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Abstract

In this paper we show that algebraic feedback shift registers synthesis
problems over some residue class rings and some quadratic integer rings
for multisequences are reduced to the successive minima problem in lattice
theory. Therefore they can be solved by polynomial-time algorithms when
the number of multiple sequences is fixed.
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1 Introduction

Feedback with carry shift registers (FCSRs for short) were introduced by Klap-
per and Goresky in [17] (see also [12, 18, 19]) . They are very similar to classical
linear feedback shift registers (LFSRs) used in many pseudorandom generators.
Later Klapper and Xu generalized both LFSRs and FCSRs to algebraic feed-
back shift registers (AFSRs) in [20]. As we all know, synthesis problem for key
streams plays an important role in design and analysis of stream ciphers. It aims
to find a generator such as an LFSR, an FCSR or an AFSR, with the shortest
length, which is capable of predicting the whole sequence if only a finite prefix
of a sequence is obtained.

There are a lot of synthesis algorithms for a single sequence. The famous
Berlekamp-Massey algorithm [5, 22] solves LFSRs synthesis problem. There
are also many other algorithms such as continued fraction method [25] and
Euclidean algorithms [27]. For FCSRs, there are mainly three synthesis meth-
ods: the Euclidean algorithm [3], the theory of approximation lattices [18] and
Klapper-Xu algorithm [20, 29], which is also used to some AFSRs with cer-
tain algebraic properties. Recently, Liu and Klapper proposed a new synthesis
algorithm for AFSRs over quadratic integer rings using lattice approximation
approach based on low-dimensional lattice basis reduction[21].

With the recent development of parallelization, word-based stream ciphers
become popular and there are many LFSRs synthesis algorithms for multise-
quences [9, 10, 11, 28]. In addition, some researchers considered the bounds for
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minimal length for FCSRs generating periodic multisequences [15, 30]. How-
ever, there is neither AFSRs nor FCSRs synthesis algorithms for finite-length
multisequences. In this paper we show that the AFSRs synthesis problems over
some residue class rings (that is, FCSRs) and some quadratic integer rings for
finite-length multisequences are reduced to the successive minima problem in
lattice theory. Therefore, we can give a polynomial-time algorithm to solve the
problems when the number of multiple sequences is fixed.

The rest of this paper is organized as follows. In Section 2 we introduce some
preliminaries about AFSRs synthesis problems for multisequences. Section 3
recalls some basic results about lattice problems needed in this paper. In section
4 we solve FCSRs synthesis problem for multisequences. Next, we propose an
AFSR synthesis algorithm over some quadratic integer rings for multisequences
in Section 5. Finally, we give our conclusions in Section 6.

2 Preliminaries

For a positive integer m, consider m infinite sequences S1, . . . , Sm, where Si =
ai,0, ai,1, . . . for 1 ≤ i ≤ m. Also, they can be denoted by an m-fold multi-
sequence S = a0,a1, . . ., where aj = (a1,j , . . . , am,j)

T , j ≥ 0, and T is the
transpose of a vector. In this section we introduce the construction of AFSRs
for an m-fold multisequence, which is similar to a single sequence, that is, m = 1.
For more details, refer to [12, 20].

Let R be an integral domain with a principal ideal generated by an element
π such that the quotient ring R/(π) is finite. Let U ⊂ R be a complete set of
representatives for R/(π) (i.e., the composition U → R → R/(π) is a one-to-
one correspondence ). The ring of π-adic integers, Rπ, is the set of expressions
γ =

∑∞
i=0 aiπ

i with all ai ∈ U .
An AFSR (Fig.1) is determined by r+ 1 coefficients q0, q1, . . . , qr ∈ U called

taps such that q0 is invertible modulo π. It is an automation each of whose
states consists of r elements a0, . . . ,ar−1 ∈ Um with an initial memory column
vector z. The state is updated by the following steps:

(1) Take the integer sum σ =
∑r
k=1 qkar−k + z.

(2) Find ar ∈ Um such that −q0ar ≡ σ mod π.

(3) Replace (a0, . . . ,ar−1) by (a1, . . . ,ar) and replace z by the quotient of
σ + q0ar divided by π.

An LFSR over a finite field F is an AFSR where R = F[x], π = x and
U = F, which is the quotient ring R/(π) = F[x]/(x). An FCSR over Z/(N) for
a positive integer N is an AFSR with R = Z, π = N , and U = {0, 1, . . . , N−1}.
An AFSR over a quadratic extension of Z is an AFSR, where R = Z[π], π2 = d,
U = {0, 1, . . . , |d|−1}, where d ∈ Z is square free. In this paper we focus on the
last two AFSRs synthesis problems for multisequences, in particular, in case N
is a prime power and d is a prime, respectively.

