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To extend Iwasawa’s classical theorem from Zp-towers to 
Zd
p-towers, Greenberg conjectured that the exponent of p in 

the n-th class number in a Zd
p-tower of a global field K ramified 

at finitely many primes is given by a polynomial in pn and 
n of total degree at most d for sufficiently large n. This 
conjecture remains open for d ≥ 2. In this paper, we prove 
that this conjecture is true in the function field case. Further, 
we propose a series of general conjectures on p-adic stability 
of zeta functions in a p-adic Lie tower of function fields.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a global field, that is, either a number field or a global function field with 
constant field Fq, where Fq is the finite field of q elements with characteristic p. In 
the second case, K is simply the function field of a smooth projective geometrically 
irreducible curve C defined over Fq. For a positive integer d, consider a Zd

p-tower of 
global fields

K∞ =
∞⋃

n=0
Kn ⊃ · · · ⊃ Kn ⊃ · · · ⊃ K1 ⊃ K0 = K,
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where for all n ≥ 0,

Gal(Kn/K) = (Zp/p
nZp)d.

In this paper, we always assume that the tower is ramified only at finitely many primes 
of K. This condition is automatically satisfied in the number field case. The condition 
is natural and necessary in the function field case in order for many definitions and 
theorems to make sense. Let hn denote the class number of the field Kn. The basic 
problem in Iwasawa theory is to understand the stable behavior of the p-part of hn, 
namely, the p-adic valuation vp(hn) as a function of n. In the literature, the number 
vp(hn) is usually denoted by en, which is the exponent of p in the class number hn. To 
extend Iwasawa’s classical result for Zp-extensions, Ralph Greenberg made the following 
conjecture about 40 years ago, see section 7 in [CM].

Conjecture 1.1. Let K∞/K be a Zd
p-extension of a global field K which ramifies at finitely 

many primes. There is a polynomial E(x, y) ∈ Q[x, y] of total degree at most d depending 
on the tower such that for all sufficiently large n, we have

vp(hn) = E(pn, n).

In the case d = 1 and K is a number field, this is precisely the classical Iwasawa 
theorem (1959) which says that vp(hn) = μpn + λn + ν for all sufficiently large n, where 
μ, λ, ν are constants depending on the tower. Historically, Iwasawa first observed that in 
the case d = 1 and K∞ is a constant field Zp-extension of a function field, the statement 
is true. This motivated him to develop the theory of Zp extensions, which led to his proof 
of the case d = 1 for number fields. It was realized in Mazur–Wiles [MW] (1983) and 
Gold–Kisilevsky [GK] (1988) that Iwasawa’s ideas carry over to the function field case 
as well for d = 1, not necessarily constant field extensions. Thus, Greenberg’s conjecture 
was long known to be true in the case d = 1, for both number fields and function fields.

To understand how the μ and λ invariants vary as K∞ varies over all Zp-extensions 
of a fixed number field K, Greenberg [Gr] (1973) initiated the study of Iwasawa theory 
for Zd

p-extensions of K. The subsequent development of Zd
p-extensions led Monsky [Mo2]

to prove that the μ invariant μ(K∞/K) is bounded by a constant depending only on K
and p, as K∞ varies over all Zp-extensions of a number field K. It seems still open if the 
λ invariant λ(K∞/K) is also bounded by a constant depending only on K and p. Recall 
that for a number field K, the composite of all Zp-extensions of K is a Zr

p-extension of K, 
where r2 + 1 ≤ r ≤ [K : Q] and r2 is the number of complex primes of K. Leopoldt’s 
conjecture is equivalent to saying that r = r2 + 1. In contrast, for a function field K, 
the composite of all Zp-extensions of K is a huge Z∞

p -extension, and the μ-invariant 
μ(K∞/K) is not known to be bounded as K∞ varies over all Zp-extensions of K, see [LZ].

In the number field case with d ≥ 2, Greenberg’s conjecture was initially studied 
by Cuoco [Cu] (1980) in the case d = 2, and later in a series of papers by Cuoco–
Monsky [CM] (1981), and Monsky [Mo1][Mo2][Mo3][Mo4] (1981–1989) for general d. 
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The strongest result so far is from Monsky [Mo4] (1989) who proves the number field 
case of the following asymptotic theorem.

Theorem 1.2. Let K∞/K be a Zd
p-extension of a global field K which ramifies at finitely 

many primes. There are integers m0, �0 and a real number α depending on the tower 
such that for all sufficiently large n, we have

vp(hn) = (m0p
n + �0n + α)p(d−1)n + O(np(d−2)n).

