Rationality of Partial Zeta Functions

Daqing Wan*

April 25, 2003

Abstract
We prove that certain partial zeta function are rational functions, generalizing Dwork’s rationality theorem for usual zeta functions over finite fields.

1 Introduction
Let \mathbb{F}_q be the finite field of q elements of characteristic p. Let $\bar{\mathbb{F}}_q$ be a fixed algebraic closure of \mathbb{F}_q. Let X be an affine algebraic variety over \mathbb{F}_q, embedded in some affine space \mathbb{A}^n. That is, X is defined by a system of polynomial equations

$$F_1(x_1, \cdots, x_n) = \cdots = F_n(x_1, \cdots, x_n) = 0,$$

where each F_i is a polynomial defined over \mathbb{F}_q. Let d_1, \cdots, d_n be positive integers. For each positive integer k, let

$$X_{d_1, \cdots, d_n}(k) = \{x \in X(\bar{\mathbb{F}}_q)|x_1 \in \mathbb{F}_q^{d_1}, \cdots, x_n \in \mathbb{F}_q^{d_n}\}.$$

The number $\#X_{d_1, \cdots, d_n}(k)$ counts the points of X whose coordinates are in different subfields of $\bar{\mathbb{F}}_q$. We would like to understand this sequence of integers $\#X_{d_1, \cdots, d_n}(k)$ indexed by k. As usual, it is sufficient to understand the following generating function.

Definition 1.1 Given X and the n positive integers d_1, \cdots, d_n, the associated partial zeta function $Z_{d_1, \cdots, d_n}(X, T)$ of X is defined to be the following formal power series

$$Z_{d_1, \cdots, d_n}(X, T) = \exp\left(\sum_{k=1}^{\infty} \frac{\#X_{d_1, \cdots, d_n}(k)}{k} T^k\right) \in 1 + TQ[[T]].$$

Replacing q by a power of q, without loss of generality, we may assume that the integer d_i’s are relatively prime. In the special case that $d_1 = \cdots = d_n = 1$, the number $\#X_{1, \cdots, 1}(k)$ is just the number of \mathbb{F}_q-rational points on X.

*Partially supported by the NSF and the NSFC (10128103)
The partial zeta function $Z_{1,\cdots,1}(X,T)$ then becomes the classical zeta function $Z(X,T)$ of the variety X. Dwork's rationality theorem [2] says that $Z(X,T)$ is a rational function. Deligne's theorem [1] on the Weil conjectures says that the reciprocal zeros and the reciprocal poles of $Z(X,T)$ are Weil q-integers. Recall that a Weil q-integer α is an algebraic integer such that α and each of its Galois conjugates have the same complex absolute value $q^{w/2}$ for some non-negative integer w. The integer w is called the weight of α.

One of our motivations to introduce the above more general partial zeta function comes from potential applications in number theory, combinatorics and coding theory. From a theoretic point of view, a special case of the partial zeta function reduces to the geometric moment zeta function [10] attached to a family of algebraic varieties over \mathbb{F}_q, which was in turn motivated by our work on Dwork’s unit root conjecture [7][8]. Intuitively, the partial zeta function gives many new ways, parametrized by the integers d_i's, to count the geometric points on X and thus it contains critical information about the distribution of the geometric points of X. The partial zeta function also provides a simple diophantine reformulation of many much more technical problems. In [9], the following two results were proven concerning the possible rationality of the partial zeta function. Recall that for a complex number α and a complex power series $R(T)$ with constant term 1, we can define the complex power series $R(T)^\alpha$ in terms of the binomial series $(1 + T \frac{R(T)-1}{T})^\alpha$.

Proposition 1.2 (Faltings [9]) Let $d = [d_1, \cdots, d_n]$ be the least common multiple of the d_i. Let ζ_d be a primitive d-th root of unity. There are d rational functions $R_j(T)$ $(1 \leq j \leq d)$ with $R_j(0) = 1$ and with algebraic integer coefficients such that

$$Z_{d_1,\cdots,d_n}(X,T) = \prod_{j=1}^{d} R_j(T)^{\zeta_d}.$$

Furthermore, the reciprocal zeros and reciprocal poles of the $R_j(T)$'s are Weil q-integers.

This result shows that the partial zeta function is nearly rational. It is proved by using a geometric construction of Faltings and the general fixed point theorem in ℓ-adic cohomology.

Proposition 1.3 ([9]) If the integers $\{d_1, d_2, \cdots, d_n\}$ can be rearranged such that $d_1|d_2|\cdots|d_n$, then the partial zeta function $Z_{d_1,\cdots,d_n}(X,T)$ is a rational function in T, whose reciprocal zeros and reciprocal poles are Weil q-integers.