2



σ

an−1- ... an−r+1 an−r

��
��
q1

�

��
��
qr−1

�

��
��
qr

�

zn−1

-

6

div π mod π

Figure 1: An Algebraic Feedback Shift Register

The register outputs an infinite sequence a0,a1, . . . of elements in Um. The
sequence satisfies a linear recurrence with carry, that is, for n ≥ r,

−q0an + πzn = q1an−1 + . . .+ qran−r + zn−1, (1)

where zi denotes the ith memory vector.
The element q = q0 + q1π + q2π

2 + . . . + qrπ
r plays a central role in the

analysis of AFSRs and is referred as the connection element of the AFSR. The
connection element is analogous to the connection polynomial of an LFSR.

We generalize the fundamental theorem on AFSRs from single sequences to
multisequences as follows.

Theorem 1 (Generalization of [Theorem 3, [20]]) Let the output sequence S =
a0,a1, . . . of an AFSR with connection element q and initial state (a0,a1, . . .,
ar−1; z). Let αi =

∑∞
j=0 ai,jπ

j be the associated formal power series of Si for

1 ≤ i ≤ m and α = (α1, . . . , αm)T be the associated vector of S. Then

α =

∑r−1
n=0

∑n
i=0 qian−iπ

n − zπr

q
=

u

q
∈ Rmπ . (2)

The expression u/q is called a simultaneous rational expression of α.

If Si is a periodic sequence with period L, the best rational expression of Si

is then αi =
∑∞
j=0 ai,jπ

j = −
∑L−1

i=0 ai,jπ
j

πL−1 = −piqi for all i. In the case that R is

a principal ideal domain, then q = lcm(q1, . . . , qm), where lcm denotes the least
common multiple, is the smallest element such that there exists an AFSR with
connection element q which can generate S1, . . . , Sm simultaneously.

Assume R has a norm function N : R → N ∪ {0} (N defines the natural
numbers). To measure the length of a vector, we need to define a norm in Rm+1

in terms of N by

φ(u1, . . . , um+1) = max(N (u1), . . . ,N (um+1)), for (u1, . . . , um+1) ∈ Rm+1.

What we focus on in this paper is that only the first n terms of S are obtained
for any non-negative integer n. Our goal of the AFSRs synthesis problem is to
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find any (p1, . . . , pm, q) ∈ Rm+1 with q invertible modulo π such that there
exists an AFSR with connection element q which generates the first n terms of
S1, . . . , Sm simultaneously, and φ(p1, . . . , pm, q) is minimum in all such AFSRs.

Meanwhile, we describe the above synthesis problem in the mathematical
form.

Definition 1 Let α = (α1, . . . , αm) be an m-dimensional vector of π-adic num-
bers and n be a non-negative integer. We say (p1q , . . . ,

pm
q ), with gcd(q, π) = 1,

is a simultaneous rational approximation of order n of α if the first n terms in
the π-adic expansions of αi and pi

q are equal for any 1 ≤ i ≤ m, i.e. πn divides

αi − pi
q .

For 1 ≤ i ≤ m, we denote

αi,n =

n−1∑
k=0

ai,kπ
k.

In other words, (p1q , . . . ,
pm
q ) is a simultaneous rational approximation of

order n of α if and only if qαi,n ≡ pi mod πn and gcd(q, π) = 1 .

The problem of the best (π-adic) simultaneous rational approximation of
order n of α is as follows.

Given (α1,n, . . . , αm,n) and n, find all (p1, . . . , pm, q) with gcd(π, q) = 1 ,
satisfying qαi,n ≡ pi mod πn and minimizing φ(p1, . . . , pm, q).

The problem of the AFSRs synthesis for a given multisequence S with fi-
nite length n is equivalent to the problem of the best simultaneous rational
approximation of order n to α.

3 Some facts about lattices

In this section we introduce several fundamental problems in lattice theory and
state some important results we need later.

In lattice problems, one often uses the Euclidean norm l2, but many appli-
cations require other norms like lp, most generally, the semi-norm. For any real
number 1 ≤ p ≤ ∞ and a positive integer n, the lp-norm of a vector v ∈ Rn is
defined by ||v||p := (

∑n
i=1 |vi|p)1/p and ||v||∞ = maxi=1,...,n |vi|.