As later remarked in Li-Zhao [LZ] (1997), Monsky’s proof carries over to function 
fields too, and thus the above asymptotic theorem is true for both number fields and 
function fields. Since then, progress on Greenberg’s conjecture has stopped in both the 
number field case and the function field case, perhaps due to the following two reasons. 
First, Cuoco–Monsky [CM] wrote “Despite the evidence of this paper and of [CM] we 
believe this (Greenberg conjecture) to be false, and show that a related module-theoretic 
conjecture fails, even when d = 2”. In another paper, Monsky [Mo1] wrote “Greenberg’s 
conjecture is probably false; the last section of [Cr] presents module-theoretic evidence 
against it”. Second, Li-Zhao wrote “Classically, there are several approaches to this prob-
lem: (A) via class number formula and p-adic L-functions; (B) via class number formula 
and p-adic measures on Zp; (C) via the theory of noetherian modules over Iwasawa al-
gebra. Approach (A) works particularly well for the so called cyclotomic Zp-extensions. 
But it apparently fails for more general fields which do not possess a good class number 
formula. (B) was found by Sinnott when he studied the work of Ferrero and Washington. 
Neither (A) nor (B) can be used to handle the function field case because good analogues 
of p-adic L-functions and p-adic measures are still unborn for function fields. Approach 
(C) was the one initiated by Iwasawa and further developed by Serre, Greenberg, Cuoco, 
Monsky and many others. This method can be combined with class field theory and 
Kummer theory to get a lot of nice results. The last approach of the above also has 
the merit of being generalizable to function field case, which is what we shall use in the 
present paper”. This was the status up to 1997, and no further work was done on this 
conjecture during the last twenty years.

Our aim of this paper is to prove that Greenberg’s conjecture is true in the function 
field case for all d ≥ 1. Namely, we have

Theorem 1.3. Let K∞/K be a Zd
p-tower of function fields of characteristic p which rami-

fies at finitely many primes. Then, there is a polynomial E(x, y) ∈ Q[x, y] of total degree 
at most d (and degree at most 1 in y) depending on the tower such that for all sufficiently 
large n, we have

vp(hn) = E(pn, n).

We use the class number formula and p-adic L-function approach. The required uni-
versal p-adic L-function in function fields is the T -adic L-function introduced in [LW]
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(2009) for d = 1 and again in [RWXY] (2017) for d > 1. The T -adic L-function is in-
strumental in the study of slope stability of zeta functions in Zd

p-tower, which is a new 
direction, see [DWX,RWXY]. Its analytic property on the closed unit disk (the main 
conjecture) follows from the work of Crew [Cr] (1987) on a conjecture of Katz [Ka]. The 
class number is a special value of the zeta function, which can be decomposed in terms 
of L-functions of the finite characters of the Galois group. To complete the proof, we 
partition the finite character space of the Galois group into a disjoint union of subspaces 
in terms of the exact ramification locus of the character. These disjoint subspaces turn 
out to be semi-algebraic in the sense of [Mo1], and one can then apply Monsky’s cru-
cial power series lemma [Mo1]. Contrary to Monsky’s belief, philosophically our result 
suggests that Greenberg’s conjecture should be true in the number field case.

A bye-product of our proof also gives a stable formula for the geometric p-rank rp(n)
of Kn. Recall that Kn is the function field of a smooth projective geometrically irreducible 
curve Cn defined over some finite extension field over Fq. The Jacobian variety Jn of Cn

is an abelian variety of dimension gn, where gn is the genus of Cn. The p-adic Tate 
module is

Tp(Jn) = lim
← k

Jn[pk],

where Jn[pk] denotes the group of pk-torsion points of Jn over an algebraic closure of Fq. 
The Tate module Tp(Jn) is a free Zp-module whose rank is called the p-rank of Kn, 
denoted by rp(n). It is well known that 0 ≤ rp(n) ≤ gn, where gn is the genus of Kn.

Theorem 1.4. Let K∞/K be a Zd
p-tower of function fields of characteristic p which ram-

ifies at finitely many primes. Then, there is a polynomial R(x) ∈ Z[x] of degree at most 
d depending on the tower such that for all sufficiently large n, we have

rp(n) = R(pn).