This result shows that the partial zeta function has the stronger property of being a rational function in some non-trivial special cases. It is proved by viewing X as a sequence of fibered varieties and inductively using the Adams operation of the relative ℓ-adic cohomology. Although it was felt that the partial zeta function may not be always rational in general, no counter-examples were found. The aim of this note is to prove the following result.
Theorem 1.4 For any variety X as above and any positive integers $\{d_1, \cdots, d_n\}$, the partial zeta function $Z_{d_1, \cdots, d_n}(X, T)$ is a rational function in T, whose reciprocal zeros and reciprocal poles are Weil q-integers.

The idea of the proof is to exploit the geometric construction of Faltings and its relation to Galois action. Once the rationality is proved, one main new problem about the partial zeta function is to understand its dependence and variation on the arithmetic parameters d_i's. This would raise many interesting new questions to be explored, as already illustrated in the special case of moment zeta functions [10]. The first question one could ask for is about the number of zeros and poles of the partial zeta function. In Fu-Wan [3], using Katz’s bound [5] on the ℓ-adic Betti numbers, an explicit total degree bound for $Z_{d_1, \cdots, d_n}(X, T)$ is given, which grows exponentially in d. The true size of the total degree could be much smaller and may even be bounded by a polynomial in d.

Question 1.5 There are two positive constants $c_1(X)$ and $c_2(X)$ depending only on X such that the total degree of the partial zeta function $Z_{d_1, \cdots, d_n}(X, T)$ is uniformly bounded by $c_1(X)d^{c_2(X)}$ for all positive integers $\{d_1, \cdots, d_n\}$.

The answer to this question is shown to be positive in Fu-Wan [4] in the special case that $d_1 = \cdots = d_r = 1$ and $d_{r+1} = \cdots = d_n = d$, corresponding to the so-called moment zeta function case which has been studied more extensively in connection to Dwork’s unit root conjecture. We believe that the above conjecture (if true) together with a deeper analysis of the weights of the zeros and poles of the partial zeta function would have many important applications. Under suitable conditions, we would like to have optimal estimates of the form

$$\left| \#X_{d_1, \cdots, d_n}(k) - q^{k(d_1 + \cdots + d_n - dm)} \right| \leq c_1 d^{c_2} q^{k(d_1 + \cdots + d_n - dm)/2},$$

see section 4 for some results in the case of Artin-Schreier hypersurfaces ($m = 1$).

Acknowledgements. Some results of this paper were obtained during the 2001 Lorentz center workshop “L-functions from algebraic geometry” at Leiden University and the 2003 AIM workshop “Future directions in algorithmic number theory”. The author thanks both institutes for their hospitality. The author would also like to thank H. W. Lenstra Jr. for his interests and discussions on this paper.

2 Rationality of partial zeta functions

We slightly generalize the setup in the introduction. Let $f_i : X \to X_i$ ($1 \leq i \leq n$) be morphisms of schemes of finite type over \mathbf{F}_q. Assume that the map $f : X \to X_1 \times \cdots \times X_n$ defined by

$$f(x) = (f_1(x), \cdots, f_n(x))$$

is an embedding. For each positive integer k, let

$$f_{d_1, \cdots, d_n}(k) = \{x \in X(\overline{\mathbf{F}_q}) | f_1(x) \in X_1(\mathbf{F}_{q^{d_1k}}), \cdots, f_n(x) \in X_n(\mathbf{F}_{q^{d_nk}}) \}.$$
Definition 2.1 Given the morphism \(f \) and the \(n \) positive integers \(\{d_1, \ldots, d_n\} \), the associated partial zeta function \(Z_{d_1, \ldots, d_n}(f, T) \) of the morphism \(f \) is defined to be the following formal power series

\[
Z_{d_1, \ldots, d_n}(f, T) = \exp \left(\sum_{k=1}^{\infty} \frac{\# f_{d_1, \ldots, d_n}^{(k)}}{k} T^k \right) \in 1 + T \mathbb{Q}[[T]].
\]

It is clear that the special case in the introduction corresponds to the case that \(X \) is affine in \(\mathbb{A}^n \) and \(f_i \) is the projection of \(x \) to the \(i \)-th coordinate \(x_i \in \mathbb{A}^1 \).

Theorem 2.2 For any morphism \(f \) and any positive integers \(\{d_1, \ldots, d_n\} \), the partial zeta function \(Z_{d_1, \ldots, d_n}(f, T) \) is a rational function in \(T \), whose reciprocal zeros and reciprocal poles are Weil \(q \)-integers.