The semi-norm is defined by a convex body K ⊆ Rn, that is, K is convex,
compact and full-dimensional, as ||v||K = inf{r ≥ 0 : x ∈ rK} for v ∈ Rn. The
functional || · ||K is a semi-norm, i.e., it satisfies the triangular inequality and
||tv||K = t||v||K for t ≥ 0,v ∈ Rn. If K is centrally symmetric, then || · ||K is a
norm in the usual norm sense.

Let Bnp = {v ∈ Rn : ||v||p ≤ 1} denote the lp ball in Rn. Note from our
definitions that ||v||Bn

p
= ||v||p for v ∈ Rn.
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Given linearly independent vectors b1, . . . ,bl ∈ Rn, the lattice generated by
these vectors is defined by

L(b1, . . . ,bl) = {
l∑
i=1

zibi : zi ∈ Z}.

We call b1, . . . ,bl a basis of the lattice. We say that the rank of lattice is l
and its dimension is n. If l = n, the lattice is called a full-rank lattice. The
determinant of a lattice L with a basis B = (b1, . . . ,bl), denoted by det(L), is

defined by det(L) =
√
BTB. Hereafter we only consider full-rank lattices.

The ith successive minimum of a lattice, denoted by λ
(K)
i (L), with respect

to the semi-norm || · ||K , is defined by

λ
(K)
i (L) := inf{r > 0 : v1, . . . ,vi ∈ L are linearly independent with

||vj ||K ≤ r for 1 ≤ j ≤ i.}

The length of the shortest nonzero vector in the lattice is denoted by λ
(K)
1 (L).

In the last 30 years the complexity of the following lattice problems has been
studied intensively.

Definition 2 (Shortest Vector problem(SVP)) Given a lattice L, find a
non-zero lattice vector v ∈ L such that

||v||K ≤ ||w||K

for any w ∈ L \ {0}.

Definition 3 (Closest vector problem (CVP)) Given a lattice L and a tar-
get vector t ∈ span(L), find a lattice vector v ∈ L such that

||v − t||K ≤ ||w − t||K

for all w ∈ L.

Definition 4 (Successive Minima Problem (SMP)) Given a lattice with
rank n, find n linearly independent vectors v1, . . . ,vn ∈ L such that

||vi||K ≤ λ(K)
i (L)

for all i = 1, . . . , n.

The successive minima vectors always exist.

Proposition 1 ([7] ) Let L be a lattice of rank n with successive minima

λ
(K)
1 (L), . . ., λ

(K)
n (L). Then there exist linearly independent lattice vectors

v1, . . . ,vn ∈ L such that ||vi||K = λ
(K)
i (L) for all i, 1 ≤ i ≤ n.
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In [26] authors gave an algorithm in quadratic time about the length of input
data to reach all the successive minima of a lattice with rank up to four in l2
norm.

Micciancio [23] gave a polynomial time rank-preseving reduction from SMP
to CVP. Hence the algorithms for SMP have the same running time as the al-
gorithms for CVP. For exact CVP in l2 norm, Kannan’s algorithm [16] gives a
solution in deterministic 2O(n logn)bO(1) time and poly(n) space, where b is the
length of input data. Then it is improved to nn/2bO(1) by Helfrich [14] and han-
rot and Stehle [13]. This performance remained essentially unchallenged until
the breakthrough randomized sieve algorithm of Ajtai, Kumar and Sivakumar
[1] which provides a 2O(n)-time and -space solution for exact SVP. After mod-
ifying this algorithm, a sequence of works [2, 4, 6] can solve CVP exactly in
2O(n) time as long as the target point is “very close” to the lattice. It is worth
noting that the AKS sieve is a Monte Carlo algorithm: while the output so-
lution is correct with high probability, it is not guaranteed. In a more recent
breakthrough, Micciancio and Voulgaris [24] gave a deterministic 2O(n)-time
and -space algorithm for exact CVP in the l2 norm. In [8] authors gave a deter-
ministic 2O(n)-time and space algorithm for exact CVP when the target point
is sufficient close to the lattice in a semi-norm given by a convex body. We
summarize it as follows.

Proposition 2 Let L ∈ Rn be a lattice. The best deterministic algorithm
for computing all exact successive minima vectors of L has a running time of
2O(n)bO(1) with respect to a semi-norm given by a convex body, where b is the
length of input data.