Finally, we note that there is no stable formula for the genus sequence gn in the 
function field case, even for d = 1. In fact, the genus gn can grow as fast as one wants as 
a function of n. A simple necessary and sufficient condition for the stability of gn is given 
in [KW] in the additive framework of Artin–Schreier–Witt construction of Zp-towers. For 
natural Zd

p-towers (those coming from algebraic geometry), we conjecture that the genus 
gn is periodically given by several polynomials in pn for all sufficiently large n. This is 
a small part of a series of general conjectures on p-adic stability of zeta functions for 
p-adic Lie towers of function fields that we shall state and discuss in the last section. It 
is hoped that these conjectures would motivate further work in both the function field 
case and the number field case.
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2. The case with no constant Zp-extension

Let K be a global function field with constant field Fq. In this section and next section, 
we assume that the Zd

p-tower K∞/K contains no constant subextension. The tower gives 
a continuous group isomorphism

ρ : G∞ := Gal(K∞/K) ∼= Zd
p.

For each integer d-tuple (n1, ..., nd) ∈ Zd
≥0, reduction modulo (pn1 , ..., pnd) produces a 

subextension Kn1,...,nd
such that

Gn1,...,nd
:= Gal(Kn1,...,nd

/K) ∼=
d∏

i=1
Zp/p

niZp.

This makes sense even if some of the ni are ∞. For 1 ≤ i ≤ d, let K(i)
n = K0,..,n,...,0, 

where n lies in the i-th coordinate. For each i, K(i)
∞ /K is a Zp-tower and thus it is totally 

ramified at a prime x if the first layer K(i)
1 is ramified at x. It is clear that for 0 ≤ n ≤ ∞,

Kn = Kn,...,n = Kn,0,...,0 · · ·K0,...,0,n = K(1)
n · · ·K(d)

n .

Let P be the set of primes of K. Let U be the unramified locus of the tower, which 
is a subset of P . The tower is ramified on P − U . By our assumption, P − U is finite. 
Furthermore, by class field theory, the set P −U is non-empty since there is no constant 
subextension. Each p-adic character χ : G∞ → C∗

p has a unique decomposition

χ = χ1 ⊗ · · · ⊗ χd,

where each χi is a p-adic character of G∞ factoring through the quotient

G(i)
∞ = Gal(K(i)

∞ /K) ∼= Zp.

To recall the class number formula, we need to introduce the zeta function.
Let Pn denote the set of primes of Kn. Recall that the zeta function of Kn is defined 

by

Z(Kn, s) =
∏

x∈Pn

1
1 − sdeg(x) ∈ 1 + sZ[[s]].

The Riemann–Roch theorem implies that the zeta function is a rational function in s of 
the form

Z(Kn, s) = P (Kn, s)
, P (Kn, s) ∈ 1 + sZ[s],
(1 − s)(1 − qs)
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where the numerator P (Kn, s) is a polynomial in s of degree 2gn and gn = g(Kn) denotes 
the genus of Kn. By the celebrated theorem of Weil, the polynomial P (Kn, s) is pure 
of q-weight 1, that is, the reciprocal roots of P (Kn, s) all have complex absolute value 
equal to 

√
q. The class number hn of Kn is given by the residue formula

hn = P (Kn, 1).

The Weil bound implies a good estimate for the complex absolute value of the class 
number hn:

(√q − 1)2gn ≤ hn ≤ (√q + 1)2gn .

Thus, the growth of hn depends very much on the growth of the genus gn which can 
be complicated in general, unless the genus sequence gn becomes stable in some sense, 
see the last section for the genus stability conjecture for towers coming from algebraic 
geometry. In this paper, we shall mainly be interested in the p-adic absolute value of the 
class number, equivalently, vp(hn) as a function of n. For this purpose, we use L-functions 
to decompose it.

Recall that for positive integer n ≥ 1, the Galois group

Gn = Gal(Kn/K) ∼= (Z/pnZ)d.

For a finite continuous p-adic character χ : G∞ → C∗
p, χ will factor through Gn for some 

finite n. That is, χ : G∞ → Gn → C∗
p. The L-function of χ over K is

L(χ, s) =
∏

x∈P,χ unramified at x

1
1 − χ(Frobx)sdeg(x) ∈ 1 + sCp[[s]],

where Frobx denotes the arithmetic Frobenius element of G∞ at x. Note that the rami-
fication locus of the character χ could be smaller than P − U . If χ = 1, it is unramified 
everywhere and the L-function L(χ, s) is just the zeta function of K. If χ �= 1, the 
L-function L(χ, s) is a polynomial in s, pure of weight 1. One has the decomposition

Z(Kn, s) =
∏

χ:G∞→Gn→C∗
p

L(χ, s), P (Kn, s)
P (K0, s)

=
∏

χ �=1:G∞→Gn→C∗
p

L(χ, s).

In order to understand each L-function L(χ, s), we need to know the ramification infor-
mation of each finite character χ.

