define

Zi(kis ks, f,T) = lim Zi(k1 + Dy.eka(m), f,T),

where kao(m) is any sequence of strictly increasing positive integers which con-
verges £-adically to k.

This is a well defined ¢-adic power series for any integer k; € Z and any
(-adic integer ko € Zy. It is independent of the choice of the sequence ko (m)
converging f-adically to k.

The function Z,(ky,ks, f,T) in the two f-adic variables (k2,T) should be
viewed as the f-adic zeta function attached to the morphism f. It is then
natural to ask

Question 4.5 For k1 € Z and ka € Zy, is Ze(k1, k2, f,T) an L-adic meromor-
phic function on the closed unit disk |T'|; < 12 or even on the whole £-adic plane
|T|£ < o0?

In general, the ¢-adic meromorphic continuation of Z;(ki, ks, f,T) to the
closed unit disk |T'|, < 1 is already not clear, even for the universal family
of elliptic curves if £ # p. It would be premature to conjecture the f-adic
meromorphic continuation to the entire £-adic plane |T'|, < co. For this reason,
we simply state the above problem as a question instead of a conjecture as the
answer could be negative in general (there seems to have a little negative feeling
in the general case). It is however interesting to find out when the answer is
positive.

The previous theorem shows that the answer is positive if ky € Z. Another
positive result in this direction is the following theorem which says that the
answer is also positive for some special ks € Z; N Q.

For each integer n > m for some fixed large integer m depending on Dy 4, the
integer (£("+t1)'=n! _ 1) is clearly divisible by D #,6- Thus, for a positive integer
d, we can write the formal symbal d¢> (the zero element in Z;) in the form

deoo — d+ den‘ é(n+1)!7n! -1 + den' é(n—i—l)!fn! 1) = kl +D EkQ.
£,

n=0 n=m+1

10



Write .
by =d+ Yy der (et — 1) = detm ) e Z,
n=0
(n+1)!1—n! _ 1) _ _dg(m-l-l)!

— .- n! (ﬁ
ky= > dt Dre =D, € Z:nQ.
n=m++1 ’ ’

Theorem 4.6 (Lenstra-Wan [22]) Let £ be a prime. Let d be a positive in-
teger. Let k1 and ko be defined as above for some large integer m. Then,
Zo(k, ka2, f,T) € Q,(T), an £-adic rational function whose reciprocal zeros and
reciprocal poles are Weil g-integers.

This theorem can be proved quickly using the Grothendieck-Deligne results
and Brauer’s virtual lifting theorem for modulo £ representations.
Let us now look at an important special case.

Example 4.7 Let n > 2 be an integer. Let f be the family of Calabi-Yau
projective hypersurfaces over [F, defined by the equation

Xon+1+X{l+1+...+X:+1+yX0X1"‘Xn:0:

parametrized by the affine line y € A'. In the case n = 2, this is a family of
elliptic curves. In the case n = 3, this is a family of K — 3 surfaces. In the case
n = 4, this is a family of Calabi-Yau quintic hypersurfaces.

If ¢ # p, the zeta function Zy(k1, k2, f,T) is in general not known to be £-adic
meromorphic on the closed unit disk |T|, < 1 if ks € Zy, even in the special
case that n = 2. If in addition, either ko € 7Z or {ki,k2} is defined as in the
above theorem, then Z,(k1, ko, f,T) is rational.

If £ = p, then there is only one (or none) non-trivial p-adic unit root for
the zeta function Z(X,,T) and one can show that Ds, = p — 1. Our result
implies that the limiting moment zeta function Z,(k1, k2, f,T') is always p-adic
meromorphic everywhere for all k; € Z and ky € Z,. This follows from the
rank one case of Dwork’s conjecture as given in [27]. The cases n = 2,3 with
ks € 7Z had been proved previously by Dwork (1971[8], 1973[9]). Such p-adic
meromorphic continuation should be related to deep p-adic properties of the
mirror map.

5 Moment L-functions

To give a further and more precise exposition, we need to work with the lan-
guages of f-adic representations and /-adic etale cohomology.

