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0. Introduction

Let F, be a finite field of characteristic p > 0 with ¢ elements. Fix an algebraic closure F of
F,. Throughout this paper, for any positive integer k, F» denotes the subfield of F of degree k
over F,. Unless otherwise stated, schemes, morphisms and sheaves defined on the base field F, are
denoted by letters with subscripts 0 and we indicate the base extension from F, to F by dropping
the subscripts 0. Schemes and morphisms are separated and of finite type.

Let fo : Xo — Y, be an F-morphism of schemes over F,. Let d be a positive integer. For any
positive integer k, let

Ni(fo,d) = #{z € Xo(Fpa)| fo(o) €Yo(Fp)l = Y #f5 (W)(Fpra).
YEYo(F 1)
It is called the d-th moment of the morphism fo ® F x. We define the d-th moment zeta function

of the morphism fo to be the formal power series

Z(fo,d,1) = exp (; Wtk).

The sequence Z(fo,d,t) (d = 1,2,---) measures the distribution of the closed points of Xy along the
fibres of fo. For d =1, Z(fo,1,t) = Z(Xo,t) is simply the classical zeta function of the scheme Xj.

Thus questions about the numbers Ni(fo,d) (k =1,2,---) translate into questions about the d-th



moment zeta function Z(fy,d,t). The function Z(fy,d,t) is a rational function whose reciprocal
zeros and reciprocal poles are Weil ¢g-integers. Natural further questions are then about the weights
and slopes of the zeros and poles, the total degree of Z(fo,d,t) and its variation as d varies. The
p-adic limit of Z(fo,d,t) as d grows in certain p-adic direction leads to Dwork’s unit root zeta
function, which is a p-adic meromorphic function ([10], [11]). Thus, for finite d, the moment zeta
function Z(fo,d,t) can be viewed as an algebraic approximation to Dwork’s transcendental unit
root zeta function, which is some sort of infinite moment zeta function. It is hoped that a good
understanding on Z(fo, d,t) for finite d would lead to improved information on Dwork’s unit root
zeta function.

In the present paper, we study the moment zeta function Z(fy,d,t) for finite d, its dependence
on d and its various generalization. The variation of Z(fy,d,t) as the new arithmetic parameter d
varies provides a new dimension of arithmetical problems to study.

To give an example of our results, we consider the case of Artin-Schreier hypersurfaces. Let
9(Z1,. -, Tn,Y1,-..,Yn) be a polynomial with coefficients in F,, where n,n’ > 1. Let Xy be the

hypersurface in A2t *1 defined by the equation

p —
Ty — o _g(wla"'amn7y17"'7yn')7

and let fo : Xog — Agl be the projection to the y-coordinates. Then the number N (fo,d) is the

number of elements of the set
{0y s T, Y15y Ynr)|2h — 0 = 9(T1, -+ o Trs Y15e -y Y ), Ti € Far, y; € Fi}
Heuristically (for suitable g), we expect
Ni(fo,d) = gtk 4 O(gldmtnk/2),
Deligne’s estimate [2] on exponential sums implies the following result for d = 1.

Theorem 0.1. Given g as above, we write ¢ = ¢ + gm—1+ - - -+ go, where each g; is homogeneous
of degree i. Assume that the leading form g, defines a smooth projective hypersurface in P77 ~1,
and assume that p does not divide m. Then for d = 1 and every positive integer k, we have the

following inequality

INe(fo, 1) — g F™F| < (p — 1) (m — 1) glnmOR/2,



What can be said about d > 1?7 To answer this question, we introduce the following terminology:

Definition 0.2. Let d be a positive integer and let g be a polynomial as above. We define the

d-th fibred sum of g to be the following new polynomial

@Zg:g('rll:-"7xn17y17"'7yn’) +"'+g(x1d7-"7xnd7y17"'7yn’)'

We have the following estimate on N (fo,d).

Theorem 0.3. Given g as above, we write ¢ = gm + gm—1+ - - -+ go, where each g; is homogeneous
of degree i. Assume that EBzgm defines a smooth hypersurface in P?+n'~1 and assume that p does

not divide m. Then, for every positive integer k, we have the following inequality

| Ni(fo,d) = ¢! 0% < (p — 1) (m — 1) glintn O,

For fixed d and large ¢*, the above estimate is sharp in general. On the other hand, for fixed
¢* and large d, the above estimate should be quite weak since the constant (p — 1)(m — 1)md+7’
on the right-hand side of the above inequality grows exponentially in d. Thus, an interesting
problem is to obtain sharp estimate for large d as well. In this direction, we shall show that the
above exponential constant (p — 1)(m — 1)+ can be replaced by c(p, g)d3™ D" =1 which is a
polynomial in d, for some constant c¢(p, g) depending only on p and g. We do not have an explicit

value for c(p, g) yet.
Example 0.4. Consider the case that

g($7y) = gl,m(xb .. 7xn) +g2,m(y17 .- 7yn’) + gSmfl(xay)a

n' —1

where g1, defines a smooth hypersurface in P"~!, g5 ,, defines a smooth hypersurface in P
and g<m—1 is a polynomial of degree at most m — 1. It is then straightforward to check that @jgm
defines a smooth hypersurface in P4"*+"'~1 if and only if d is not divisible by p. Since the condition
for the fibred sum to define a smooth hypersurface is Zariski open, there exist many more examples

of g to which Theorem 0.3 applies if d is not divisible by p.

The above moment zeta functions can be generalized to moment L-functions as follow. Through-

out this paper, we fix a prime number [ distinct from p. Let fo : Xo = Yy be an F,-morphism



of schemes over F,. Let Fy be a constructible Q;-sheaf on Xj, and let Fx : X — X and
Fx : FxF — F be the geometric Frobenius correspondences. Let d be a positive integer. For any
positive integer k, set
Sk(fo, Fo,d) = > Tr(Fy?, Fz).
z€Xo(F jka), fo(z)€Yo(F k)
This is called the d-th moment of the morphism fy ® F associated to the sheaf 7. We define

the d-th moment L-function to be

L(f05f0;d, t) = exp(i WHc) ‘

k=1
More generally, for any object K in the triangulated category D?(Xy, Q,) defined in [2] 1.1.2, we

define the d-th moment L-function of K to be
L(fo,K,d,t) = HL fo Hi(K), d, 1) V",

Note that the d-th moment L-function of the trivial sheaf Q, is the d-th moment zeta function,
and for d = 1, the moment L-function L(fy, Fo,1,t) coincides with the classical Grothendieck
L-function L(Xg, Fo,t). Define the total degree of a rational function to be the sum of the number
of zeros and the number of poles counted with multiplicities. We have the following result for

moment L-functions:

Theorem 0.5. The moment L-function L(Xg, Fo,d,t) is a rational function whose total degree is

bounded by the polynomial ¢y (fo, Fo)de2{/o-70) for two positive constants ¢;(fo, Fo) (i = 1,2).

We can further generalize moment L-functions to the situation where more than one morphisms
are involved, generalizing the partial zeta function in [12]. Let dy, ..., d, be positive integers, and

let d be a common multiple of them. Let X, X(gl), cee, XO") be schemes over F, and let
firXoo X (i=1,...,n)

be F,-morphisms. For any positive integer k, let Ny (Xo; f1,-.., fn;d;d1,- .., d,) be the number

of elements of the set

{z € Xo(Fra)|f1(2) € XV (Fpr)s -, fulz) € XE (F gran) ).



We define the partial zeta function to be

Z(Xo: frr- o furdsdr, . dnt) = exp(z

Nk(XO;fla---afn;d;dla---adn)tk>
k=1

k

Let Fo be a constructible Q;-sheaf on Xy, and let Fx : X — X and Fx : F§F — F be the
geometric Frobenius correspondences. For any positive integer k, let
Sk (Xo; Fo; fiy vy frydida,.. . dy) = > Tr(FX, Fa).
2E€X0(F gra),fi(2) €XS (F ra; )
This is some sort of partial character sums. We define the partial L-function of Fo to be

> Sk(Xo; Fos f1se s fasdidi, ... dn
L(Xo;fmfl,...,fn;d;d1,...,dn;t)ZeXp(Z eXoi Foi fi, -2 Fuidi )tk>.

k
k=1

Theorem 0.6. The partial L-function L(Xo; Fo; f1,---, fn;d;di,-..,ds;t) is a rational function.
If the sheaf Fy is mixed, then the reciprocal zeros and reciprocal poles of the partial L-function

are Weil g-integers.