Let W denote the group of all p-power roots of unity in Cp. Let X denote the group of 
finite continuous p-adic characters χ : G∞ → W . There is a perfect pairing of Zp-modules

Zd
p ×W d −→ W, ((a1, · · · , ad), (η1, · · · , ηd)) −→

d∏
ηai
i .
i=1
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It follows that the group X is isomorphic to W d. Monsky [Mo1] defines a Noetherian 
topology on X = W d with the property that the closed subsets of W d are finite unions 
of the basic set of the form

{(η1, · · · , ηd) ∈ W d|
d∏

i=1
ηai
i = η},

where η ∈ W and (a1, · · · , ad) ∈ Zd
p. The open sets in W d are simply the compliments 

of closed subsets in W d. Open sets and closed sets in W d are special cases of a more 
general class of sets, called semi-algebraic subsets in W d, see [Mo1].

Next, we need to partition the character group X in terms of their exact ramification 
locus. For each x ∈ P − U , let Ix denote the inertial subgroup of G∞, which is a 
non-trivial p-adic subgroup of G∞. Let X∗ denote the “interior piece” of X consisting 
of those characters χ in X such that χ(Ix) �= 1 for all x ∈ P − U . For such an interior 
character χ ∈ X∗, it is clear that the ramification locus for χ is exactly P −U . Since Ix
is a finitely generated Zp-submodule of Zd

p, it follows that X∗ is an open subset of X.
More generally, for any subset S ⊆ P −U , let XS denote the set of characters χ ∈ X

such that χ(Ix) = 1 for all x /∈ S. Let X∗
S denote the interior piece of XS consisting of 

those characters χ ∈ XS such that χ(Ix) �= 1 for all x ∈ S. Then, the ramification locus 
of χ ∈ X∗

S is exactly S, and we obtain the following disjoint interior decomposition

X = 

S⊆P−U

X∗
S , X∗ = X∗

P−U .

For a positive integer n, let Xn (resp., X∗
n,S) denote the set of characters χ ∈ X

(resp., χ ∈ X∗
S) such that χpn = 1. Similarly, we have the following disjoint interior 

decomposition

Xn = 

S⊆P−U

X∗
n,S , X∗

n = X∗
n,P−U .

The class number hn then has the interior decomposition

hn

h0
=

∏
χ∈Xn,χ �=1

L(χ, 1) =
∏

S �=φ,S⊆P−U

∏
χ∈X∗

n,S

L(χ, 1).

For any subset S ⊆ P −U , let IS denote the closure of subgroups Ix for all x /∈ S. By 
the structure theorem for finitely generated Zp-modules, the quotient G∞/IS is of the 
form

G∞/IS ∼= Zd(S)
p ⊕HS ,

where HS is a finite abelian p-group and 0 ≤ d(S) ≤ d. Replacing the base field K by 
Km for some large m if necessary, we may assume that HS = 0 for all S ⊆ P −U . Thus, 
we have
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G∞/IS ∼= Zd(S)
p .

The characters in X∗
S are exactly the interior piece in the Zd(S)

p -tower K∞,S of K arising 
from the fixed field in K∞ of IP−U−S . Thus, without loss of generality, we can assume 
that S = P − U and X∗

n,S = X∗
n.

The above interior decomposition reduces Greenberg’s conjecture for the polynomial 
stability of vp(hn) to the following theorem.

Theorem 2.1. There is a polynomial E(x, y) ∈ Q[x, y] of total degree at most d (and 
degree at most 1 in y) such that for all sufficiently large n, we have

vp(
∏

χ∈X∗
n

L(χ, 1)) = E(pn, n).

Recall that the p-rank rp(n) of Kn is well known to be the number of p-adic unit 
roots of P (Kn, s). For χ �= 1, let �p(χ) denote the number of p-adic unit roots for 
L(χ, s). The interior decomposition of the character space Xn gives the following interior 
decomposition of the p-rank:

rp(n) − rp(0) =
∑

S �=φ,S⊆P−U

∑
χ∈X∗

n,S

�p(χ).

The set X∗
S is an open subset of XS = W d(S). Theorem 4.1 (or Theorem 4.6) in 

Monsky [Mo1] implies that the cardinality of the set X∗
n,S is a polynomial in pn of 

degree bounded by d(S) for all large n. To prove Theorem 1.4, it is enough to prove the 
following theorem.

Theorem 2.2. There is a non-negative integer c depending on the tower such that for all 
sufficiently large n and all χ ∈ X∗

n, we have

�p(χ) = c.

To prove the above two theorems, we need to package all the L-functions L(χ, s) for 
all characters χ ∈ X∗ into a single universal p-adic L-function and study its variation as 
χ varies. This is accomplished by the T -adic L-function that we shall introduce next.

