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Abstract

A new algebraic Cayley graph is constructed using finite fields. It provides
a more flexible source of expander graphs. Its connectedness, the number
of connected components, and diameter bound are studied via Weil’s esti-
mate for character sums. Furthermore, we study the algorithmic problem of
computing the number of connected components and establish a link to the
integer factorization problem.
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1. Introduction

For a subset S of a finite abelian group Γ, the Cayley graph Cay(Γ, S)
is the directed graph with vertex set Γ, and edge set {b1 → b2|b1 − b2 ∈ S}.
Cayley graphs play a central role in the construction of expander graphs.
A randomly chosen Cayley graph Cay(Γ, S) often has good properties with
nontrivial probability. However, deterministically constructing one such good
graph is often more difficult. Typically one needs to assume additional struc-
ture on the group Γ and its subset S. By an algebraic Cayley graph, we mean
that Γ is the multiplicative group of a finite commutative ring and S ⊂ Γ is
a subset with certain algebraic structure such as a box or an interval in some

IPartially supported by 973 Program (2013CB834203) and National Natural Science
Foundation of China (Grant No. 61373019, 61170289 and 11271256).

∗Corresponding author
Email addresses: mlu@math.tsinghua.edu.cn (M. Lu), dwan@math.uci.edu (D.

Wan), wangliping@iie.ac.cn (L.-P. Wang), xiaodong@sjtu.edu.cn (X.-D. Zhang)

Preprint submitted to Elsevier January 21, 2014



sense. The box algebraic structure makes it possible to use powerful tools
from number theory to prove conditionally (assuming some sort of Riemann
hypothesis) that an algebraic Cayley graph Cay(Γ, S) does have the desired
properties if the box is suitably large. In this way, algebraic Cayley graphs
provide a rich source of expander graphs.

An important example is given by Chung [1], who uses the multiplicative
group of a finite extension of a finite field and takes the subset to be a line
in certain sense. The advantage of working with a finite field is that the
needed estimate can sometimes be proved using the celebrated Weil bound
for curves over finite fields. In this paper, we introduce a more general
construction using the multiplicative group of a finite field and taking the
subset to be those elements represented by certain primary polynomials.

Let Fq be a finite field of q elements with characteristic p. Let f(x) be
an irreducible polynomial of degree n > 1 over Fq. Our group Γ will be

Γf = (Fq[x]/(f(x)))∗ = (Fq[α])∗ = F∗qn , α = x.

The group Γf is cyclic of order qn − 1. A polynomial g(x) ∈ Fq[x] of degree
d > 0 is called primary if g(x) is a power of an irreducible polynomial. For
1 ≤ d < n, let Pd be the set of monic primary polynomials of degree d in
Fq[x]. Our subset S will be

Ed = {g(α)|g ∈ Pd} ⊂ Γf .

Note that in the case d = 1, the subset E1 = α + Fq is a line in the n-
dimensional Fq-vector space Fqn .

Definition 1. Let Gd(n, q, α) be the Cayley graph Cay(Γf , Ed) with vertex
set Γf and edge set {β1 → β2|β2/β1 ∈ Ed}.

It is clear that Gd(n, q, α) is a regular directed graph of order qn − 1 and
its degree is given by

|Ed| = |Pd| =
∑
k|d

1

k

∑
s|k

µ(s)q
k
s ∼ qd

d
,

where µ is the Möbius function. It should be noted that the graph Gd(n, q, α)
depends not just on d, n, q but also on the choice of α (that is, the choice of
the irreducible polynomial f(x) which is used to present the extension field
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Fqn). In the case d = 1, G1(n, q, α) reduces to Chung’s graph in [1], which has
been studied extensively (see [2, 4, 5]). In this paper, we study the general
d case. Our proof is more direct and uses Weil’s bound for character sums.

Our first result is the following theorem.

Theorem 2. Assume that n < qd/2 + 1. Then the graph Gd(n, q, α) is con-
nected, and its diameter D satisfies the bound

D ≤ 2
n

d
+ 1 +

4n
d

log (n− 1)

d log q − 2 log(n− 1)
.

In the case d = 1, this reduces to the diameter bound in [1] and [5]. The
above theorem gives a sufficient condition for the graph to be connected. If
n ≥ qd/2 + 1, the graph Gd(n, q, α) is not always connected, as the answer
depends on the choice of α or the irreducible polynomial f(x). More precisely,
we have:

Theorem 3. If ` > 1 is a divisor of the integer (qn − 1) such that n ≥
2d+ 2(|Pd|+ 1) logq `, then there is at least one α ∈ Fqn of degree n such that
the number of connected components of the graph Gd(n, q, α) is divisible by
`.