This extends the rationality result of the partial zeta function in [13]. The proof in [13] forces the
partial zeta function to be rational without giving a cohomological formula which would naturally
explain the rationality. Our new proof here gives such a natural cohomological formula for partial
L-functions.

One of our motivations to introduce partial zeta functions and partial L-functions is to gen-
eralize moment zeta functions and moment L-functions. Another motivation (see [8] for a special
case) is for possible applications in many other concrete problems in number theory, coding theory
and combinatorics. It is well known that good estimates of various partial character sums play
a vital role in analytic number theory. For arbitrary partial sums, the problem is too difficult.
The partial sums in this paper are not arbitrary since we sum over a subset with some structure
(such as subfields of a field), not over an arbitrary subset. Thus, one could expect good general
result, as Theorem 0.6 confirms. In addition to its theoretical significance, we believe that a good
understanding of the partial L-function would greatly increase the flexibility and applicability of
the existing powerful tools in various applications.

Once we know the rationality of the partial L-function, one further basic question is about

the dependence of its total degree on the parameter d. For moment L-function, Theorem 0.5



shows that the total degree can be bounded by a polynomial function in d. For general partial
zeta functions and partial L-functions, we do not know if their total degrees can be bounded by
a polynomial function in d. Another further basic question is about the weights of the zeros and
poles of the partial L-function. This is apparently very complicated in general. We shall analyze

interesting examples arising from certain partial exponential sums.

This paper is organized as follows: In §1, we give various formulas for the moment L-function
and we estimate its total degree. In §2, we prove that the partial L-function is rational using a
geometric construction of Faltings. In §3, we apply the general theory to study partial exponential

sums and obtain result which implies Theorem 0.3 above.
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1. Moment L-functions

Let fo : Xo — Yo be an F,-morphism of schemes over F,. Let Fy be a constructible Ql—sheaf
on Xy, and let Fix : X —+ X and Fx : FxF — F be the geometric Frobenius correspondences.

Let d be a positive integer. For any positive integer k, recall that

Sk(fo, Fo, d) = > Te(F}?, Fz),
z€Xo(F k), fo(z)EYo(F )

and the d-th moment L-function is defined to be

= Sk(f07f07d) k
Ut o) = exp(32 0D )

k=1
For any finite dimensional Q,-representation G — GL(V) of a group G, define the d-th Adam

operation [V]? of V to be the virtual representation given by

d
V14 => (=17 §(Sym? ™V @ ATV),

=1



where on the right-hand side, the sum is taken in the Grothendieck group for the category of finite

dimensional Q,-representations of G. For any g € G, we have

Tr(g, [V]d) = Tr(gd, V),

det(1— gt, [V]%)

det(1 — g%, V).

For any constructible Q;-sheaf Fy on Xy, define the d-th Adam’s operation [Fo]? of Fy to be the

virtual sheaf given by
d

[Fol* =D (=1)71j(Sym™ ™9 Fo @ N F),

j=1
where on the right-hand side, the sum is taken in the Grothendieck group for the category of
constructible Q;-sheaves. Note that Sym™F, (resp. A"Fy) can be defined to be the direct factor
of ®"F, using the projection X > 7 (resp. - > sgn(r)7), where the sum is taken over all per-
mutations 7 of {1,...,n} and eacL permutationTT acts on ®"Fy by permuting the factors in the
tensor product.

There are many different formulas for the d-th Adams operation in terms of various symmetric
powers and exterior powers. The one that is typically used is Newton’s formula expressing a power
symmetric function in terms of elementary symmetric functions. Newton’s formula has a lot of
redundancy and is deficient for some applications. For instance, it contains a term which is the
d-th tensor power. This term is too big for some applications such as in the proof of Dwork’s
conjecture. Here, it would give an exponential bound in Theorem 0.5 instead of the polynomial
bound. The above formula we use for the d-th Adams operation has certain minimality property
which is important for us here and which is necessary for the proof of Dwork’s conjecture, see
section 4 in [9] for an explanation. It is also the one used in Katz’s paper [6].

Given a virtual sheaf Fo = Gy — Hg, where Gy and H, are (true) Q,-sheaves, we define the
cohomology of Fy to be the virtual representation

D (V) HUX,G) = D (-1 Hi(X, H)
i i
of Gal(F/F,), and we can talk about the trace and the characteristic polynomial of the geo-
metric Frobenius correspondence F'x on this space. By abuse of notations, we write the above

virtual Gal(F/F,)-representation as Y (—1)!H!(X,F) and write the trace and the characteristic



polynomial of Fx on this space by > (—1)"Tr(Fx, H:(X, F)) and []det(1 — Fxt, H(X, F))=n'

respectively.

Theorem 1.1.
(i) We have

2rel.dim( f)

> S () T(F, (RAT)y)

yeYo(Fyx) =0

Sk (fo, Fo,d)

2rel. dlm(f)

S Y C)ITEE, (RAF;)

yEYo(F )  J=0

2dimY 2rel. dlm(f)

Z Z —)HITe(FE, HI(Y, [R’ £,F]Y)),

where rel.dim(f) is the relative dimension of the morphism f and Fy is the geometric Frobenius
correspondence.
(if) We have

2dimY 2rel.dim(f)

L(fo. Fo,dt) = [[ I det(t = Fyt, Hi(Y, (R o)) 0"
2rel.dim(f) ‘
= H L(Yy, [R fo Fol®, 1)
j=0
2rel.dim(f)

[T II detn - Fetes), (7 7)) 0"

J=0  y€|Yo|

H L fo ®k(y ( )d,]_-(],tdeg(y))’
Y€|Yo|

where L(Yy, [R? foFol?,t) is the Grothendieck L-function for the virtual sheaf [R? fo1.5o]? on Yj,
|Yo| is the set of Zariski closed points in Yp, and for any y € |Yp|, F, is the geometric Frobenius at
y, k(y)q is the field extension of the residue field k(y) of degree d, and L(f;(y) Or(y) k() a, Fo, t)
is the Grothendieck L-function for the scheme f5(y) ®k(y) k(¥)a = Xo ®y, k(y)a over k(y)a and

the restriction of the sheaf Fq on this scheme. In particular, L(fo, Fo,d,t) is rational.
Proof. (i) We have

Sk(fo, Ford) = > > Te(FEL Fa).

yEYo(F ) e fo ' (y) (F gha)



By the Grothendieck trace formula, for each y € Yy(F ,x), we have

2dim(51(7))

Y TELF) = Y (U T(F (RAF)).

2€f5 H(y)(F gra) =0
So we have
2rel. d1m
Se(fo, Fo,d) = ) Z DITe(F§?, (R f1F) )

yEYo(Fpp) =0
2rel.dim( f)

> > (1) Te(FE, (R AF))y).

yEYo(F ) =0

Il

Again by the Grothendieck trace formula, we have

2dimY
> T(FL(RAFY) = Y (1) Te(FY, HI(Y, [R AF]Y).
YEYo(F 1) i=0

So we have
2dimY 2rel.dim( f)

Sk (fo, Fo,d) 2 Z (-1 T(Fy, H(Y, [R’ fiF]7)).

(ii) By the definition of moment L—functlons, we have

d oo
t= 0 L(fo, Fo,d,t) = ;Sk(an}-O;d)tk

By the last equality of (i), we have

2dimY 2rel.dim(f) oo

> Skl fo, Fo, d)tF = Z Z Z 1) Te(FE, HA(Y, [R? fiF)))t*
k=1 s

2dimY 2rel. dlm(f)

= Z Z “”“t d - Indet(1 — Fyt, H(Y,[R’ fiF]%).
So we have
d 2dimY 2rel.dim(f d
z+ I+1 7 ] d
td—lnL(fo,fo,d t) Z Z o lndet( — Fyt, H(Y, [R? fiF]Y).

So the first equality of (ii) holds. The second equality follows from the Grothendieck formula for

L-functions:

2dim(Y)
L(Yo, [R foFol®,t) = [[ det(l — Ft, Hi(Y, [R/ fiF]*)"

i=0

1)i+1



The third equality follows from the definition of the Grothendieck L-functions:

L(Yo, [R foFol*,t) =[] det(1 — Fyt'es®, ([R fiF]%)g)
Y€E|Yo|

= [ det(1 - Fftie®) (R £,7)5) "
ISHGY

The fourth equality again follows from the Grothendieck formula for L-functions:

2dim(f~1(7)) _
LU ) ®r) k@as Fo,t) = J[ det(l — Fit, (R fiF)) V"™

=0

Lemma 1.2. Let

VBV 5 L5 B By,

be a sequence of isomorphisms of vector spaces and let

o: ViV ®@ Vi1 2V ®--- 0V,
be the homomorphism defined by

0(54®81® - ®84—1) =51 QR 54-
Then we have

Tr(pr - da, Vi) =Tr((1 ® - @ pg) 00, Vg @ V1 @ - - @ Vy_1).