3. T -adic L-functions

We now define the T -adic L-function first introduced in [LW] for d = 1 and later in 
[RWXY] for general d. Instead of just finite characters χn : G∞ → Gn → C∗

p, we will 
also consider all continuous p-adic characters χ : G∞ −→ C∗

p, not necessarily of finite 
order. The isomorphism

ρ : G∞ ∼= Zd
p
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is crucial for us. Let Zp[[T ]] = Zp[[T1, · · · , Td]] be the power series ring in d variables 
over Zp. Consider the universal continuous T -adic character

Zd
p −→ Zp[[T ]]∗, (a1, · · · , ad) −→

d∏
i=1

(1 + Ti)ai ∈ Zp[[T ]]∗.

Composing this universal T -adic character of Zd
p with the isomorphism ρ, we get the 

universal T -adic character of G∞:

ρT : G∞ −→ Zd
p −→ GL1(Zp[[T ]]) = Zp[[T ]]∗.

Let Dp(1) denote the open unit disk {t = (t1, · · · , td)||ti|p < 1} in Cd
p. For any element 

t = (t1, · · · , td) ∈ Dp(1), we have a natural evaluation map Zp[[T ]]∗ → C∗
p sending T =

(T1, · · · , Td) to t = (t1, · · · , td). Composing all these maps, we get, for fixed t ∈ Dp(1), 
a continuous character

ρt : G∞ −→ C∗
p. (3.0.1)

The open unit disk Dp(1) parametrizes all continuous Cp-valued characters χ = χ1 ⊗
· · · ⊗ χd of G∞ via the relation t = tχ = (χ1(1) − 1, · · · , χd(1) − 1), where χi factors 
through the quotient G(i)

∞ := Gal(K(i)
∞ /K) ∼= Zp. The L-function of ρt is defined in the 

usual way:

L(ρt, s) =
∏

x∈P,ρt unramified at x

1
1 − ρt(Frobx)sdeg(x) ∈ 1 + sCp[[s]].

For a general t ∈ Dp(1), this L-function L(ρt, s) does not have a p-adic meromorphic 
continuation to the p-adic plane |s|p < ∞, see [Wa0] for results in this direction.

In the case that χ = χ1 ⊗ · · · ⊗ χd is a finite p-adic character, we have

t = (χ1(1) − 1, · · · , χd(1) − 1) , L(χ, s) = L(ρt, s).

Elements of the form tχ = (χ1(1) − 1, · · · , χd(1) − 1) with each χi finite order, are called 
the classical points in Dp(1). The classical points are exactly the elements in

W d − 1 = {(η1 − 1, · · · , ηd − 1)|ηi ∈ W}.

For a classical point t ∈ W d − 1, the ramification locus of the corresponding character 
ρt ∈ X may be strictly smaller than P−U . Let D∗ be the set of classical points t ∈ W d−1
such that the character ρt ∈ X∗ (the interior characters). We call D∗ as the set of interior 
classical points. Then, the ramification locus of ρt is exactly P−U for all interior classical 
points t ∈ D∗.
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As the order of χ goes to infinity, tχ approaches to the boundary of the disk Dp(1). 
Thus, to understand the behavior of L(χ, s) as ord(χ) grows, it is enough to under-
stand the L-function L(ρt, s) for all classical points t near the boundary of Dp(1). More 
precisely, we should understand the following universal L-function.

Definition 3.1. The T -adic L-function of the tower K∞/K is the L-function of the T -adic 
character ρT :

Lρ(T, s) := L(ρT , s) =
∏
x∈U

1
1 − ρT (Frobx)sdeg(x) ∈ 1 + sZp[[T ]][[s]].

If x is a prime of K, then the universal character ρT is unramified at x if and only 
if ρT (Ix) = 1. This is true if and only if Ix = 1. Thus, the ramification locus of ρT is 
exactly P − U . So, the above definition agrees with the usual definition of L-functions. 
The set U is the set of closed points of a smooth affine curve over Fq. Using Crew’s work 
[Cr] on the Katz conjecture in the abelian case, we deduce the following decomposition 
of the universal L-function, which gives the analytic continuation on the closed unit disk.

Theorem 3.2. There is a polynomial B(T, s) ∈ 1 + Zp[[T ]][s] in s and a power series 
g(T, s) ∈ 1 + (p, T )Zp[[T ]][[s]] which converges for all s ∈ Zp[[T ]] such that

Lρ(T, s) = B(T, s)g(T, s).

