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ABSTRACT. In this note an improvement of the Katz’s bound on the number
of elements in a finite field with given trace and norm is given. The improve-
ment is obtained by reducing the problem to estimating the number of rational
points on certain toric Calabi-Yau hypersurface, and then to use detailed co-
homological calculations by Rojas-Leon and the second author for such toric
hypersurfaces.

1. INTRODUCTION

Let p be a prime and F; be the finite field of ¢ elements of characteristic p. Given
a,b € F,, and positive integer m > 2, let

Ny (a,b) = #{a € Fgm

Trg,.. /v, (@) = a,Normg_,,, /5, (@) = b}.

Motivated by various applications, it is of interest to give a sharp estimate for the
number N,,(a,b). The case b =0 is trivial.
Katz [2] proved the following bound:

Theorem 1.1. Let a,b € FZ andn >1. Then
qn+1 -1
q(qg—1)

This bound was used by Moisio [3] to improve some cases of the explicit bound
in Wan [5] on the number of irreducible polynomials in an arithmetic progression
of Fy[z]. In the case n + 1 = 3, the Katz bound also plays a significant role
in Cohen and Huczynska [1] for their proof of the existence of a cubic primitive
normal polynomial with given norm and trace.

If a = 0, Katz’s bound can be improved in an elementary way using character
sums [3]:

|Nny1(a,b) — | < (n+1)g"7.

"1

(Nos1(0,0) = | < (d = 1)q "7,

where d = ged(n+ 1,9 — 1).
In this note, we give a uniform improvement of Katz’s bound in the case a # 0.

Theorem 1.2. Let a,b € ]FZ andn >1. Then

n— 1 n—1

q
N, ,0) — < 2,
|Nn+1(a,b) q71| ng
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In the case that n + 1 is a power of p, this improvement was first proved by
Moisio [3] using Deligne’s estimate for hyper-Kloosterman sums. Moreover, in the
case n + 1 = 3 also the bounds

3 [‘”13_2*/5} < Ny(a,b) <3 {“1;2\@ .

were obtained in [3] by using the Hasse’s bound for elliptic curves together with a
divisibility result. In corollary 2.4, we extend such divisibility bounds to Ny(a,b),
where ¢ > 3 is any prime.

In the general case, our proof of Theorem 1.2 consists of two steps. The first step
is to reduce it to estimating the number of IF,-rational points on certain toric Calabi-
Yau hypersurface over F,. The second step is to use the detailed cohomological
calculations in Rojas-Leon and Wan [4] for such toric hypersurfaces. In the case
n + 1 = 3, the above improved bounds should significantly reduce the amount of
calculations in [1].

2. PROOF OF THEOREM 1.2

Let u = b/a™*! € F;. Let N(u) denote the number of F,-rational points on the
toric hypersurface

Y,: Xi+ -+ X+ ———-1=0.

Lemma 2.1.

Noi(ab) = L1y (N(u) - - <—1>”> .

Proof. Write the equation of Y, in the form

X1+ +Xpp1r =1
Xl"'Xn+1 = Uu.

Let 9 be the canonical additive character of F,. Now

ga—DN@) = > D par -+ — 1) x(uT ey wg),

L1, Tn41 U X

where @1, ..., Ty 41 Tun over Fy, v runs over Fy, and x runs over the multiplicative
character group of IFy.
Let G(x) denote the Gauss sum

Gx) =Y v(@)x(=).

z€F?
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It follows that

glg=HN@w) = (¢=)""+ %@b(—v) > x(w) nl_i[ll ;MU%‘)X(H? )
R e e EZ:XT VTG00
(2.0.1) = -1 ZG )" G( ”vjlo)x((—l)”“w-