To prove this theorem, we begin with the geometric construction of Faltings. Let \(d = [d_1, \ldots, d_n] \) be the least common multiple. The set of geometric points on the \(d \)-fold product \(X^d \) of \(X \) has two commuting actions. One is the \(q^{-1} \)-th power geometric Frobenius action denoted by \(\text{Frob} \). Another is the automorphism \(\sigma \) on \(X^d \) defined by the cyclic shift

\[
\sigma(y_1, \ldots, y_d) = (y_d, y_1, \ldots, y_{d-1}),
\]

where \(y_j \) denotes the \(j \)-th component \((1 \leq j \leq d) \) of a point \(y = (y_1, \ldots, y_d) \) on the \(d \)-fold product \(X^d \). Thus, each component \(y_j \) is a point on \(X \). Let \(Y = Y(d_1, \ldots, d_n, f) \) be the subvariety of \(X^d \) defined by the equations

\[
f_i \circ \sigma^{d_i} = f_i, \quad 1 \leq i \leq n,
\]

where \(f_i : X^d \to X^d \) denotes the map \(f_i(y_1, \ldots, y_d) = (f_i(y_1), \ldots, f_i(y_d)) \).

Thus, a point \(y = (y_1, \ldots, y_d) \) in \(X^d \) is on the subvariety \(Y \) if and only if

\[
f_i(y_j) = f_i(y_{j+d_i}), \quad 1 \leq i \leq n, \quad 1 \leq j \leq d,
\]

where \(j + d_i \) is taken to be the smallest positive residue of \(j + d_i \) modulo \(d \). It is clear that \(Y \) is stable under the action of \(\sigma \) which commutes with \(\text{Frob} \).

Now, let \(a \) be a fixed positive integer relatively prime to \(d \). Let \(y = (y_1, \ldots, y_d) \) be a geometric point of \(Y \). One checks that

\[
\sigma^a \circ \text{Frob}^k(y) = y \iff \text{Frob}^k(y_j) = y_{j+a}, \quad 1 \leq j \leq d.
\]

The latter is true if and only if

\[
\text{Frob}^k(f_i(y_j)) = f_i(y_{j+a}), \quad 1 \leq i \leq n, \quad 1 \leq j \leq d
\]

as \(f \) is an embedding. Iterating equation (2.3) \(d_i \) times, we get

\[
\text{Frob}^{d_i k}(f_i(y_j)) = f_i(y_{j+ad_i}).
\]
Since \(y \) is on \(Y \), by (2.1), we deduce that

\[
\text{Frob}^{d,k}(f_i(y_j)) = f_i(y_j).
\]

Taking \(j = 1 \), we see that every fixed point \(y \in Y(\mathbb{F}_q) \) of \(\sigma^a \circ \text{Frob}^k \) uniquely determines a point \(y_i \in X(\mathbb{F}_q) \) satisfying \(f_i(y_i) \in X_i(\mathbb{F}_{q^{d_i}}) \) for all \(1 \leq i \leq n \).

Conversely, given \(y_i \in X(\mathbb{F}_q) \) such that \(f_i(y_i) \in X_i(\mathbb{F}_{q^{d_i}}) \) for all \(1 \leq i \leq n \), we define

\[
y_j = \text{Frob}^{k,h_j}(y_i), \ 1 \leq j \leq d,
\]

where \(h_j \) is the unique integer between 0 and \(d-1 \) such that \(ah_j + 1 \equiv j \pmod{d} \). The integer \(h_j \) is clearly well defined since \(a \) and \(d \) are relatively prime. If \(j \equiv j' \pmod{d_i} \), then \(h_j \equiv h_{j'} \pmod{d_i} \). Since \(f_i(y_i) \in X_i(\mathbb{F}_{q^{d_i}}) \), we deduce that

\[
f_i(y_i) = \text{Frob}^{k,h_j}(f_i(y_i)) = \text{Frob}^{k,h_j'}(f_i(y_i)) = f_i(y_{j'}). \]

This shows that the point \(y = (y_1, \cdots, y_d) \) is on \(Y \). Since \(f \) is an embedding and \(f_i(y_i) \in X_i(\mathbb{F}_{q^{d_i}}) \) for all \(i \), we deduce that \(y_i \in X(\mathbb{F}_{q^d}) \). Using the congruence \(a(h_j + 1) + 1 \equiv j + a \pmod{d} \), we derive that

\[
\text{Frob}^k(y_j) = \text{Frob}^{k(h_j+1)}(y_i) = y_{j+a}.
\]

This proves that \(\sigma^a \circ \text{Frob}^k(y) = y \). In summary, we have proved the following result.