As a consequence, we deduce that g(T, 1) ∈ 1 + (p, T )Zp[[T ]],

B(T, 1) ∈ Zp[[T ]], L(T ) := Lρ(T, 1) = B(T, 1)g(T, 1) ∈ Zp[[T ]]

are well defined power series in T over Zp. Furthermore, for t ∈ Dp(1) and s ∈ Cp with 
|s|p ≤ 1, we have

vp(Lρ(t, s)) = vp(B(t, s)).

Recall that for each interior classical point t = (t1, · · · , td) ∈ D∗, the ramification 
locus of ρt is exactly P − U . Using the definition of L-functions, one checks that for 
t ∈ D∗, we have

L(ρt, s) = Lρ(T, s)|T=t = Lρ(t, s).

In particular, for every interior finite character χ = χ1 ⊗ · · · ⊗ χd ∈ X∗
n, we have t =

(χ1(1) − 1, · · · , χd(1) − 1) ∈ D∗ and thus

L(χ, s) = L(ρt, s) = Lρ(t, s), L(χ, 1) = Lρ(t, 1) = L(t).

We conclude that
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∑
χ∈X∗

n

vp(L(χ, 1)) =
∑

χ∈X∗
n

vp(L(χ1(1) − 1, · · · , χd(1) − 1)).

Since the set X∗ is open (and hence semi-algebraic) in W d, Theorem 5.6 in [Mo1] implies 
that the right side is a polynomial in pn and n of total degree at most d, and of degree at 
most 1 in n. Theorem 2.1 is proved. Thus, Greenberg’s conjecture is true in the function 
field case when there is no constant subextension.

We now explain how the above proof implies the result on the p-rank of Kn. Since 
the character ρT is trivial modulo T , the L-function Lρ(T, s) modulo T is the same as 
the zeta function Z(U, s) of U . This gives the congruence

Lρ(T, s) ≡ Z(K0, s)
∏

x∈P−U

(1 − sdeg(x)) = P (K0, s)
(1 − s)(1 − qs)

∏
x∈P−U

(1 − sdeg(x)) mod T.

Replacing T by an interior classical point t = (t1, · · · , tn) in D∗, we deduce

L(ρt, s) = Lρ(t, s) ≡
P (K0, s)
(1 − s)

∏
x∈P−U

(1 − sdeg(x)) mod (t1, · · · , td).

Let �p(t) denote the number of p-adic unit roots of L(ρt, s). Comparing the number of 
p-adic unit roots on both sides, one finds that for every interior classical point t ∈ D∗,

�p(t) = rp(0) − 1 +
∑

x∈P−U

deg(x)

is a constant c independent of t, where rp(0) is the p-rank of K0 which is the number 
of p-adic unit roots of P (K0, s). Theorem 2.2 is proved. Since the p-rank is a geometric 
invariant, that is, independent of the constant extension, it follows that Theorem 1.4 is 
also proved.

4. The case with constant Zp-extension

Assume now that the Zd
p-tower K∞/K has a Zp-subtower of constant extension. Then, 

we can write

K∞ = Fqp∞L∞, Kn = FqpnLn,

where L∞/K is a Zd−1
p -tower with no constant extension. To avoid triviality, we can 

assume that d ≥ 2. Replacing K by Km for some m, we may and will assume that 
the tower L∞/K satisfies the normalization in the previous section and is ramified on 
the non-empty finite set P − U . The zeta function of Kn is then given by pn-th Adams 
operation of the zeta function of Ln. That is,

Z(Kn, s) = Φpn

(Z(Ln, s)) = Φpn(P (Ln, s))
pn ,
(1 − s)(1 − q s)
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where Φpn denotes the pn-th Adams operation. Recall that for a polynomial

H(s) =
m∏
i=1

(1 − αis) = det(I −As) ∈ Zp[s],

we have

Φpn

(H(s)) =
m∏
i=1

(1 − αpn

i s) = det(I −Apn

s).

That is, it raises each reciprocal root (or eigenvalue) to its pn-th power. It follows that

Φpn

(H(s))|s=1 = det(I −Apn

) =
∏

ηpn=1

det(I − ηA) =
∏

ηpn=1

H(η).

Apply the previous interior decomposition proof in the no constant extension case to the 
Zd−1
p -tower L∞/K, we deduce that for each subset S ⊂ P − U , there is a polynomial

PS(TS , s) ∈ 1 + sZp[[TS ]][s] such that

vp(
hn

h0
) =

∑
S �=φ,S⊂P−U

( ∑
χ∈X∗

n,S

∑
ηpn=1

vp(PS(χ1 − 1, · · · , χd−1(1) − 1, (η − 1) + 1))
)
.