Proof. Fixabasis{ey,...,en} for V4. Then the set {¢q(e1), ..., da(en)} is a basis for V1, the set
{Ba-10ale1),-- ., Pa—14a(em)} is a basis for Vy_s, ..., and the set {¢a -~ pa(e1), ..., ¢2 - dalem)}

is a basis for V7. The homomorphism
(1@ Qpg)oc: VgV ® - QVy1 2 VeV ®---®@ Vi
can be described by

i, @ (2~ dales)) ® (¢3-- - dales;)) ® --- @ dalei,)
= (1 dalei)) ® (P2~ daleis)) ® (@3-~ Palei)) ® --- ® palei,)-

10



Assume ¢; -- - da(e;) = i aiiey. Then (¢1 ® --- ® ¢q) o o can be described by

=1
€i, ® (¢2- - Palei,)) ® (3~ daleis)) ® -+ @ dales,)
B Y aigier @ ($2- - daleiy)) ® (93 -+~ Paleq,)) @ -+~ ® dalei,)-
i'=1

From this description, one get

Tr(1 @ - Q¢a) oo, Va@ Vi ®@--- @ Vy_1) =Zaii=Tr(¢1"'¢d,Vd)-
i1

Let Zy = Xo Xy, X+ Xy, Xo be the d-fold fibred product of Xy over ¥, and let Gy be the
sheaf on Zy defined by

Go =piFo® - ® pyFo,

where p; : Xo = Yy (i = 1,...,d) are the projections. Let o : Zg — Zp be the automorphism

defined by the shifting

oo : Xo XYO"'XYOXO - Xo XYO"'XYOXO;

(5171, P ,:L“d) = (md,ml, A ,.’L‘d_l),
and let og : 05Go — Go be the morphism of sheaves defined by the shifting

00 :pgFo®@piFo®---®@py_1Fo — piFo® - ® pgFo,

S4a®S81V---Q®sg1 — 51 -QSq4.

Lemma 1.3. We have

Se(fo, Fo,d) = > Tr(Fy, Fa)
2€Xo(F ka); fo(z)EYo(F )

= > Tr(F}o,G:).

2€Z(F), Fko(z)=z

Proof. For any point z € Xo(F ) with the property fo(z) € Yo(Fgx), the point

2= (2, FE (@), FR* D (@)

11



is a point in Z = X xy --- Xy X and it has the property that Fio(z) = z. Conversely let
z = (x1,...,24) be a fixed point Fio in Z = X xy --- xy X, where z; € X(F) (i = 1,...,d).
Then we have

(F¥(z4), Fi(21), ..., Fr(24_1)) = (@1, .., 2a),
that is,

FY(z1) =m2,...,F¥ (x4 1) = xa, F (24) = 21.
This implies that F%¥(z,) = z,, that is, z; € Xo(Fxa). On the other hand, since z is a point in
the fibred product of X over Yy, we have f(z1) = --- = f(z4). Set y = f(x;). Applying f to
the equation F% (z1) = z2, we get F%(y) =y, that is, y € Yo(Fy ). Therefore z; is a point in
Xo(Fgra) with the property fo(z1) € Yo(Fgr). This shows that

z e (2, Fi (@), Fi (@)

defines a one-to-one correspondence between the set of points x € Xo(Fxa) with the property
fo(x) € Yo(F i) and the set of fixed points of Ffo.

Let = be a point in Xo(F ) with the property that fo(x) € Yo(F,x) and let
k(d—1
2= (@, Ff@),.... ;" V(@)

be the corresponding fixed point of Ffo in Z. Note that the linear map FX? : F; — F; is the
composition

k Fk k

Fa = Frragz) Iy Frosta=1 (3 %% r,
Using Lemma 1.2, one can show
Te(FY, F5) = Te(Fyo,Gs).
Lemma 1.3 follows.

Recall the following well-known trace formula:

Lemma 1.4. Let Zy be a scheme over Fy, let 0g : Zyg = Zy be an F-morphism of finite order, let
Go be a sheaf on Zj, and let o¢ : 05Go — Go be a morphism of sheaves over 0. For any positive

integer k, we have

2dimZ
TH(Fbo,G) = 3 (~1)Te(Fho, Hi(Z,G).
2€Z(F),Fko(z)=2 =0

12



From Lemmas 1.3 and 1.4, we get the following:

Corollary 1.5. Notation as above. We have

Sk (fo, Fo,d) = > Tr(FY, Fs)
2€Xo(F k), f(2)€Yo(F jka)
2dimZ

= Y (-1)Te(Ffo, H(Z,9)).
=0
Theorem 1.6. Notation as above. For each d-th root of unity u, let Hi(Z,G), be the eigenvector

space of o acting on H:(Z,G) with eigenvalue u. Then we have

2dimZ

Selfo, Ford) = 3 Y (“DWI(FS, HA(Z,G),),
i=0 pd=1
2dimZ ' -
L(fo, Fo,dyt) = [ [ det(t — Fzt, Hi(Z,G),) D" .
i=0 pd=1

Proof. Obviously o has order d. So all the eigenvalues of o on H!(Z,G) are d-th roots of unity,

o acts on each H(Z,G), by scalar multiplication by p, and
H(Z,G) = @ HAZ,G)u

Since o is defined over F,, F; commutes with 0. Hence each H:(Z, G),, is invariant under the action
of Fyz. Let Aiu1, .- -, Aiuk;, be all the eigenvalues of F; on Hi(Z,G),, where ki, = dimH!(Z,G),.
We have

Tr(Fjo,Hi(Z,G)) = Y Z)‘w”

d1]1

So by Corollary 1.5, we have

2dimZ

Sk(fo, Fo,d) = Z ZZ R
i=0 pid=1j=1
2dimZ
= Z Z VuTe(FE, H(Z,G),).
i=0 pd—1

By the definition of the moment L-function, we have

d oo
t=In L(fo, Fo,d,t) = ;Sk(fo,fo,d)t’“

13



So we have

co 2dimZ

d
t- I L(fo, Fo,dyt) = Sy ZZ )INE ut®

kll—opdul

2dimZ

Sy Z 1) pt— In(1 = Aiyjt)

i=0 pd=1j=1

2dimZ

3 Y (-t lndet( — Fzt, H(Z,G),),

10,;,41

that is,
2dimZ

d 7 7
t%InL(fo,fo,d,t)= S (- +1,ut—1ndet( — Fzt, H(Z,G),.).

=0 ”d_l

Our assertion follows.

For any finite dimensional representation G — GL(V") of a group G, consider the d-fold tensor

product representation V®9¢. The shifting operator
o VR QVaVR RV, 8008 Q84158 Q- 5q

is G-equivariant. For any g € G, denote the action of g on V®? also by g. Applying Lemma 1.2 to
the sequence of homomorphism

viva... Ly,

we get

Tr(g?, V) = Tr(g 0 0, V).

For any d-th root of unity u, let Vl?d be the eigenvector space of o on V®9 corresponding to the

eigenvalue u. Then Vﬂ®d is invariant under G, o acts on Vﬂ®d by multiplication by u, and

_ ®d
- @ Vu :
pi=1

So we have
Tr(goo, VE) = Y uTr(g, V;2%).
ni=1
Hence

Tr(g?, V) = Y uTr(g,V;2%.

d—1

14



Similarly, for any constructible Q;-sheaf Gy on Yy, we have a shifting operator ¢ on g(?d. For any

d-th root of unity, define (G¥%),, to the eigensheaf of o corresponding to the eigenvalue .

Theorem 1.7.
(i) We have
2rel.dim(f)
Sk(f();]:();d) = Z Z Z l,LTI‘ FY?(RJf' ),u,y)

pd=1yeYo(F k)

2dimY 2rel.dim(f)

Z Z Z V)™ uTe (P, HI(Y, (R AF)$Y).