If q > 2, qn − 1 has the obvious divisor (q − 1) > 1. We obtain the
following result.

Corollary 4. Assume that q > 2 and n ≥ 2d+ 2(|Pd|+ 1). Then there is at
least one α ∈ Fqn of degree n such that the number of connected components
of the graph Gd(n, q, α) is divisible by (q − 1). In particular, Gd(n, q, α) is
not connected for at least one degree n element α.

As |Pd| ∼ qd/d, the bound 2d+ 2(|Pd|+ 1) ∼ 2qd/d is roughly the square
of the bound qd/2 in Theorem 2. This shows that the condition in Theorem
2 is not too far from being sharp. For the remaining interval where

qd/2 + 1 ≤ n ≤ 2d+ 2(|Pd|+ 1) ∼ 2qd/d,

we have no results on the connectedness of the graph Gd(n, q, α). One
does know the following crude combinatorial upper bound for the number
Nd(n, q, α) of connected components of the graph Gd(n, q, α):

Nd(n, q, α) ≤ qn − 1(|Pd|+dnd e
dn
d
e−1

) .
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For details, see Theorem 14 in section 2.
For a randomly chosen α, the graph Gd(n, q, α) is connected with non-

negligible probability. To see this, we fix g ∈ Pd to be monic irreducible.
Then for a randomly chosen α, the element g(α) is a primitive root of F∗qn
with probability

φ(qn − 1)

qn − 1
= Ω(

1

log log(qn − 1)
),

which is non-negligible, where φ is the Euler’s totient function. Thus, the
graphGd(n, q, α) is connected with non-negligible probability. Unfortunately,
constructing a primitive root (or even an element of high order) of any form is
a well known difficult problem in computational number theory. In practical
application, the difficulty is how to verify quickly that a given Gd(n, q, α)
is connected and more generally, how to compute quickly the number of
its connected components, using the sparse input size (n log q)O(1) of the
graph Gd(n, q, α). Ideally, we would like to have a deterministic algorithm
with running time bounded by a polynomial in (n log q)O(1), to compute the
number of connected components. In this direction, we have the following
conditional result.

Theorem 5. Assume that the factorization of qn − 1 is given. Then one
can compute the number of connected components of Gd(n, q, α) in time
(n log q)O(1).

It would be of great interest to remove the factorization assumption in
the above theorem.

An important type of graphs is the so-called expander graph, which arises
in questions about designing networks that connect many users while using
a small number of switches. Expander graphs play an important role in
computer science, mathematics, and the theory of communication networks.
Please refer to the survey article [3]. A regular graph of degree k is an
expander graph if the modulus of every nontrivial eigenvalue of the graph is
much less than the trivial eigenvalue k. In the last section, we show that our
graph Gd(n, q, α) provides a new source of expander graphs.

Theorem 6. Let δ be a constant with 0 < δ < 1. Assume that (n+ d− 1) ≤
qd/2(1− δ). Then each nontrivial eigenvalue λ of the adjacency operator for
the graph Gd(n, q, α) satisfies the bound

|λ| ≤ qd

d
(1− δ) ≤ |Pd|(1− δ) = λtriv(1− δ).
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In particular, the graph Gd(n, q, α) is an expander graph.

Remarks. In our construction of the Cayley graph Gd(n, q, α), we took the
subset Ed to be the set of all monic primary polynomials of degree d. It is also
natural to take the subset to the set of all monic irreducible polynomials of
degree d or the set of all monic irreducible polynomials whose degree divides
d. The resulting graph would have similar qualities asymptotically. However,
our choice of the subset in this paper makes the proofs simpler and cleaner
with the results slightly better.

2. The number of connected components

Our key technical tool is the following Weil bound for character sums:
see Theorem 2.1 in [5].

Lemma 7. Let χ : Γf −→ C∗ be a nontrivial character. Then we have the
estimate

|
∑
g∈Pd

Λ(g)χ(g(α))| ≤ (n− 1)
√
qd,

where Λ(g) is the von Mangoldt function and it is equal to the degree of the
unique prime factor in g.

Theorem 8. If n < qd/2 + 1, then Gd(n, q, α) is connected.