The set X∗
S ×W is an open subset of W d(S) ×W = W d(S)+1. By Theorem 5.6 in [Mo1]

again, the right side is a polynomial in pn and n of total degree at most d(S) + 1 ≤ d, 
and of degree at most 1 in n. The theorem is proved.

5. Stability of zeta functions in p-adic Lie towers

In this final section, K is a global function field of characteristic p with constant 
field Fq. We propose several conjectures on possible stability of zeta functions in various 
p-adic Lie towers over K, vastly extending the function field Greenberg conjecture in 
several different directions.

Let GK = Gal(Ksep/K) denote the absolute Galois group of K. Let

ρ : GK −→ GLd(Zp)

be a continuous p-adic representation of GK with infinite image, ramified at finite number 
of primes of K. The image G∞ of this representation is a compact p-adic Lie group of 
dimension dim(G) > 0. The fixed field K∞ of the kernel Ker(ρ) is a Galois extension of 
K with Galois group isomorphic to G∞. That is, Gal(K∞/K) ∼= G∞. For integer n ≥ 0, 
the kernel of the reduction

ρn : GK −→ GLd(Zp) −→ GLd(Zp/p
nZp)
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produces a Galois extension Kn of K whose Galois group is isomorphic to the image Gn

of ρn. This produces a p-adic Lie tower

K∞ =
∞⋃

n=0
Kn ⊃ · · · ⊃ Kn ⊃ · · · ⊃ K1 ⊃ K0 = K, Gal(Kn/K) ∼= Gn,

which ramifies at finite number of primes of K. In the spirit of Iwasawa theory, our 
basic problem is to understand possible stable behavior of various arithmetic properties 
of this tower of global fields Kn as n grows. This naturally raises many interesting open 
problems, already in the simpler abelian case when G∞ = Zp, see the survey paper 
[Wa3]. We extend some of these conjectures to general non-abelian case below. The first 
one concerns the p-ranks and class numbers of this tower of global fields.

Conjecture 5.1. Let K∞/K be a p-adic Lie extension as above. Let rp(n) denote the 
p-rank of Kn and let hn denote the class number of Kn.
(1) (p-Rank stability). There is a polynomial R(x) ∈ Q[x] of degree at most dim(G)
depending on the tower such that for all sufficiently large n, we have

rp(n) = R(pn).

(2) (p-Class number stability). There is a polynomial E(x, y) ∈ Q[x, y] of total degree at 
most dim(G) depending on the tower such that for all sufficiently large n, we have

vp(hn) = E(pn, n).

Our previous results for Zd
p-towers imply that this conjecture is true when the p-adic 

Lie group G∞ is abelian. The conjecture can be viewed as an attempt to extend geometric 
Iwaswa theory to non-abelian extensions. Part (1) of the conjecture can be proved if each 
ramified prime is totally ramified. This provides a positive evidence to part (2) of the 
conjecture which seems significantly more difficult.

For a given K, there are too many p-adic Lie towers, most of them are not natural. To 
state further stability conjectures, we need to assume that the tower K∞/K is natural 
in some sense, that is, arising from algebraic geometry. The tower K∞/K is called al-
gebraic geometric if the corresponding Galois representation ρ arises from a p-adic étale 
cohomology of a smooth proper variety X defined over the global field K. The algebraic 
geometric tower K∞/K is further called ordinary if the variety X is generically ordinary 
over K. An algebraic geometric representation automatically ramifies at finite number 
of primes of K. In the case that X = A is an ordinary abelian variety of dimension g
over K, the first p-adic étale cohomology can be explicitly constructed from the p-adic 
Tate module:

Tp(A) = lim A[pk],

← k
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which gives a g-dimensional p-adic representation of GK. This example is extremely im-
portant, already in the case g = 1, because of its close connection to p-adic automorphic 
forms.

It was conjectured by Dwork [Dw] and proved by the author [Wa1][Wa2] that the 
L-function L(ρ, s) of any algebraic geometric p-adic representation ρ is p-adic meromor-
phic everywhere in s ∈ Cp. This nice analytic property suggests that the p-adic Lie 
tower arising from an algebraic geometric p-adic representation should have good sta-
ble geometric and arithmetic properties. The simplest is the following genus stability 
conjecture.

Conjecture 5.2 (Genus stability). Let gn denote the genus of Kn. Assume that the tower 
K∞/K is algebraic geometric and ordinary. Then there is a polynomial G(x) ∈ Q[x] of 
degree at most dim(G) + 1 depending on the tower such that for all sufficiently large n, 
we have

gn = G(pn).