(if) We have

2rel.dim(f) .
L(fo, Fo,d,t) = H H L(Yo, (R fyFg) 2%, 1)~ 1)
j=0 p,dzl

2dimY 2rel.dim(f)

= H H H det(l — Fyt, Hé(Y, (ij!]:‘)g)d))(_l)iﬁ-j+1ul
1=0 . a_

Proof. By Theorem 1.1 (i) and the discussion above, we have

2rel.dim( f)

> S (1) TR (R AF)y)

yEYo(F i)  §=0

Sk (fo, Fo,d)

2rel.dim( f)

Z SN (RVium(FEE, (R AF)EL)

?=1yEYo(F ;1)

2rel.dim( f) 2dimY .
= Z SN ()M, HAY, (R AF)PY).
pi=1 =0

So

k=1

k (pj ®d (—1)p
2rel.dim(f) oo eYOZ(:F k)Tr(Fy, (R HF) i)

= II X t*
j=0 pi=1

k=1

2rel.dim( f)

= I I £, (R £F)&4 00k

2rel.dim(f) 2dimY o
- H I II det@ - Byt Hi(Y, (R AF)E4)) D0,
pd=1 =0
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Define the total degree of a rational function to be the sum of the number of its zeros and
the number of its poles counted with multiplicities. In the following, we estimate the total degree
of L(fo,Fo,d,t). We need the following lemma, which was already proved in Katz-Sarnak [7] for
smooth affine X and lisse sheaf F. The general case can be reduced to that case by decomposing
X into a disjoint union of smooth affine subschemes of X so that the restriction of F to each piece

is lisse. For the reader’s convenience, we include a related proof.

Lemma 1.8. Let k be a separably closed field and let X be a scheme of finite type over k. Suppose
[ is a prime number distinct from the characteristic of k. Let E be a finite extension of Q;, let Rg
be the integral closure of Z; in E, and let kg be the residue field of REg.

(i) For any torsion free constructible Rg-sheaf F on X, we have

dimp(H (X, F) ®r, E) < dim.,H (X,F ®g, kE),

XC(X7‘7:®RE E) = XC(X7‘7:®RE HE)v

where

2dim X ) )
Z (_l)zdlmE(H;(Xa ]:) ORg E)a
=0
2dim X
XC(X,]:(X)RE IQE) = Z (—l)zdimHEHz(X,]:@RE IiE)
=0

XC(X)f®RE E)

are the Euler characteristics.
(ii) Let X' — X be a finite Galois étale covering. Then there exists a constant C' depending
only on X' — X such that for any 7 and for any locally constant constructible kg-sheaf F whose

restriction to X' is a constant sheaf, we have
dim,, H:(X,F) < C - rank(F).

Proof. (i) Let m be a generator of the maximal ideal of Rg. Assume F corresponds to the

projective system (F,)nenN, where for each n, F, is a sheaf of (Rg/7™)-modules and the projection

Fnt+1 — Fr, induces an isomorphism F, 1 /7" Fpnye="F,. Since F has no torsion, for each n, we
have an exact sequence

0—)fn£>fn+1—).7:1—)0.

16



It gives rise to the following long exact sequence of cohomology groups:

v HY(X, Fp) B H(X, Frg1) = H(X, F1) = - -.
Taking projective limits, we get the following long exact sequence:

s HY(X,F) D H(X,F) - H(X,F1) = ---.

So we have an exact sequence

0 H(X,F)/m — H(X,F1) » HY (X, F)r = 0,
where H:(X,F)/m denotes coker(n : Hi(X,F) — Hi(X,F)), and Hit'(X,F), denotes ker(r :
HAY(X,F) - HHFY(X,F)). Hence

dim,, (HY(X, F)/7) + dim,, (HH X, F)x) = dim, , H (X, Fy).

Using the fact that the Rg-module H:(X, F) is isomorphic to a direct sum of finitely many copies

of Rg and Rg/n? (j € N), one can show
dimp(HY(X, F) @, E) = dim, (H(X, F)/7) — dimy, (HI(X, F)z).
So we have
dimp(H. (X, F) ®n, E) < dimg, (HI(X, F)/m) < dimg, H'(X, F1),
and

Xe(X,F @pe B) = Y (-1)'dimp(H}(X,F) ®g, E)

i

= D (~1)(dimeg (HAX, F)/m) — ditmeg (HI(X, F)x))

i

= D (~1)(dimeg (HAX, F)/m) + ditm,g (H (X, F)x))

= 3 (-1)idim,, Hi(X, F1)
= Xc(X;]'-l)-
Note that F; is nothing but F ®g, £g. This proves (i).
In the case where (X, F) over k = F is obtained by base change from (X, Fo) over Fy, we can

also prove the equality of Euler characteristics using Grothendieck’s formula for L(Xy, Fo,t) and

the fact that degree of L(Xg, Fo,t) doesn’t change under reduction modulo 7.

17



(if) Since Gal(X'/X) is a finite group, there are only finitely many irreducible finite dimensional
kg-representations of Gal(X'/X). Each such representation defines an irreducible locally constant

constructible kg-sheaf on X. Let C be a constant such that
dim,, H (X,G) < C

for every i and every G coming from an irreducible finite dimensional x g-representation of Gal(X'/X).
Suppose F is a locally constant constructible xg-sheaf whose restriction to X’ is a constant sheaf.

Then F corresponds to a representation of Gal(X’/X). We can find a filtration
O=FycH C---CFn=F
such that each F;/F;_; is irreducible. Note that we have m < rank(F). Moreover, we have

dim,, Hi(X, F) < Z im,, Hi(X,F;/Fj_1) < Cm < Crank(F).

Theorem 1.9. Let d be a positive integer, let fo : Xg = Yp be an Fy-morphism, and let F be
a constructible Q;-sheaf on X. Then there are two constants ¢; (fo, Fo) and ¢z (fo, Fo) depending
only on fo and Fy such that for all d > 1, we have the following bound for the total degree of
L(fo, Fo,d,t):

tot.degL(fo, Fo,d, t) < c1(fo, Fo)d2tfo-70)=1,

Furthermore, we can take

ea(fo, Fo) = max{dim(R? fiF)z|j > 0,y € Y}.

Proof. By Theorem 1.1 (ii), we have

2dimY 2rel.dim(f)

L(fo, Fo,d,t) = H H det(1 — Fyt, H\(Y,[R’ fiF]%))

(_1)i+j+1

Taking c2 = max{dim(R? fiF)z|j > 0,y € Y}. We have

d

[RAFIY = Y (=1)F 'k(Sym? (R fiF) @ A*(RI fiF))
k=1

min(d,c2)

= > (—D)¥kSym® MRIAF) @ AF(RF))

k=1

18



since A*(RI fiF) = 0 for k > c2. So we have

L(fO: ‘7:07 d: t)
2dimY 2rel.dim(f) min(ca,d)

= I 1II II det@ - Fyt, Hi(Y, Sym* *(R fiF) @ A*(RI fiF)))H
i=0 j=0

k=1

_1)i+j+k

Hence we have the following bound for the total degree:

2dimY 2rel.dim(f) min(c2,d) . ' ‘
tot.degL(fo, Fo,d,t) < > Y kdimH: (Y, Sym®* (R7 f,F) @ Ak (R f,F)).
=0 7=0 k=1

Let E be a finite extension of Q; and let Rg be the integral closure of Z; in E so that R fiFo
(0 < j < 2rel.dim(f)) define torsion free Rg-sheaves. Let kg be the residue field of Rg. Choose a
decomposition
M
V=] Ym
of Y into a finite disjoint union of locally closed s:t:slchemes and choose a finite Galois étale covering
Y, — Y, for each Y,, so that for any 0 < j < 2rel.dim(f) and any m, the restriction of (R’ fiF)®r,,
kg to Y is constant. Then for any k, the restriction of (Sym*™* (R’ fiF) ® A*(R? fiF)) ®r, ki to
each Y, is also constant. By Lemma 1.8, there exists a constant C' depending only on Y, — Y,

(1 <m < M) such that
dimH(Y,Sym* % (R’ i F) @ A*(R fiF))

M
> dimHE (Yo, Sym? * (R fiF) ® A¥(R? i)

<
m=1
M
< Y dime, Hi(Yo, (Sym® *(RAF) @ \*(RIfiF)) @Ry k1)
"
< C Z rank((Symdk(ij!f) ® A’“(ij!f))lym)
m=1
co+d—k—-1 c
< ow (T (%)

So we have

tot.degL( fo, Fo,d,t)

2c§y 2re1§r:n(f) minig:d) O ( e+d—k—1 ) ( ca )
i=0 3=0 k=1 el *

(2re1.dim(f)+1)(2dimY+1)CMCZZk( td-—k-1 ) ( @ )

c—1
k=1 2

IN

IN
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It is easy to see that the last expression is a polynomial in d with degree at most ¢z — 1. This

proves our assertion.