Let Y be a geometrically connected smooth affine scheme of finite type over
F, with function field F,(Y). Let m1(Y) be the arithmetic fundamental group
of Y. Tt is the absolute Galois group of F;(Y) modulo the closed subgroup

11



generated by the inertial subgroups at closed points of Y. Let £ be a prime
number. Let

e 1 m (YY) — GL,(Zy) (8)

be a continuous f-adic representation. Equivalently, v, defines a lisse f-adic
etale sheaf on Y. The L-function of ¢, is defined in a standard manner as
follow:

1
Ll T H det(I — tpe(Frob,)Tdes(v)) € 1+ TZ[T]), ©)
yelY|

where Frob,, denotes the Frobenius conjugacy class of 71 (Y") at y. If ¢, = 1 is
the trivial representation, then L(1,,T) = Z(Y,T) is rational. More generally,
if 9, is of finite order, then L(1,,T) is also rational. This follows from the
following general result.

Theorem 5.1 (Grothendieck[13]). Let 1 be a continuous £-adic representation
of m1(Y) as above. If £ # p, then L(ve,T) is a rational function over Q,.

In the remaining case that £ = p, the situation is more complicated and the L-
function is not rational in general. Katz [16] conjectured that L(v,,T') is p-adic
meromorphic everywhere. This turned out to be false in general [24]. Dwork’s
original conjecture [9] says that the L-function L(tp, T) is p-adic meromorphic
if the p-adic representation v, is geometric in some sense. We now briefly recall
the definition of geometric representations of m (V).

Classically for the case £ # p, the representation 1, is called geometric if
it comes from the relative f-adic etale cohomology of a morphism f: X — Y
over F,. If £ # p, the geometric Langlands conjecture as proved by Lafforgue
[20] shows that up to a constant twist, every irreducible £-adic representation of
m1(Y) is geometric. So, for £ # p, geometric f-adic representations essentially
give rise to all f-adic representations.

On the other hand, if £ = p, the situation is quite a bit different. To define
geometric p-adic representations, one can start with the relative p-adic etale
cohomology of a morphism f: X — Y over F,. This definition is a bit narrow.
It is well known that p-adic representations of w1 (Y) corresponds exactly to
unit root F-crystals on Y, see [16]. From F-crystal point of view, what arises
from geometry is the relative crystalline cohomology or the more general relative
rigid cohomology [1]. These give rise to overconvergent F-crystals, whose unit
(slope zero) part is exactly the relative p-adic étale cohomology, see [10] and
[11]. For an F-crystal M on Y, shrinking Y if necessary and by Katz’s isogeny
theorem [17], we may assume that the F-crystal M is ordinary, which then has
a Newton-Hodge decomposition. Each pure slope piece (after twisting so that it
becomes slope zero) of M then gives a p-adic representation of 7 (Y'), which is
no longer overconvergent in general. Thus, we say that a p-adic representation
p of m (Y') is geometric in the restricted sense if it arises from some pure slope
part of an ordinary overconvergent F-crystal on Y. This is not the most general
definition since it does not form a tensor category yet. The general definition

12



is then the tensor category generated the restricted geometric p-adic represen-
tations and their contragradient representations, see [26]. Actually, in [26], we
used the larger ambient category of nuclear overconvergent o-modules instead
of the much smaller ambient category of overconvergent F-crystals. Thus, the
definition given here for geometric p-adic representations is more restricted than
what is treated in [26].

There are a lot more non-geometric highly transcendental p-adic represen-
tations because of very wild ramifications. It is not clear how to characterize
the geometric p-adic representations of 71 (Y"). This can be viewed as the truly
p-adic geometric Langlands conjecture, which has not been formulated yet! This
problem is transcendental in nature. The easier p-adic analogue of the geometric
Langlands conjecture is the compatibility between the category of overconver-
gent F-crystals and the category of lisse f-adic sheaves, where ¢ # p. This
problem is algebraic in nature and seems within reach in view of the recent
progresses in this direction.

As a solution to Dwork’s conjecture, we have

Theorem 5.2 (Wan [26][27]). Let 1, be a continuous p-adic representation of
m (Y). If ¢, is geometric, then L(v,,T) is p-adic meromorphic.

From now on, we assume that 1), is a geometric /-adic representation, where
£ may be equal to p. From the above results, we know that the L-function
L(4,T) is f-adic meromorphic everywhere (in fact, rational if £ # p). For an
integer k, we can define the k-th moment L-function of ¢, by

1
Lwe, T H det(I — 1)(Frob,)kTdes(v)) € 1+ TZ([T]] (10)
y€lY|

This L-function is the k-th moment of the Euler factors of L(v,T). It is
also the L-function of the k-th Adams operation ¢f, which is a virtual /-adic
representation. Similarly, we have

Theorem 5.3 (Wan [27][29]). Let 1 be a geometric £-adic representation of
71 (Y). Then, for each integer k, L(y%,T) is {-adic meromorphic everywhere

(rational if £ # p).