A major progress toward this conjecture has been made by Joe Kramer-Miller in [Kr]
and in his forthcoming work. Motivated by this conjecture, the number field analogue 
on discriminant stability has been proved recently by James Upton [Up]. If the algebraic 
geometric tower is non-ordinary, then a slightly weaker genus stability is still expected 
to hold as suggested by Kramer-Miller. In this more general case, one would need several 
polynomials Gj(x) ∈ Q[x] (1 ≤ j ≤ m) to express the genus gn such that gmn+j = Gj(n)
for all large n.

Next, we move to the deeper slope stability for algebraic geometric p-adic Lie towers. 
Without loss of essential generality, we can and will assume that the tower has no proper 
constant subextension below.

The zeta function Z(Kn, s) of Kn is a rational function in s of the form

Z(Kn, s) = P (Kn, s)
(1 − s)(1 − qs) , P (Kn, s) ∈ 1 + sZ[s],

where the zeta polynomial P (Kn, s) is a polynomial of degree 2gn and gn = g(Kn)
denotes the genus of Kn. Recall that the class number is given by the special zeta value 
hn = P (Kn, 1) and the p-rank rp(n) is the number of p-adic unit roots of P (Kn, s). 
Thus, the above two conjectures are really about the p-adic stability of some aspects of 
the zeta function Z(Kn, s) as n grows.

A deeper property is the possible stability of higher slopes for the zeta function, not 
just the p-rank which is the slope zero part. To describe this, we write

P (Kn, s) =
2gn∏

(1 − αi(n)s) ∈ Cp[s], 0 ≤ vq(α1(n)) ≤ · · · ≤ vq(α2gn(n)) ≤ 1,

i=1
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where the q-adic valuation is normalized such that vq(q) = 1. These rational numbers 
{vq(α1(n)), · · · , vq(α2gn(n))} are called the q-slopes of Kn. They are symmetric in the 
interval [0, 1] by the functional equation. For fixed rational number α ∈ [0, 1], let rp(n, α)
denote the multiplicity of the slope α in the slope sequence {vq(α1(n)), · · · , vq(α2gn(n))}. 
For α = 0, rp(n, 0) = rp(n) is simply the p-rank of Kn. The integer rp(n, α) is called 
the slope α-rank of Kn. We would like to understand how the slope α-rank rp(n, α) and 
more generally how the full slope sequence vary when n grows. The following conjecture 
has three parts with increasing level of difficulty.

Conjecture 5.3. Assume that the p-adic Lie tower K∞/K is algebraic geometric and 
ordinary with no proper constant subextension. To avoid triviality, assume that the genus 
sequence gn is unbounded as n grows.
(1) (Slope uniformity). The q-slopes

{vq(α1(n)), · · · , vq(α2gn(n))} ⊂ [0, 1] ∩Q ⊂ [0, 1]

are equi-distributed in the interval [0, 1] as n goes to infinity.
(2) (Slope α-rank stability). For each fixed rational number α ∈ [0, 1], there is a polyno-
mial Rα(x) ∈ Q[x] of degree at most dim(G) depending on the tower such that for all 
sufficiently large n, we have

rp(n, α) = Rα(pn).

(3) (Slope stability). There is a positive integer n0 depending on the tower such that 
the re-scaled q-slopes {pnvq(α1(n)), · · · , pnvq(α2gn(n))} for all n > n0 are determined 
explicitly by their values for 0 ≤ n ≤ n0, using a finite number of arithmetic progressions.

If the tower is non-ordinary, one expects similar and possibly slightly weaker stability 
results. If the tower does not come from algebraic geometry, the conjecture is false in 
general. A remarkable recent work of Kosters–Zhu [KZ] suggests that a slightly stronger 
condition than the genus stability would imply the slope stability conjecture. In fact, they 
have proved this implication when K = Fq(x) is the rational function field and G∞ = Zp

in [KZ] and in their forthcoming work. We do not have a precise formulation about 
the harder slope stability conjecture in such a generality yet. The essence is a finiteness 
property that all the slopes for large n are determined by a finite number of arithmetic 
progressions. Needless to say that this conjecture (and even the weaker α-rank stability 
conjecture) is wide open, but interesting progress has been made in various special cases 
when the p-adic tower K∞/K is abelian, see [DWX][RWXY][Li][KZ]. In the case that the 
tower is the Igusa Z∗

p-tower over a modular curve, the above slope stability conjecture is 
partially related to the ghost conjecture [BP] and the spectral halo conjecture on p-adic 
modular forms, see [LWX][WXZ] for recent progress and further references.
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