Remark 1.10. The second constant cz(fo, Fo) is at least effective when Fy is the constant sheaf
by Katz’s bound [5] on the l-adic Betti number. But the first constant ¢1 (fo, Fo) is not effective yet
in general, even for the constant sheaf. The polynomial growth of the total degree with respect to
d can already be seen in the classical example of the universal family fg of elliptic curves. In this
case, the total degree is bounded up to a constant by the dimension of the space of weight d modular
forms, which grows like a linear polynomial in d by the Riemann-Roch theorem. More recently,
Brock-Granville [1] and Katz [6] considered the d-th moment problem for other morphisms, such as
the universal family of hyper-elliptic curves of genus g and the universal family of smooth projective
hypersurfaces of fixed degree and dimension. Our bound can be used in these situations to get

more precise information about the non-effective constants in their archimedean estimates.
2. Partial L-functions

Let dy,...,d, be positive integers and let d be a common multiple of them. Let X, Xél), ey Xé")
be schemes over Fg, let f; : Xo — Xéi) (¢ =1,...,n) be F,-morphisms, and let 7, be a con-
structible Ql—sheaf on Xg. Denote by Fx : X — X and Fx : F3xF — F the geometric Frobenius
correspondences. For any positive integer k, let

Sk(Xo0; Fo; fis--vs frydida, ... ydp) = > Tr(FX, Fo).
2E€X0(F gra),fi(2) EXG(F ia,)

The partial L-function of Fy is

> Sk(X0; Fo; f1se s fasdida, ... dn
L(Xo;'fo;fl,...,fn;d;dl,...,dn;t)=exp<z t(Xoi Foi 1, k’f - )tk).
k=1

Define the Faltings’ scheme Zy associated to (Xo; f1,- .-, fa;d;d1,-..,dn) to be the subscheme
of the d-fold product X¢ so that a point (z1,...,z4) in X¢(F) lies in Z(F) if and only if

fi(z;) = fi(z;/) whenever j = j'modd; (i € {1,...,n}, j,j' € {1,...,d}).
Let 0o : X§ — X§ be the automorphism defined by
(mla .. ,.'L'd) — (xdamlv .. ,.’L'd_l)-
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Then Z, is invariant under 0. Let a : Zg — X¢ be the immersion, let p; X¢ = Xo (j €

{1,...,d}) be the projections, and let Gy be the Q,-sheaf on Z; defined by
gg = Oé*pry:o R---Q Oé*p;]:().

Define a morphism of sheaves

00 : 03Go = Go

over og : Zg — Zg by

oo: ' pyFo®@a'piFo®---®@a'py JFo — a'piFo®---QapyFo,

$4d®¥Ss1 Q- -Qs83-1 — 518 -Q Sq-

More generally, for any permutation 7 of {1,...,d}, we define 7 : X¢ — X¢ to be the automor-
phism
(1'1, A ,SL’n) = (CL’-,—(l), A ,Z‘T(n)),

If 7 has the property that for each 4, the condition j = j' modd; implies the condition 7(j) =

7(j') mod d;, then Zj is invariant under 7. For such 7, we have a morphism of sheaves
70 : 79 Go = Go
over 79 : Zg — Zgy defined by

To:a'pr ) Fo® - @a'prpFo = a'piFo® - ®a’piFo,

ST(1)®..'®ST(d) — sl®...®sd_

Finally let Fz : Z — Z and Fz : F,G — G be the geometric Frobenius correspondences.

Lemma 2.1. Notation as above. We have

Se(Xo; Fo; f1,- -y fnydsdy, ... dn) = Z Tr(F¥ Fi)

2€Xo(F ka), fi (E)EX(()i)(Fqkdi)
= > Tr(Fko,Gs).
2€Z(F),Fko(z)=z
Proof. Let (z1,...,z4) € X%(F) be a point lying in Z(F) fixed by Fio : Z — Z. Then we have

F)k((‘r]) = Zj+1 (Je {17"'7d})7
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where for j = d, we take j + 1 to be 1. So

Fyo (fi(z))) = filwir) (1€ {L,...,n}, 5 € {1,....d}).

Iterating these equations d; times and using the fact that f;(z;) = fi(z;) whenever j = j' modd;,
we get

FY6 (filx;) = filz;)-
Hence fi(z;) € X(gi)(Fqkd,- ). If we iterate d times the equation F§ (z;) = z;41, we get FX4(z;) = ;.
So z; € Xo(Fa). In particular, z; is a point in Xo(Fa) with the property that fi(zi) €
Xéi)(Fqkdi) for each i. Conversely, one can show that for any point z in Xo(Fa) with the
property that f;(z) € Xéi)(Fqkd,-) for each i, the point (z, F% (x),...,F)Iz(d_l) (z)) is the unique

point in Z(F) that is fixed by FXo and has z as the first component. So
2 (2, Fi(@),..., Fx " (@)

defines a one-to-one correspondence between the set of points x in X¢(Fxa) with the property
that f;(z) € X(gi)(Fqkdi) for each i and the set of fixed points of Ffo in Z(F).

Let = be a point in Xo(F ) with the property that fi(z) € X(gi)(Fqkdi) for each i and let
2= (z, Fk (), ..., F¥"Y(2)) be the corresponding fixed point of Ffo in Z. Note that the linear
map Fi? : F; — F; is the composition

Fz = Fpra(g) Iﬁ ‘7:1:;(‘1—1)(5) Ii;;( I§ A X
Using Lemma 1.2, one can show
Te(FY, Fp) = Te(Flo, G:).
Lemma 2.1 follows.

Combining Lemma 2.1 and Lemma 1.4 together, we get the following:

Corollary 2.2. Notation as above. We have

Sk(X0; F; fiye s frydydiy .o oydyn) = > Tr(FE, Fr)
2€X0(Fgra), fi()€XE (F ray)
2dimZ ) )
= Y (-V)'Te(Ffo, Hi(Z,G)).
i=0
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Theorem 2.3. Notation as above. For each d-th root of unity u, let H:(Z,G), be the eigenvector
space of o acting on H:(Z,G) with eigenvalue u. Then we have

2dimZ
Sk(Xo; Fs fro- oo fididy,oydn) = > Y (1) uTe(Ff, Hi(Z,G),),

=0 p,d:1

2dimZ -
L(Xo; Fi frye o fidsdy, . odnst) = [ T det(t = Fzt, H(Z,G),) V" x.

i=0 pd=1

Proof. Using Corollary 2.2 in place of Corollary 1.5, the proof is completely the same as the proof
of Theorem 1.6.

Theorem 2.4. The partial L-function L(Xo;F; f1,..., fa;d;d1,...,dn;t) is a rational function.
More explicitly, let A4 be a subset of the set of d-th roots of unity so that for each d’|d, A4 contains

exactly one primitive d'-th root of unity. For the primitive d'-th root of unity p in Ag4, let

0 if d' is not squarefree,
Ny = Z gp = { ( q

—1)" if d' is a product of r distinct prime numbers.
9€Gal(Q(r)/Q)

Then we have

2dimZ _
L(Xo; F; fiye o fusdidy, . dnst) = [ [ det(t = Fat, H(Z,G),) =D e,
i=0 p€EAg

Proof. Let e be an arbitrary integer relatively prime to d. For any integer m, we denote the unique

number in {1,...,d} that is equal to m modulo d by m. Then oo corresponds to the permutation

11— 1

and o§ corresponds to the permutation
i—1i—e.

Let 7 be a permutation defined by

for all 5. Then 7 induces an automorphism

To:ZO — ZO

(mla"'vxn) = (xT(1)7"'7xT(n))'
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and we have a morphism of sheaves

70 : 79 Go = Go
over 79 : Zg — Zg defined by
70 : Ot*p:(l)]:o SRR Ot*p:(d)fo — Oé*pT]:o R & a*p§fo,
ST(1)®”'®ST(d) — sl®...®sd_

It is easy to verify that 7o = o7 as permutations, 7909 = 079 as automorphisms of Zy, and the
y y 0

following diagram of morphisms of sheaves commute:

o5 (70)
308 Go = 0315G0 = o03Go
1 75(06) 1 oo
T
75 Go = Go.