Lemma 2.3 Let \(a \) be a positive integer relatively prime to \(d \). Then, for each positive integer \(k \geq 1 \), we have the following equality

\[
\#f_{d_1, \cdots, d_n}(k) = \#\text{Fix}(\sigma^a \circ \text{Frob}^k|Y(\mathbb{F}_q)). \tag{2.4}
\]

This lemma was proved in the case \(a = 1 \) in [9]. It together with the general \(\ell \)-adic fixed point theorem gives

\[
\#f_{d_1, \cdots, d_n}(k) = \sum_{j \geq 0} (-1)^j \text{Tr}(\sigma \circ \text{Frob}^k|H^j_\ell(Y \otimes \mathbb{F}_q, \mathbb{Q}_\ell)),
\]

where \(\ell \) is a prime number different from \(p \) and \(H^j_\ell \) denotes the \(\ell \)-adic cohomology with compact support. This formula is likely explicitly stated somewhere in SGA. We have not found it. The quasi-projective case is explained in [3]. The general finite type case follows by excision.

Since \(\sigma \) and \(\text{Frob} \) commute, \(\sigma^d = 1 \), we can decompose the cohomology space into the eigenspaces of \(\sigma \). The eigenvalues of \(\sigma \) are \(d \)-th roots of unity. The eigenvalues of \(\text{Frob} \) are algebraic integers (in fact, \(q \)-integers by Deligne’s theorem). It follows that there are finitely many \(d \)-th roots of unity \(\alpha_i \) and finitely many algebraic integers \(\lambda_i \) such that for all integers \(k \geq 1 \), we have

\[
\#f_{d_1, \cdots, d_n}(k) = \sum_i \pm \alpha_i \lambda_i^k.
\]

5
We collect similar terms in terms of λ_i and rewrite the above expression as

$$\# f_{d_1, \ldots, d_n}(k) = \sum_j A_j \lambda_j^k,$$

where the λ_j’s are distinct and $A_j \in \mathbb{Z}[\zeta_d]$. Replacing σ by σ^n with $(a, d) = 1$ and using Lemma 2.3, we deduce that for all $\tau \in \text{Gal}(\mathbb{Q}(\zeta_d) / \mathbb{Q})$,

$$\# f_{d_1, \ldots, d_n}(k) = \sum_j \tau(A_j) \lambda_j^k.$$

This sequence of expression is unique since the λ_j’s are distinct. It follows that $\tau(A_j) = A_j$ for all j and all τ. Thus, $A_j \in \mathbb{Z}$ and

$$Z_{d_1, \ldots, d_n}(f, T) = \prod_j (1 - \lambda_j T)^{A_j}$$

is indeed a rational function. Theorem 2.2 is proved.

3 A graph theoretic generalization

In this section, we give Lenstra’s generalization of the partial zeta function and its rationality in a graph theory setup. Let $G = (V, E)$ be a finite directed graph, where V is the set of vertices of G and E is the set of directed edges of G. For each edge $e \in E$, let $s(e)$ (resp. $t(e)$) denote the starting (resp. the terminal) vertex of the edge e. Suppose that for each $v \in V$, we are given a scheme X_v of finite type over \mathbb{F}_q. Suppose that for each edge $e \in E$, we are given a morphism $f_e : X_{s(e)} \to X_{t(e)}$ of finite type over \mathbb{F}_q. Let d_v ($v \in V$) be positive integers. For each positive integer k, we define

$$N(k) = \# \{ x = (x_v)_{v \in V} \in \prod_{v \in V} X(\mathbb{F}_{q^{d_v}}) | \forall e \in E, f_e(x_{s(e)}) = x_{t(e)} \}.$$

Define the graph zeta function to be

$$Z_{d_1, \ldots, d_n}(G, X, T) = \exp \left(\sum_{k=1}^{\infty} \frac{N(k)}{k} T^k \right) \in 1 + T \mathbb{Q}[\![T]\!].$$

One can ask if this power series is a rational function in T.

Theorem 3.1 (Lenstra) For any graph G, any schemes X_v and any morphisms f_e as above, the graph zeta function $Z_{d_1, \ldots, d_n}(G, X, T)$ is a rational function in T, whose reciprocal zeros and reciprocal poles are Weil q-integers.