4 FCSRs synthesis for multisequences

In this section we consider the FCSRs synthesis problem for an m-fold mul-
tisequence S given in Section 2, that is, an AFSR with R = Z, π = N ,
U = {0, 1, . . . , N − 1} and φ = l∞, where N is a prime power. Consider this
problem using approximation lattices defined by

Ln(α) = {(p1, . . . , pm, q) ∈ Zm+1| qαi,n ≡ pi mod Nn for all i, 1 ≤ i ≤ m},

where α and αi,n are defined in Section 2.
The approximation lattices satisfy the following properties. The proof is left

to the readers.

Lemma 1 (i) L0 is a lattice in Zm+1 of rank m+ 1.
(ii) Ln+1 ⊂ Ln.
(iii) The determinant of Ln is Nmn.
(iv) Let ω1, . . . , ωm+1 be in Ln and ω = (ω1 . . . ωm+1) be the matrix made

of ω1, . . . , ωm+1. Then they form a basis of Ln if and only if |ω| = Nmn.
(v) ω1 = Nnε1, . . ., ωm = Nnεm, where ε1, . . . , εm is the standard vector of

dimension m+ 1, ωm+1 = (α1,n, . . ., αm,n, 1)T is a basis of Ln.
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The lattice Ln(α) can be partitioned into two parts

L(0)
n (α) = {(p1, . . . , pm, q) ∈ Zm+1| gcd(q,N) > 1} and

L(1)
n (α) = {(p1, . . . , pm, q) ∈ Zm+1| gcd(q,N) = 1}.

The set L
(1)
n (α) is the set of simultaneous rational approximation of α at or-

der n. The best simultaneous rational approximation is then a minimal element

of L
(1)
n (α) under l∞ norm.

Theorem 2 Let v1, . . . ,vm+1 be the successive minimum vectors in Ln(α) un-
der l∞ norm and k, 1 ≤ k ≤ m+1, be the smallest integer such that the m+1-th

component of vk is coprime to N . Then vk is a minimal element of L
(1)
n (α).

Proof. First we show that such k must exist. Suppose v1, . . . ,vm+1 in Ln(α)
with vi = (pi,1, . . . , pi,m, qi) and gcd(N, qi) 6= 1 for 1 ≤ i ≤ m + 1. Since
v1, . . . ,vm+1 are linear independent over R, the vector (α1,n, . . ., αm,n, 1) must
be a linear combination of v1, . . . ,vm+1, which is impossible.

If v1 ∈ L(1)
n (α), that is, k = 1, it is the minimal element in L

(1)
n (α).

If k ≥ 2, that is, vk ∈ L
(1)
n (α), we show it is the minimal element in

L
(1)
n (α). Otherwise, assume that ξ is the minimal element in L

(1)
n (α) i.e.,

||ξ||l∞ < ||vk||l∞ and ||vs−1||l∞ < ||vs||l∞ = . . . = ||vk||l∞ for some s, 2 ≤ s ≤ k.
Then v1, . . . , vs−1, ξ are linearly independent and ||vi||l∞ < λs(Ln(α)) and
||ξ||l∞ < λs(Ln(α)), which contradicts with the definition of successive min-
ima. 2

By Theorem 2, the FCSRs synthesis problem for S of order n, which is
equivalent to the best simultaneous rational approximation of order n for α, is
reduced to the SMP in lattice Ln(L). By Proposition 2 and Lemma 1, we get
our results as follows.

Theorem 3 The FCSRs synthesis problem for m-fold multisequence S of order
n can be solved by a polynomial-time algorithm when m is fixed. The time
complexity is 2O(m)(mn logN)O(1).

5 AFSRs synthesis over some quadratic integer
rings for multisequences

In this section we consider the AFSRs synthesis problem over a quadratic
extension of Z for m-fold sequences S. To be specific, R = Z[π], π2 = d,
U = {0, 1, . . . , |d| − 1}, where d is a prime.

In [21] authors gave such AFSRs synthesis algorithm for a single sequence
using approximation lattices method. We use the similar method to construct
approximation lattices for multisequences. The nth approximation lattice of α
is defined by

Ln(α) = {(p1,1,
√
|d| p1,2, . . . , pm,1,

√
|d| pm,2, q1,

√
|d|q2) ∈ R2m+2 : αi,n(q1 + q2π)

−(pi,1 + pi,2π) ≡ 0 mod πn, pi,j , qj ∈ Z for all 1 ≤ i ≤ m, 1 ≤ j ≤ 2.}
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In the following denote u = (p1,1,
√
|d| p1,2, . . . , pm,1,

√
|d| pm,2, q1, q2

√
|d|)

just for brevity. For d < 0, we consider imaginary quadratic integer rings
such as d = −2,−3,−5 and use the common norm N (a + bπ) =

√
a2 − db2

over Z[π]. Thus we can define φ(p1,1 + πp1,2, . . . , pm,1 + πpm,2, q1 + q2π) =
max{N (p1,1+πp1,2), . . . ,N (pm,1+πpm,2), N (q1+q2π)}. That is, we have such a

norm in the lattice defined by ||u||d = max{
√
p21,1 − d p21,2, . . . ,

√
p2m,1 − d p2m,2,√

q21 − d p22} since it is verified that || · ||d satisfies the triangular inequality and
||tu||d = t||u||d. In addition, if ||u||d = 0, then u = 0. Note that there is a little
abuse of notation about || · ||d since it is different from the norm || · ||p in Section
2 just for simplification of symbols.