It follows that o and 7007, " induce the same homomorphism on H:(Z,G) for any 4. So for each

d-th root of unity pu, 74 ! induces an isomorphism
TV HA(Z,6), S HA(Z,G) e
Since Fz commutes with 7, this implies that
det(1 — Fzt, H{(Z,G),) = det(1 — Fzt, H:(Z,G) ue ).

This is true for any integer e relatively prime to d. So if pu and y' are Galois conjugate roots of

unity, then we have
det(1 — Fzt, H{(Z,G),) = det(1 — Fzt, H(Z,G) ).

Note that any d-th root of unity is Galois conjugate to one and only one element in Ay. Combining

with the formula in Theorem 2.3, we get

2dimZ
L(Xo; F; fiye . fusdsdy,. . odnsty = [ T det(l — Fzt, H(Z,G),) "0,
i=0 pEAg
where n, is the integer > gu- So L(Xo; F; f1,-- -5 fn;d;da, - - . ,dn;t) is a rational func-

9€Gal(Q(1)/Q)
tion. Note that if p is a primitive d’-th root of unity, then the integer n, is simply the negative

of the next to the leading coefficient of the d’-th cyclotomic polynomial. Thus n,, is just the value

T

of the Mobius function at d'. It is zero if d' is not squarefree. It is (—1)" if d' is a product of r

distinct primes.
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Question 2.5. Fix X, Fy, f1,-..,fn. Take d to be the least common multiple of dy,...,d,.
Can the total degree of L(Xo; Fo; f1,---, fa;d;d1, .. .,dn;t) be bounded by a polynomial in d when

di,...,d, vary 7

Theorem 1.9 says that the answer is yes in the case of moment L-functions. In [3], we show
that when Fy is the constant sheaf, the total degree of L(Xo; Fo; f1,- .., fn;d;d1,...,dn;t) can be
bounded by an exponential function of d. By Theorem 3.3 in the next section, when Fq arises from
exponential sums, the total degree of L(Xg;Fo; f1,---, fn;d;di,-..,ds;t) can again be bounded
by an exponential function of d. By extending the ground field if necessary, we may assume that

the integers d; are relatively prime.
3. Application to Exponential Sums

In this section, we analyze the weights and the total degrees for the partial L-functions of
exponential sums in greater detail. For convenience, we only consider the case where X is a
subscheme of the affine space Af{ even though partial exponential sums can also be defined in
more general context. Fix a nontrivial additive character ¢ : F, — Q; For each positive integer

k, denote by 1y, : Fgr — QT the additive character defined by

Yr(u) = ¢(TrFqk /Fp (u)).

Let di,...,d, be positive integers and let d be a common multiple of them. Let f : Xo — A} be

an F,-morphism. For each positive integer k, define the partial exponential sum by

S¢,k(X0;f;d;d17"'7dn): Z ¢kd(f($1a---a37n))-

(215,20 ) EX(F), 2:i€F ra;
When d; = --- = d, = d = 1, the above partial exponential sum coincides with the classical

exponential sum
Sur(Xos )= > d(f(@)).
z€Xo(F k)
The partial L-function associated to the above partial exponential sum is defined to be

Z S¢,k(X05f7d7d177dn)tk)
A .

L(Xo; fid;dy, ... dnst) = eXp(
k=1
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The Artin-Schreier morphism
A} > A}, x> 2P -3

is an étale Galois covering with Galois group F,. Let L, be the lisse Q;-sheaf of rank 1 on A}
obtained by pushing out this covering using the character ¥~! : F, — 67 One can show that for

any = (1,...,%n) € X(F) C A™(F) with z; € F xa; for each i, we have

Yra(f (@1, -, 20)) = Te(FX, (F*Ly)a)-

So we have
Sy (Xo; fdydy, ... dn) = > Yra(f(@1, ..., Tn))
(21,20 ) EX(F), 2, €F ra;
- ) Te(FY, (FLy)e).

(1,20 ) EX(F), ziqukdi

So the partial L-function

L(Xo; f;d;dy, . ..,dn;t) = exp (Z Su.k(Xo; fQZQ .- dn) tk)
k=1

associated to the partial exponential sum coincides with the partial L-function

> ( )EX(F), z:€F Tr(FYY, (f*Ly)z)
T150.5Tn )€ , T; € i
L(Xo; f*Ly; T,y Tn;d;di, ..., dn;t) = exp E: t gkd i
k=1 k

defined in §2, where m; : Xo < AP — A} (i = 1,...,n) are the projections. By Theorem 2.4,

L(Xo; f;d;dy, . .. ,dn;t) is rational. From Theorem 2.3, we get the following:

Proposition 3.1. Let Z; be the Faltings’ scheme associated to (Xo;m1,...,7n;d;d1;-..,dyn),
where 7; : Xo < A} — A} (i =1,...,n) are the projections. Let Go = a*p} f*Ly®- - -@a*phf* Ly,
where p; : X¢ = Xo (j = 1,...,n) are the projections, and a : Zg — X{¢ is the immersion. For
each d-th root of unity u, let H(Z,G), be the eigenvector space of the morphism o acting on

Hi(Z,G) with eigenvalue u. Then we have

Syk(Xo; fydsda, ... dn) = > Yra(f(1,. .. Tn))
(a:l,...,z")EX(F), .’E,‘EFqkdi
2dimZ
= Z Z ,uTr FZJHZ(Z g) )
=0 Ild 1
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2dimZ

L(Xo; f;d;di, ... dn3t) = H H det(1 — Fyt, H(Z,G),) D"k,
=0 pd=1
To estimate the sum Sy x(Xo; f;d;di,...,dn), we need information about the cohomology

groups Hi(Z,G). The following result is a direct consequence of a result of Deligne ([2] 3.7.2.3):

Proposition 3.2. Let Xo = A? and let f : Ay — A} be a morphism given by a polynomial
f(z1,...,2,) with coefficients in F,. Consider the polynomial g(z11,-..,%1dy,--->Tnl;s---,ZTnd,)
obtained from

f@it, .y @) + -+ f(@1dy - - -, Tnd)

by taking z;; = x;; for any i € {1,...,n} and j € {1,...,d}, where j' is the unique number
satisfying 1 < j' < d; and j = j' mod d;. Suppose p does not divide the degree m of the polynomial

g and the homogeneous degree m part of g defines a smooth hypersurface in the projective space

p(E 4D,

(i) We have H7(Z,G) =0 forr # 3" d;.

=1

(ii) When r = )" d;, we have dimH"(Z,G) = (m — 1)" and HZ(Z,G) is pure of weight r, that
i=1
is, for any eigenvalue A of the action of the geometric Frobenius correspondence Fz on H’(Z,G),

) is an algebraic number and all its conjugates have archimedean absolute value ¢3.

Proof. The Faltings’ scheme Z, for Xq = A can be described as follows: For any point z =
T1j
(M., 2¥) € (A™)4(F), where each 29 is a point in A*(F), write () = : |, where

Tnj
each z;; € F is the i-th coordinate of z(9) . We say the point z corresponds to the (n x d)-matrix

(z:j). Then Zy is given by the equations
Zi; = x;» whenever j = j'modd; (i € {1,...,n}, 4,5 € {1,...,d}).
Define an isomorphism AT = 7, by sending any point
(Z11y -, T1dyy - Tly-- -, Tnd, )

in A"t 4 (F) to the point in Zo(F) corresponding to the (n x d)-matrix whose i-th row is given
by

(xila'"7xidi7xi17'"7$idi7'"7xi17"'7xidi)-
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For any morphism f : A} — A} given by a polynomial f(z1,...,2z,) with coefficients in Fy, let
g(T11, -+, T1dys---sTnly-- -5 Tnd,) be the polynomial defined in Proposition 3.2. One can verify
that through the above isomorphism, the sheaf Go = a*p] f*Ly ®- - -®a*p} f*Ly on Zy is identified

with the sheaf g* L, on Ag*t 9 Proposition 3.2 then follows from [2] 3.7.2.3.

Theorem 3.3. (i) Let f(1,...,2Zn) be a polynomial of degree m with coefficients in F,. We have

the following bound for the total degree of the partial L-function of the partial exponential sum:

M=

d;

tot.degL(Ag; f;d;da, ..., dp;t) < 3(m + 1)7

(ii) Under the assumption of Proposition 3.2, we have the following bound for the total degree

of the partial L-function of the partial exponential sum:

i d;
tot.degL(Ag; fid;da, ... ,dn;t) < (m—1)=1 .