To prove this theorem, it suffices to reduce the above graph zeta function to the case of partial zeta functions. For this purpose, let X be the fibred product of the schemes X_v ($v \in V$) over all morphisms f_e ($e \in E$). That is,

$$X = \{ x \in \prod_{v \in V} X_v | \forall e \in E, f_e(x_{s(e)}) = x_{t(e)} \}.$$
The scheme X is a closed subscheme of the Cartesian product $\prod_{v \in V} X_v$. For each $v \in V$, let f_v be the composed map

$$f_v : X \leftrightarrow \prod_{v \in V} X_v \rightarrow X_v,$$

where the last map is the projection to X_v. With these definitions, it is clear that the graph zeta function $Z_{d_1, \ldots, d_n}(G, X, T)$ is simply the partial zeta function $Z_{d_1, \ldots, d_n}(f, T)$ attached to the morphisms $f_v : X \rightarrow X_v$. The theorem is proved.

It may be of interest to explore possible graph theoretic applications of this zeta function.

4 Artin-Schreier hypersurfaces

To give an example, we consider the case of Artin-Schreier hypersurfaces. Let

$$f(x_1, \ldots, x_m, y_1, \ldots, y_{n'}) \in \mathbb{F}_q[x_1, \ldots, x_m, y_1, \ldots, y_{n'}],$$

where $n, n' \geq 1$. For each $d \geq 1$, let

$$N_d(f) = \# \{(x_0, \ldots, x_n, y_1, \ldots, y_{n'}) : x_0^p - x_0 = f(x_1, \ldots, x_n, y_1, \ldots, y_{n'})\},$$

where $x_i \in \mathbb{F}_q^d$ ($0 \leq i \leq n$) and $y_j \in \mathbb{F}_q$ ($1 \leq j \leq n'$). Heuristically (for suitable f), we expect

$$N_d(f) = q^{dn+n'} + O(q^{(dn+n')/2})$$

where the constant depends on p, f, and d. Deligne's estimate [1] on exponential sums implies the following result.

Theorem 4.1 (Deligne) Given f as above, we write $f = f_r + f_{r-1} + \ldots + f_0$, where f_i is homogeneous of degree i. Assume that the leading form f_r defines a smooth projective hypersurface in $\mathbb{P}^{n+n'+1}_{\mathbb{F}_q}$, and assume that $p \nmid r$. Then for $d = 1$, we have the following inequality

$$|N_1(f) - q^{n+n'}| \leq (p-1)(r-1)^{n+n'}q^{(n+n')/2}.$$

What can be said about $d > 1$? To answer this question, we introduce the following terminology.

Definition 4.2 Let d be a positive integer and let f be a polynomial as above. We define the dth fibred sum of f to be the following new polynomial

$$\bigoplus_y^d f = f(x_1, \ldots, x_{1n}, y_1, \ldots, y_{n'}) + \ldots + f(x_d, \ldots, x_{dn}, y_1, \ldots, y_{n'}).$$

The following estimate on $N_d(f)$ is proved in [4].

Theorem 4.3 (Fu-Wan) Given f as above, we write $f = f_r + f_{r-1} + \ldots + f_0$, where f_i is homogeneous of degree i. Assume that $\bigoplus_y^d f_r$ is smooth in $\mathbb{P}^{n+n'+1}_{\mathbb{F}_q}$ and assume that $p \nmid r$. Then, we have the following inequality

$$|N_d(f) - q^{dn+n'}| \leq (p-1)(r-1)^{dn+n'}q^{(dn+n')/2}.$$
Example 4.4 Consider the case that

\[f(x, y) = f_1, r(x_1, \ldots, x_n) + f_2, r(y_1, \ldots, y_n) + f_{\leq r-1}(x, y), \]

where \(f_1, r \) is smooth in \(\mathbf{P}^{n-1}_F \), \(f_2, r \) is smooth in \(\mathbf{P}^{n-1}_F \) and \(f_{\leq r-1} \) is a polynomial of degree at most \(r-1 \). It is then straightforward to check that \(\bigoplus_y f_r \) is smooth in \(\mathbf{P}^{d+n-1}_F \) if and only if \(d \) is not divisible by \(p \). Since the condition that the fibred sum be smooth is Zariski open, there exist many more examples of such \(f \) to which the theorem applies if \(d \) is not divisible by \(p \).

It would be interesting to prove similar results for the Kummer hypersurface \(x_0^d = f(x_1, \ldots, x_n, y_1, \ldots, y_n) \); see Katz [6] for some related weaker results in this direction.

References

Institute of Mathematics, Chinese Academy of Sciences, Beijing, P.R. China

Department of Mathematics, University of California, Irvine, CA 92697, USA
Email: dwan@math.uci.edu

8