Proof. If the graph Gd(n, q, α) is not connected, then Ed generates a proper
subgroup H of Γf . Let

χ : Γf → Γf/H → C∗

be a nontrivial character of Γf , trivial on H. Then by the Weil bound in
Lemma 7,

qd =
∑
g∈Pd

Λ(g) = |
∑
g∈Pd

Λ(g)χ(g(α))| ≤ (n− 1)
√
qd.

It follows that n ≥ qd/2 + 1. 2

The next result shows that the condition n < qd/2+1 in the above theorem
is not too far from being sharp.

Theorem 9. If ` > 1 is a divisor of (qn − 1) such that n ≥ 2d + 2(|Pd| +
1) logq `, then there is at least one α ∈ Fqn of degree n over Fq such that the
number of connected components of the graph Gd(n, q, α) is divisible by `.

5



Proof. Let πn denote the number of monic irreducible polynomials of degree
n in Fq[x]. It is easy to check that

|πn −
qn

n
| ≤ 1

n

∑
k|n,k≤n/2

qk ≤ 2

n
qn/2.

The number of degree n elements in Fqn is nπn. The number of elements in
Fqn which are in a proper subfield of Fqn containing Fq is

(
∑

deg(α)<n

1) = |nπn − qn| ≤ 2qn/2.

Let H be the subgroup generated by g(α) for g ∈ Pd. It is clear that the
number of connected components of the graph Gd(n, q, α) is equal to the
index [F∗qn : H].

For a divisor ` > 1 of qn − 1, let H` denote the unique subgroup of index
` in the cyclic group F∗qn . The group H` consists of `-th powers of elements
in F∗qn . Let Id denote the set of monic irreducible polynomials g in Fq[x] such
that deg(g) divides d. Every element of Pd is an integral power of an element
in Id. Furthermore, |Id| = |Pd|. If α is a degree n element in Fqn such that
g(α) ∈ H` for all g ∈ Id, then H is a subgroup of H` and thus the number of
connected components of Gd(n, q, α) is

[F∗qn : H] = [F∗qn : H`][H` : H] = `[H` : H]

which is divisible by `. Let

N` = |{α ∈ Fqn : deg(α) = n, g(α) ∈ H` ∀g ∈ Id}|.

To prove the theorem, it is enough to prove that N` > 0. A standard char-
acter sum argument shows that

`|Id|N` =
∑

deg(α)=n

∏
g∈Id

∑
χ`
g=1

χg(g(α))

=
∑

χ`
g=1,g∈Id

∑
deg(α)=n

∏
g∈Id

χg(g(α)),

where χg denotes a character of F∗qn . In the case that χg = 1 for all g ∈ Id, the

inner sum is the number nπn of degree n elements in Fqn . In all other (`|Id|−1)
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cases, there is at least one g ∈ Id such that χg is a nontrivial character. In
such a case, the standard Weil character sum bound (see Corollary 2.3 in [5])
implies

|
∑

deg(α)=n

∏
g∈Id

χg(g(α))| = |
∑
α∈Fqn

∏
g∈Id

χg(g(α))−
∑

deg(α)<n

∏
g∈Id

χg(g(α))|

≤ ((
∑
g∈Id

deg(g))− 1)qn/2 +
∑

deg(α)<n

1

≤ (qd − 1)qn/2 + 2qn/2

= (qd + 1)qn/2,

where we used the fact that
∑

g∈Id deg(g) is the number of elements in Fqd
of degree dividing d and thus ∑

g∈Id

deg(g) = qd.

Putting these together, we deduce that

`|Id|N` ≥ nπn − (`|Id| − 1)(qd + 1)qn/2

≥ qn − 2qn/2 − (`|Id| − 1)(qd + 1)qn/2

≥ qn − `|Id|(qd + 1)qn/2

> q
n
2

+d(q
n
2
−d − `|Id|+1).

Solving the inequality
q

n
2
−d ≥ `|Id|+1,

one obtains the condition

n ≥ 2d+ 2(|Id|+ 1) logq `.

Since |Id| = |Pd|, the theorem is proved. 2

In the case d = 1, we have |I1| = |P1| = q. This gives the following result.

Corollary 10. If ` > 1 is a divisor of the integer qn − 1 such that n ≥
2 + 2(q + 1) logq `, then there is at least one degree n element α in F∗qn such
that the graph G1(n, q, α) is not connected.
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The above theorem shows that the graph Gd(n, q, α) is not always con-
nected. It depends very much on the choice of α. An interesting question
is to find a fast algorithm, with running time bounded by a polynomial in
(n log q)O(1), to compute the number of connected components. In this direc-
tion, we have the following conditional result.