Proof. Keep the notation in the proof of Proposition 3.2. By Proposition 3.1, we have
2(di4-+dn)

tot.degL(AG; fid;dy, ... dnst) < > dimH(ABT T gory).
i=0
(i) then follows from [5] Theorem 10, and (ii) follows from Proposition 3.2.
Note that even under the assumption of Proposition 3.2, we do not know the exact total degree

of the partial L-function L(Ag; f;d;dy, ... ,dn;t) if d > 1, due to possible cancellation of the zeros

and poles. It would be interesting to know if the bound in Theorem 3.3 (ii) can be further improved

for d > 1. For d = 1, it is already an equality. Theorem 3.7 below shows that if dy = --- = d,,,
dm+1 = -+ = dpn, and dp,|dm41, then the total degree can be bounded by a polynomial of d.
Theorem 3.4. Let e be the greatest common divisor of dy,...,d,. Under the assumption of

Proposition 3.2, we have

> bea(f@r,e . an))| < (m—1)F " g

(z1,...,wn)EA" (F), ZiEFqkdi

)
s

d;

Proof. Replacing d; by % and replacing ¢ be ¢°, we may assume that e = 1. Let r = ) d;. By
i=1
Propositions 3.1 and 3.2 (i), we have

3 ualf@r,...,02) = (1) Y WIx(FS, H(Z,G),).

(zl""vmn)EA"(F)i miqukd,; Ndzl
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For each d-th root of unity p, let Au1,..., A, be all the eigenvalues counted with multiplicities of

Fz on H(Z,G),. By Proposition 3.2 (ii), we have |A,;| = ¢ and . b, = (m —1)". So we have
pi=1

) bealf@r,ma))| = (1) S WT(FE, HI(Z,6),)

(zl,...,zn)EA"(F), "Eiqukd,' [J.dzl

bP
= (=) Z Z)‘fmll

pi=1 i=1

b!"
DD [Mnl

pi=11i=1

b.”
PP

pd=1i=1

IA

idi £
= m-DE"

s

d;
1

Note that it is possible to use the finer formula in Theorem 2.4 to improve the constant in

Theorem 3.4.

We now analyze how often the condition in Proposition 3.2 is satisfied. By extending the ground
field, we may assume dy,...,d, are relatively prime. Take d to be their least common multiple.
Let m be a positive integer not divisible by p, let A,(m,n) be the parameter space of homogenous
polynomials f(z1,...,2,) in n variables of degree m, and let M,(m;d;,...,d,) be the parameter
subspace of those polynomials f(z1,...,z,) € A,(m,n) satisfying the condition of Proposition
3.2. It is clear that M,(m;ds,...,d,) is Zariski open in A,(m,n). It is Zariski dense in A,(m,n)

whenever it is nonempty.

Theorem 3.5. The scheme M,(m;d;,...,d,) is Zariski dense in Ap(m,n) if and only if d is not
divisible by p. Equivalently, the scheme M,(m;ds,...,d,) is empty if and only if d is divisible by

p.

Proof. First, we assume that d is not divisible by p. Taking f to be the diagonal polynomial

" + -+ 4+ 7, we see that the polynomial g defined in Proposition 3.2 is



This is a diagonzil polynomial in d; + --- + d, variables, which defines a smooth projective hy-
persurface in P(E1 -y since d is not divisible by p. Thus, M,(m;ds,...,d,) is Zariski dense in
A, (m,n)

Next, we assume that d is divisible by p. Since the d;’s are relatively prime, without loss of

generality, we may assume that for some integer 1 < k < n, each d; (1 <14 < k) is divisible by p

and none of the d; (k+1 < j <n) is divisible by p. Let f € A,(m,n). The system

o _ _ 05 _,
oz,  Ozp
defines an affine scheme W of dimension at least n — k > 1. Let @ = (a1,...,®,) be a non-zero

point in W(F), and let g be the polynomial defined in Proposition 3.2. One checks that at the
point z;; = a; (1<i<n,1<j<d;), wehave

dg _ d of
6:L'ij B di 8.’13,'

The last equality holds for 1 < i < k because « is a point in W (F'), and it holds for £ +1 <

1 < n because d%_ is divisible by p and the ground field has characteristic p. This implies that

(X di-1)
g does not define a smooth hypersurface in the projective space P i=t . Thus, the scheme
My(m;d,...,d,) is empty. The theorem is proved.
What we would also like is to find many polynomials f(z1,---,2,) over F, such that the

assumption of Proposition 3.2 is simultaneously satisfied for all choices of d; such that p does not

divide d.

Question 3.6. Let m and n be positive integers and let p be a prime number not dividing m.
Define

My (m,n) = ﬂ Mp(m;d, ..., d,).
{dl’---vdn}ap/rd

Does M, (m,n) contain a Zariski open dense subset of A,(m,n)?

The above diagonal example shows that M (m,n) is non-empty. See Theorem 3.9 for a partial

result toward a positive answer of Question 3.6.

Despite the purity result in Proposition 3.2, we know very little about the multiplicities of the

reciprocal zeros and reciprocal poles of the partial L-functions due to possible cancellations. In
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fact, we believe that there is often a great of cancellations for large d. Thus an important problem

n d;

is to improve the exponential factor (m — 1)i=1 © in Theorem 3.4 to a polynomial in terms of the
d;’s. Using Theorem 1.9, one can show this is possible in the case of moment L-functions. We now

make the estimate more precise in the case of moment exponential sums.

Theorem 3.7. Let h(z1,...,Zn,Y1,-..,Yn’) be a polynomial of degree m with coefficients in F,.

Consider the d-th fibred sum
9= @Zh = h(wlla' -3 Tnl, Y1, - - '7yn’) + e +h(x1d7- -3 &nd, Y1, - - - Jyn’)'

Suppose p does not divide m and the homogeneous degree m part of g defines a smooth hypersurface
in the projective space prd+n’—1,

(i) We have

Z wkd(h(mla ey Ty Y1, - 5yn’)) S (m - 1)nd+n'qk(nd+n')/2‘
2, €F ra, y; €F

(ii) We can replace the constant (m — 1)"*+" on the right-hand side of the above inequality by
¢(p, h)d3(m+D" 1 for some constant ¢(p, k) depending only on p and h. Moreover, the total degree
of the partial L-function

I wkd(h(xla"'axnayla"'ﬂyn'))

2, €F ka, Y;EF
exp E = 1 Z t*
k=1

associated to the partial exponential sum is bounded by ¢(p, h)d3™+1)" 1

Proof. The first part is a special case of Theorem 3.4, where n is replaced by n +n/, dy = --- =
dyn = d, and dpyy = -+ = dpyn = 1. To prove the second part, let Xo = A", Yy = A7,
fo: AZT™ — A7’ the projection, and h : A?t™ — A} the morphism defined by the polynomial
h(z1,- - Tn,Y1,---,Yn ). Note that we have
> Vka(R(T1s - oy Ty Y1y -y Yt)) = > Te(F&, h*Ly).
2 €F ka, y; €F i 2€Xo(F k), fo(z)EYo(F 1)
So the partial L-function associated to the partial exponential sum coincides with the moment

L-function

oo TI‘(FXd,h [ {)
0 h [ d t) = ex z : F rd), fo(z)EYo(F
l (f , * ,d, ) zE‘YO( qk ) 0( ) 0](c qk)

k=1

tk
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By Theorem 1.6 or by Theorem 2.3, we have

2dimZ it1
L(fo,h* Ly, dt) = [] ]I det(t — Fzt, Hi(Z,G),) D" x.
=0 pi=1

So by Proposition 3.2, all the reciprocal zeros and reciprocal poles of L( fo, h* Ly, d, t) have archimedean
absolute value g(md+n)/2, By Theorem 1.9, the total degree of L(fy,h*Ly,d,t) is bounded by

¢(p, h)d°2~! for some constant ¢(p, h) depending only on p and h and
¢ = max{dim(R’ fy(h*Ly))glj > 0,5 € Y (F)}.