Next we express Np11(a,b) in terms of Gauss sums. We use the abbreviated
notations Tr and Norm in place of Trg ., /v, and Normg ., /g, . Let ¢pi1 = ¢poTr

be the canonical additive character of Fyn+1 and let o € Fyns1 with Tr(a) = 1.
Now,

q(q = 1)Npyr(a,b) = Z Zw (Tr(z — aa)) Zx ~'Norm(x))

weF

= Z¢ —aq))zx lenﬂ (vz)x(Norm(z))
= —1+Zw —av ZX Zl/fnﬂ WU (Norm(x ))

v#0
—z/
vz 1+Zw —av) ZX ntl Z¢n+1 x(Norm(z)),
v#0
since Norm(v) = v" 1,
By the Davenport-Hasse identity the inner sum

Zd)nﬂ x(Norm(z)) = (=1)"G(x)"*",

and therefore
q(¢ —1)Nyy1(a,b) = ¢ 71+ ZG "+1 Zi/} —av) "+1 (v)
v#£0
= -1+ (- ZG G X((—1)" b fa .

Comparing this expression with (2.0.1), one finds that

n+1 n+1
"t -1 (¢—1) )
Npi1(a,b) = —+ + —1”<Nu - .
(@) =gy TN =TT
One checks that this is the same as the expression in Lemma 2.1. ([
This lemma reduces Theorem 1.2 to the following

Theorem 2.2. Let u € JF;. Then

|N(u) _ (q - 1)” - (_1)n| < nqﬂ;l_
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Proof. Over the algebraic closure F,, we can write u = A\~("*1) for some non-zero
element \. Then Y, is isomorphic to the toric hypersurface

1
Xo: X1+ 4 X+ ——— — A=
A X X e 0

whose zeta function over a finite field was studied in detail in [4], see [6] for more
elementary description of the results. For a prime ¢ # p, the ¢-adic cohomology

Hg(Yu ® F(N Qe) g Hg(Xk ® ]an QZ)
was calculated in Theorem 2.1 in [4]. In particular, we have

HI(Y,®F,,Q) =0, j<n—1lorj>2n—1,

HI(Y, 9, Q) = QY ) n—1-j), n<j<m-2,
and there is an exact sequence of Galois modules
0—Qp - H'" Y, ®F,, Q) — M, — 0,
where M, is of rank at most n and mixed of weight at most n — 1. It follows that
| Tr(Frob, |M,)| < ng"=" .
By the f-adic trace formula,
N(u) = 2Tf(—l)ﬂ'( " )q(j_(”_l)) + (=1)"1n 4 (=1)" "' Tr(Frob, |M,).
j—n+2 we

Jj=n

Replacing j by j +n — 2, one finds

N(u)=> (-1)"" (”) g¥™ 4+ (=1)"'n + (=1)" "' Tr(Frob, |M,,).

: J

j=2

The theorem follows. U
Remark. If u # (n+ 1)~ ie., A & {(n + 1)¢|¢"! = 1}, then M, is pure

of weight n — 1 and of rank n. If u = (n+1)~("*1 (necessarily p fn + 1), then the

rank of M, drops by 1 and thus
| Tr(Frob, |M,)| < (n —1)¢"= .

If u = (n+1)~("*1 and n is even, then one of the Frobenius eigenvalues has weight
n — 2 (instead of n — 1), and thus

| Te(Froby | M,)| < (n —2)¢"7 +¢"7 .
All these follow from Proposition 2.6 in [4].
Corollary 2.3. Let u = (n+ 1)~V Then

|N(U) _ (q — 1)71 — (_1)71 < n-l )

If n is also even, then
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Corollary 2.4. Let £ > 3 be a prime number. Let a,b € F;. Then, we have

(€= 1)qU2
14

£—1

q = /—1 (6—2)/2 q
0| (6 )a < Ny(a,b) < 0 | =

£=1_q

Proof. Let R be the number of ¢ € F, such that fc = a and ! =b. Tt is clear
that R is either 0 or 1. Since ¢ is a prime, Ny(a,b) — R is divisible by ¢. If R = 0,
the corollary is the consequence of Theorem 1.2 and the divisibility of Ny(a,b) by
L.

Assume now that R = 1. Since a # 0, £ cannot be p. In this case, we have
a=le, b= ct and thus u = b/aé =(te F,. We can apply the stronger estimate
in the previous corollary to deduce the desired inequalities for Ny(a,b).
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