Theorem 11. Assume that the factorization of qn − 1 is given. Then one
can compute the number of connected components of Gd(n, q, α) in time
(n log q)O(1).

Proof. We may assume that n ≥ qd/2 +1; otherwise Gd(n, q, α) is already
connected. Let

qn − 1 = pk11 · · · pkss , Hi = {βpi |β ∈ F∗qn}.

The Hi’s are the maximal subgroups of F∗qn . The graph Gd(n, q, α) is dis-
connected if and only if the subgroup H =< g(α)|g ∈ Pd > is contained in
Hi for some i. This is true if and only if

g(α)(qn−1)/pi = 1,∀g ∈ Pd.

The elements of Pd can be listed in time qd(n log q)O(1). Note that

max{s, (k1 + · · ·+ ks), q
d} ≤ n2 log q.

It follows that one can check whether there is 1 ≤ i ≤ s such that H ⊆ Hi

in time
sqd(n log q)O(1) = (n log q)O(1).

If H 6⊆ Hi for 1 ≤ i ≤ s, then H = Γf and the graph is connected. Otherwise,
we can assume that H ⊆ Hi for some given i.

The group Hi is cyclic of order

qn − 1

pi
= pk11 · · · p

ki−1
i · · · pkss .

Its maximal subgroups are Hij = {βpipj |β ∈ Γf} = {βpj |β ∈ Hi}, where
pipj|(qn − 1). Similarly we have H ⊆ Hij for some j if and only if

g(α)
qn−1
pipj = 1,∀g ∈ Pd.
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Again, we can check whether there is 1 ≤ j ≤ s such that H ⊆ Hij in time

sqd(n log q)O(1) = (n log q)O(1).

Continuing in this fashion, eventually one finds that H = Hi1i2···iu , and thus
the number of connected components is [Γf : H] = pi1 · · · piu . The total time
needed is bounded by

(k1 + · · ·+ ks)q
d(n log q)O(1) = (n log q)O(1). 2

Corollary 12. The number of connected components of Gd(n, q, α), which
is the index [Γf : H], can be computed in time O(qn/4).

Proof. By the well known LLL lattice factorization algorithm, qn − 1
can be factored in time O(qn/4). 2

Corollary 13. If n is even, the number of connected components of Gd(n, q, α)
can be computed in time O(qn/8).

Proof. qn − 1 = (qn/2 − 1)(qn/2 + 1) can be factored in time O(qn/8). 2

Let Nd(n, q, α) denote the number of connected components of the graph
Gd(n, q, α). An interesting problem is to give a good general upper bound
for Nd(n, q, α), which is uniform in α. In this direction, we have the following
simple crude upper bound.

Theorem 14.

Nd(n, q, α) ≤ qn − 1(|Pd|+dnd e
dn
d
e−1

) .
Proof. Let H be the subgroup generated by {g(α)|g ∈ Pd}. Since α has

degree n, the unique factorization of polynomials implies that the elements

g1(α) · · · gk(α), 0 ≤ k ≤ dn
d
e − 1, {g1, · · · , gk} ⊂ Pd

are elements of H. This proves

|H| ≥
(
|Pd|+ dnde
dn
d
e − 1

)
.

It follows that

Nd(n, q, α) = [Γf : H] =
qn − 1

|H|
≤ qn − 1(|Pd|+dnd e

dn
d
e−1

) .
The theorem is proved. 2
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3. The diameter

The diameter of Gd(n, q, α) is the minimal integer D (or ∞ if it does not
exist) such that every element in Γf can be written as a product of at most
D elements in Ed.

Theorem 15. Assume that n < qd/2 + 1. The diameter D of Gd(n, q, α)
satisfies the inequality

D ≤ 2
n

d
+ 1 +

4n
d

log (n− 1)

d log q − 2 log(n− 1)
.

Proof. Let Γ̂f be the character group of the multiplicative group Γf =
F∗qn , which is the set of homomorphisms from Γf to C∗. For integer k > 0
and β ∈ Γf , let Nk(β) be the number of solutions of the equation

β = g1(α)g2(α) · · · gk(α), gi ∈ Pd.

It is clear that

Nk(β) =
1

qn − 1

∑
g1,··· ,gk∈Pd

∑
χ∈Γ̂f

χ(
g1(α) · · · gk(α)

β
).