From the estimate of Theorem 10 in [5], we deduce that co < 3(m + 1)". So we can write

(1—pat)--- (1 = But)
(I—ait)--- (1 — ayt)

L(fo,h*Ly,d,t) =

with || = |8;] = ¢"™)/2 and u + v < ¢(p, h)d*™ D" ~1. We have

Z wkd(h‘(xla"'Jxﬂayla"'ayﬂ')):Zaf:_Zﬁ;'
i=1 j=1

2 €F ka, Y;€F

So
Z wkd(h’(mlr"amnayla"'7yn’)) S Z|a1|k+2|ﬂf|
zi€F ka, y;€F & =1 Jj=1
< c(p, h)dS(m+1)"—1qk(nd+n')/2‘

Remark 3.8. In the proof of Theorem 3.7, we see that the reciprocal zeros and reciprocal poles
of the moment L-function L(fy, h*Ly,d,t) associated to the exponential sum are pure of weight
nd + n'. We get this using the formula in Theorem 2.3 and Deligne’s result Proposition 3.2. If we
make the extra assumption that the leading form of the polynomial hA(z1,...,%n,0,...,0) defines
a smooth hypersurface in P"~!, then we can obtain the same result about the weights of the
reciprocal zeros and reciprocal poles of the moment L-function L(fo, h*Ly,d,t) using the formula
in Theorem 1.1 and Deligne’s result. Indeed, for each fixed point (yi,...,yn’) the leading form
of the polynomial A(z1,...,Zn,y1,---,Yn) in terms of x;’s is the same as the leading form of
h(21,...,%n,0,...,0). So by [2] 3.7.2.3, R forh* Ly vanishes for ¢ # n and R"™ fooh*Ly is pure of

weight n. Together with the Kiinneth formula, these imply that
LAY @Y R"fal*Ly),t) = L(AY,Rfah*Ly @ - @ Rfah*Ly,t)
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= L(A},Rpog*Ly,t)

= L(Agd+nlag*£¢7t)7
where in the second equality, pg is the projection Ag‘”"l — Ag’, and g is the d-th fibred sum of
h. If we assume the leading form of g defines a smooth projective hypersurface, then by [2] 3.7.2.3

again, all the reciprocal zeros and reciprocal poles of L(Agd+"’ ,9* Ly, t) have weights nd +n'. On

the other hand, by Theorem 1.1, we have

L(fo,h*Ly,d,t) = L(AY [R"forh* L)%, 1) D"

d -
[] LAY, Sym™ 7 R foh* £y ® N R™ forh* Ly, 81D

j=1

Now, each sheaf Sym?~/ R" fih*Ly ® NR™fih*Ly is a direct factor of the sheaf @?(R™fih*Ly).
Thus, each Hi(A™, Sym* ™/ R" fih* L, @ N R™ fih*Ly) is a direct factor of H:(A™ @4(R™fih*Ly))
as Gal(F/F,)-modules. Tt follows that the set of zeros and poles of L(Ag ,Sym® ™/ R™ foh* Ly ®
N R™ forh* Ly, t) is contained in the set of zeros and poles of L(Ay , ®4(R™forh*Ly),t)). We
conclude that all the reciprocal zeros and reciprocal poles of L(fo,h*Ly,d,t) also have weight

nd+n'.

We now analyze how often the condition in Theorem 3.7 is simultaneously satisfied for all posi-
tive integer d not divisible by p. Let m,n,n’ be positive integers with m not divisible by p. Recall
that A,(m,n+n') denotes the parameter space of homogenous polynomials f(z1,...,Zn, Y1, ", Yn’)
in n +n' variables of degree m. Let M,(m;n;n’;d) denote the parameter subspace of those poly-
nomials f € A,(m,n + n') such that the d-fibred sum 693 f defines a smooth hypersurface in the
projective space P"@+"' =1 By Theorem 3.5, we know that Mp,(m;n;n';d) is Zariski dense open

in A,(m,n +n') if and only if d is not divisible by p.
Theorem 3.9. Let m,n,n’ be positive integers with m not divisible by p. The intersection

My (m;n;n') = ﬂ M, (m;n;n';d).
pfd

contains a Zariski open dense subset of A,(m,n + n').

Proof. By Lemma 3.10 below, there is a Zariski open dense U € Ap(m,n + n') such that if
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flz,y) = f(x1,.. ., Tn,¥Y1,--.,yn’) lies in U, then for every point y € A" (F), the system

0

of
8:1:1

defines a finite set W (f,y) with at most (m — 1)™ points. Let a;(y),---,an(y) be all the distinct

values taken by the vector

of  of af

oy Oy’ Oy

at the finitely many points of W(f,y). (N depends on y). We have
N<(m-1)".

Let P = (¢, ...,2(? y) be a singular point on projective hypersurface @Zf = 0 defined by the
d-th fibred sum, where
.CL'(]) = (.Z'lj, ... ,.Z'nj).
One checks that
) . o(@d
_f($(1)7y) = Mh, =0

6w,~j
forall1 <i<mnand1<j<d. Soeach (z(),y) is a point of the finite set W (f,y). On the other

hand, one computes that

LI Y I (@
S U0,y = 250}, o

j=1

For 1 < j < N, let k; be the multiplicity of the value a;(y) occurring in the family

Then we have the relation

Let k; be the least positive residue of k; modulo p, we still have

N
Z k}aj =0
7j=1
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since the ground field has characteristic p. This means that for d' = ilk;-, the projective hy-
persurface defined by the d'-th fibred sum @;I f also has a singular poin]t.i More explicitly, letting

2'0) (j = 1,...,N) be some points in W(f,y), not equal all zero, so that a;(y) = g—i(x’(j),y),
and letting Q = (m’(l), cna' @) g/ (M) where each #/(9) repeats kj-times, then Q is

a singular point of the projective hypersurface defined by the d'-th fibred sum @z' f- Now
d <pN <p(m-1)"

So for any f € U, if the projective hypersurface defined by the d-th fibred sum 692 f has a singular
point, then the projective hypersurface defined by the d’-th fibred sum EBSI f has a singular point
for some d' < p(m — 1)". Thus, the set M (m;n;n') contains the intersection
Uﬂ(ﬂ Mp(m;n;n';d)) = Uﬂ( N Mp(m;n;n’;d)),
pfd 1<d<p(m-1)",p fd

which is a Zariski open dense subset of A,(m,n + n') by Theorem 3.5. The theorem is proved.

Lemma 3.10. Let f(z,y) = f(z1,---,%n,Y1,---,Yn) be a homogeneous polynomial of degree m
with coefficients in F. Suppose p /m and f(z,0) defines a smooth hypersurface in P*~!. Then for

any fixed point y = (y1,...,yn) € A™(F), the system of equations

has at most (m — 1)™ solutions in terms of z.

Proof. By the Euler identity, we have

Z 6‘x,

Since p fm and f(z,0) defines a smooth projective hypersurface, the only solution of the system

of equations

of _ of _
a—ml(mao) —6—%(@";0)—0
is z = 0. So the ring Ag = F[ac]/(agc1 (z,0),..., Bz I (£,0)) is a finite dimensional F-algebra. For

any fixed point y € A™(F), we claim that the ring A, = F[z]/(2L (x,y),.

Bas I (2,y)) is also a

af
) Ban

finite dimensional F-algebra. This already implies that the system

L= =L wn =0



has only finitely many solutions in terms of z.

n

Let B be a finite family of multi-indices v = (v1,...,v,) so that the images of ¥ = 7" - -- 2"
(v € B) in Ap generate the F-vector space Ag. Let’s prove the images of ¥ (v € B) in A, also

generate the F-vector space A,. For any monomial 2%, we can write

n

Zavw —}—Zglaf (z,0),

vEB

where a, € F and g; € F[z] are polynomials of degree at most |u| — (m — 1). We have

n

Zav:c +ZgZ wy +Zgz<afi ,0)—88—;:(37,31))-

veEB
Note that as a polynomial of z, f(x,0) — f(x,y) has degree < m —1. So each (:U 0) — (.7: Y)
has degree strictly less than m — 1 in terms of z. Thus each g,( -(,0) — (a: y)) has degree

strictly less than |u|. By induction on |u|, we see that any z* can be written as

=Y bya" +Zh

veEB

where b, € F and h; € F[z]. So the images of z¥ (v € B) in A, generate the F-vector space A,.

We have
dimF[z] = n,
A/ (o) > dimFl] -1,
el /(5L (0,0), g ) 2 dFl]/ (- (e,) — 1,
Al /(5 o)y o)) 2 AP/ (9L ), o) — 1

Since A, = Flz]/(2L 3o (ToY)s - 66:5 (x,y)) is a finite dimensional F-algebra, we have dimA4, = 0.
This implies that all the inequalities above are equalities. Our assertion then follows from the

Bézout theorem ([4] Theorem 1.7.7).
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