A further question is to understand the (-adic variation of L(¢},T) as the
integer k varies f-adically. Just as in the zeta function case, this leads to a
suitable limiting moment L-function.

Let D = Dy, be the order of the image of the residue representation y.
Let k1 and ky be integers. As in the previous section, it is easy to see that
the power series L(¢§1+D k2 T is ¢-adically continuous in ky. This continuity
shows that L(y;""7*2,T) is a well defined ¢-adic power series in Z[[T]] for
all ky € Z and ky € Zz. This power series is clearly f-adic analytic in the
open unit disk |T'|, < 1. It can be viewed as the £-adic L-function attached to
the representation 1p,. We can ask if this limiting moment L-function is £-adic
meromorphic on the closed unit disk or even everywhere. This is unknown if
the rank of v, is greater than 1. But, if the rank of 1), is 1, it is true.
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Theorem 5.4 (Wan [27]) Let 1 be a rank one geometric £-adic representation
of m(Y), where £ may be equal to p. For all integers ki and £-adic integers
ko € Zy, the limiting moment L-function L(@[Jf“LDkz,T) is £-adic meromorphic

everywhere (rational if £ # p).

This result is easy if £ # p since 1, is then geometrically of finite order
by geometric class field theory. If £ = p, the result is non-trivial and follows
from our work on the rank one case [27] of Dwork’s conjecture. For higher rank
geometric representations, just as in the previous section on limiting moment
zeta functions, L(z/;flJrD *2 T is known to be f-adic meromorphic if either ks is
an integer (Wan [26]) or {k1, k2} arises from Theorem 4.6 (Lenstra-Wan [22]).

In the case that £ = p, the above rank one theorem and its proof [27] can be
pushed further as first observed by Coleman in his private notes on the author’s
proof of the Dwork conjecture. The full form of this refinement, which we now
describe, has been carried out by Grosse-Klénne [12].

Let 1), be a continuous rank one geometric p-adic representation

T/JP : ’/Tl(Y) — GLl(Zp) = Z*

p
Let C, be the completion of an algebraic closure of Qp. Let W, be the set
of continuous p-adic homomorphisms from Z; to (C;. It is called the weight
space. It is a rigid analytic space. It can be identified with a finite disjoint
union of open unit disks. For x € W), the composition x o %), is a continuous
group homomorphism from 7, (Y") to (C;. For example, for each k € Z, the map

a — a* is a continuous group homomorphism from Z; to C,. One can define
an L-function as above by

1

T (xo ) (FrobyyTaee € L+ TGITN (D)

L(Xo¢p;T) = H

y€|Y|

In this way, L(x o ¢,,T) becomes a function in the two variables (x,T). In
the special case that x is the k-th power map, L(x o ¢,,T) becomes the k-th
moment L-function L(¢%, T), which is just L(4)$*,T) since 4, has rank one.

Theorem 5.5 (Grosse-Klonne [12]) Let 1, be a rank one geometric p-adic rep-
resentation of w1 (Y'). Then, L(xo,,T) is a two variable meromorphic function
in the domain (x,T) € W, x C,,.

In the special case that 1, comes from the universal family of elliptic curves
over [F,,, this result was proved by Coleman [3] and the zero locus of the rigid
meromorphic function L(x o ¢p,T') is closely related to the eigencurve [4]. The
special value L(x 04y, 1), which is a meromorphic function in x € W, is related
to Iwasawa theory and p-adic L-functions.

To conclude this paper, we briefly discuss the distribution of the zeros of
the p-adic meromorphic function L( 1’;,T) for geometric ¢, and k € Z. For a
positive real number ¢, let N( ’;,t) denote the number of reciprocal zeros (or
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poles) of slopes at most ¢. The order of the meromorphic function L(yk,T) is
defined to be the upper limit

log(N (¢5,t) +1)
logt '

p(py) = lim sup

It is clear that
0 < u(yy) < oo.

Question 5.6 Let v, be a geometric p-adic representation. Is the order ,u(zpl’;)
finite for k € 7,2

We do know

Theorem 5.7 (Wan[27]) Let ¢, be a geometric p-adic representation. If ¢,
has rank one, then the order u(wz) is finite and uniformly bounded for all k € 7.

If 4, has rank greater than one, we do not know if the order M(lbf.f) is finite.
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