To show that the diameter D is bounded by k, it is enough to show that
Nk(β) > 0 for all β ∈ Γf . For our purpose, it is simpler to work with the
following weighted sum

Mk(β) =
1

qn − 1

∑
g1,··· ,gk∈Pd

Λ(g1) · · ·Λ(gk)
∑
χ∈Γ̂f

χ(
g1(α) · · · gk(α)

β
).

Note that Nk(β) > 0 if and only if Mk(β) > 0. Now, separating the trivial
character, we obtain

Mk(β) =
qkd

qn − 1
+

1

qn − 1

∑
g1,··· ,gk∈Pd

Λ(g1) · · ·Λ(gk)
∑
χ 6=1

χ(
g1(α) · · · gk(α)

β
)

=
qkd

qn − 1
+

1

qn − 1

∑
χ 6=1

χ−1(β)(
∑
g∈Pd

Λ(g)χ(g(α)))k.
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Applying the Weil bound in Lemma 7, we deduce that

|Mk(β)− qkd

qn − 1
| < (n− 1)k

√
qdk.

In order for Mk(β) > 0 for all β, it suffices to have the inequality

qkd ≥ qn(n− 1)kqkd/2,

that is,
qkd−2n ≥ (n− 1)2k.

This is satisfied if

k ≥ 2n

d− 2 logq(n− 1)
= 2

n

d
+

4n
d

log(n− 1)

d log q − 2 log(n− 1)
.

The theorem is proved. 2

For a proper divisor d of n, we now make some comparisons between
Chung’s graph G1(n

d
, qd, β) and our more general construction Gd(n, q, α),

where β is a root of an irreducible polynomial of degree n/d in Fqd [x] and α
is a root of an irreducible polynomial of degree n in Fq[x]. It is clear that
both graphs have qn − 1 vertices. Assume that n < qd/2 + 1. In this case,
both G1(n

d
, qd, β) and Gd(n, q, α) are connected, and their diameter bounds

D1 ≤ 2
n

d
+ 1 +

4n
d

log(n
d
− 1)

d log q − 2 log(n
d
− 1)

, D2 ≤ 2
n

d
+ 1 +

4n
d

log(n− 1)

d log q − 2 log(n− 1)

are comparable. But G1(n
d
, qd, α) is qd−regular and Gd(n, q, α) is |Pd|-regular,

where |Pd| ∼ qd

d
< qd. Thus, Gd(n, q, α) can be significantly better than

G1(n
d
, qd, α) if n < qd/2 + 1, since Gd(n, q, α) has far fewer edges.

Corollary 16. If qd > (n− 1)4n
d

+2, then D ≤ 2n
d

+ 1.

If q is sufficiently large, it may be possible to improve the above diameter
bound to D ≤ n

d
+ 2. This is indeed the case for d = 1, as shown by Katz [4]

and Cohen [2].
A computational question is to ask for a fast algorithm, with running

time bounded by O(n log q)O(1), to compute the diameter D of the graph
Gd(n, q, α). This is expected to be a very difficult problem. Even assuming
the factorization of qn − 1, we still do not know a fast algorithm to compute
the diameter. We believe that computing the diameter is related to the
discrete logarithm problem and the subset sum problem, both of which are
difficult problems used in cryptography.
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4. Expander graphs

In this section, we show that our graph Gd(n, q, α) has good expanding
properties. The adjacency matrix M = (mβ1β2) is a (qn−1)×(qn−1) matrix,
where the entry mβ1β2 = 1 if β1 → β2 is an edge and it is zero otherwise.
The adjacency operator M acts on the (qn − 1)-dimensional complex vector
space CΓf of functions on Γf . If h(x) is a complex function on Γf , then

M(h)(x) =
∑
x→y

h(y) =
∑
g∈Pd

h(xg(α)),

where y runs over all elements of Γf such that x→ y is an edge of Gd(n, q, α).
If h(x) = χ(x) is a multiplicative character of Γf , then one checks that

M(χ)(x) =
∑
g∈Pd

χ(xg(α)) = λd(χ)χ(x),

where
λd(χ) =

∑
g∈Pd

χ(g(α)).