For d > 0, we define the norm on the real quadratic integer rings by N (a+
bπ) = max{|a + bπ|, |a − bπ|}. Likewise, we have a norm in the lattice defined
by ||u||d = max{| p1,1 + p1,2

√
d |, | p1,1 − p1,2

√
d |, . . . , | pm,1 + pm,2

√
d |, | pm,1 −

pm,2
√
d |, | q1 + q2

√
d |, | q1 − q2

√
d |} since it is also verified that || · ||d satisfies

that the triangular inequality, ||tu||d = t||u||d, and u = 0 if ||u||d = 0.
Since q1 + q2π is invertible modulo π if and only if gcd(q1, d) = 1, the AFSR

synthesis problem for the multisequence S can be reformulated as follows:

Given the first n prefix of the multisequence S, the AFSR synthesis problem
is to find p1,1 + p1,2π, . . ., pm,1 + pm,2π and q1 + q2π such that (q1 + q2π)αi,n =
pi,1 + pi,2π mod πn with gcd(q1, d) = 1 for all i and its φ value is minimum.

The lattice Ln(α) can be partitioned into two parts

L(0)
n (α) = {u ∈ Z2m+2| gcd(q1, d) > 1} and

L(1)
n (α) = {u ∈ Z2m+2| gcd(q1, d) = 1}.

This AFSR synthesis problem for the multisequence S is reduced to finding

the minimal element in L
(1)
n (α) under the || · ||d norm.

Similar to Theorem 2, we can have the following theorem.

Theorem 4 Let v1, . . . ,v2m+2 be the successive minimum vectors of Ln(α)
under || · ||d norm and k, 1 ≤ k ≤ m + 1, be the smallest integer such that the
2m + 1-th component of vk is coprime to d. Then vk is a minimal element of

L
(1)
n (α).

By Theorem 4 and Proposition 2, we get the below theorem.

Theorem 5 The AFSR synthesis problem over quadratic integer rings for the
m-fold multisequence S of order n can be solved by a polynomial-time algorithm
when m is fixed.

Note. If we define the approximation lattice by

Ln(α) = {(p1,1, p1,2, . . . , pm,1, pm,2, q1, q2) ∈ R2m+2 : αi,n(q1 + q2π)

−(pi,1 + pi,2π) ≡ 0 mod πn, for all 1 ≤ i ≤ m}
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and use the norm N (a + bπ) =
√
a2 + b2 and define φ(p1,1 + πp1,2, . . . , pm,1 +

πpm,2, q1 + q2π) =
√∑m

i=1(p2i,1 + p2i,2) + q21 + q22 , we can get the same result

with respect to the φ since Theorem 4 is also applicable to l2. In [21] authors
considered this kind of AFSR synthesis problem for a single sequence with re-
spect to the norm assuming that the length of the sequence are long enough
such that the AFSR is unique. However, our synthesis algorithm enumerates
all possible solutions for any length n.

Likewise, we can also solve the AFSR synthesis problem for multisequences
with respect to other norms such as φ(p1,1 +πp1,2, . . . , pm,1 +πpm,2, q1 +q2π) =
max{N (p1,1 + πp1,2), . . . ,N (pm,1 + πpm,2),N (q1 + q2π)} where N (a + πb) =
max{|a|, |b|} and φ(p1,1+πp1,2, . . . , pm,1+πpm,2, q1+πq2) = max{|p1,1|, |p1,2|, · · · ,
|pm,1|, |pm,2|, |q1|, |q2|}.

6 Conclusions

In this paper, we solve the AFSRs synthesis problems over some residue class
rings and some quadratic integer rings for multisequences when the number of
multiple sequences is fixed. A natural problem is how about the complexity of
this problem when the number varies. We believe that the problem in this case
is NP-hard, just as the simultaneous Diophantine approximation problem. This
problem and the AFSR synthesis problem over other algebraic structures will
be our future work.
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