This shows that each character χ is an eigenvector of the operator M . By
Artin’s lemma, the set of characters on Γf is C-linearly independent. Since
the number of characters is equal to qn − 1, it follows that CΓf has a basis
consisting of the eigenvectors χ of M , where χ runs through all characters
of Γf . If χ is a character which is trivial on the subgroup generated by
H =< g(α)|g ∈ Pd > of Γf , then the eigenvalue

λd(χ) =
∑
g∈Pd

1 = |Pd|

which is the trivial eigenvalue λtriv = |Pd|. If χ is a character which is non-
trivial on H, its eigenvalue is called a nontrivial eigenvalue which satisfies

12



the bound

|λd(χ)| = |
∑
g∈Pd

χ(g(α))|

= |1
d

∑
g∈Pd

Λ(g)χ(g(α)) +
∑

g∈Pd,Λ(g)<d

(1− Λ(g)

d
)χ(g(α))|

≤ n− 1

d
qd/2 +

∑
g∈Pd,Λ(g)<d

(1− Λ(g)

d
)

≤ n− 1

d
qd/2 + qd/2 ≤ n+ d− 1

d
qd/2.

Since
qd

d
=
∑
g∈Pd

Λ(g)

d
≤
∑
g∈Pd

1 = |Pd|,

we deduce

Theorem 17. Let δ be a constant with 0 < δ < 1. Assume that (n+d−1) ≤
qd/2(1− δ). Then each nontrivial eigenvalue λ of the adjacency operator M
for the graph Gd(n, q, α) satisfies the bound

|λ| ≤ qd

d
(1− δ) ≤ |Pd|(1− δ) = λtriv(1− δ).

In particular, the graph Gd(n, q, α) is an expander graph.

Note that the number of connected components of Gd(n, q, α) is equal to
the multiplicity of the trivial eigenvalue |Pd| of the adjacency matrix M . If
one uses the matrix M and linear algebra directly to compute the number
of connected components, then the running time will be O(qn)O(1), which is
fully exponential in terms of n log q. This trivial algorithm is far slower than
the conditional result in Theorem 5.

Finally, we explain that it is best to view our graph Gd(n, q, α) as a
weighted graph. For this purpose, let G∗d(n, q, α) be the weighted graph
with the same vertices and edges as Gd(n, q, α). Given an edge β1 → β2 in
G∗d(n, q, α), we define the weight of the edge β1 → β2 to be Λ(β2/β1) = Λ(g),
where β2/β1 = g(α) for a unique monic primary polynomial g ∈ Pd. The
weighted adjacency matrix M∗ = (mβ1β2) is a (qn−1)×(qn−1) matrix, where
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the entry mβ1β2 = Λ(β2/β1) if β1 → β2 is an edge and it is zero otherwise.
The adjacency operator M∗ acts on the (qn− 1)-dimensional complex vector
space CΓf of functions on Γf . If h(x) is a complex function on Γf , then

M∗(h)(x) =
∑
x→y

Λ(
y

x
)h(y) =

∑
g∈Pd

Λ(g)h(xg(α)),

where y runs over all elements of Γf such that x→ y is an edge of G∗d(n, q, α).
If h(x) = χ(x) is a multiplicative character of Γf , then one checks that

M∗(χ)(x) =
∑
g∈Pd

Λ(g)χ(xg(α)) = Sd(χ)χ(x),

where
Sd(χ) =

∑
g∈Pd

Λ(g)χ(g(α)).

This shows that each character χ is an eigenvector of the operator M∗. If χ
is a character which is trivial on the subgroup generated by H =< g(α)|g ∈
Pd > of Γf , then the eigenvalue

Sd(χ) =
∑
g∈Pd

Λ(g) = qd

which is the trivial eigenvalue λtriv = qd. If χ is a character which is non-
trivial on H, its eigenvalue is called a nontrivial eigenvalue which satisfies
the bound

|Sd(χ)| = |
∑
g∈Pd

Λ(g)χ(g(α))| ≤ (n− 1)
√
qd.

We obtain

Theorem 18. Let δ be a constant with 0 < δ < 1. Assume that (n − 1) ≤
qd/2(1− δ). Then each nontrivial eigenvalue λ of the adjacency operator M∗

for the weighted graph G∗d(n, q, α) satisfies the bound

|λ| ≤ λtriv(1− δ).

In particular, the weighted graph G∗d(n, q, α) is an expander graph.

The condition (n − 1) ≤ qd/2(1 − δ) in this weighted theorem is weaker
and simpler than the condition (n + d − 1) ≤ qd/2(1 − δ) in the previous
unweighted theorem.
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