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Abstract

We prove that certain partial zeta function are rational functions, gen-
eralizing Dwork’s rationality theorem for usual zeta functions over finite
fields.

1 Introduction

Let F, be the finite field of g elements of characteristic p. Let F, be a fixed
algebraic closure of F,. Let X be an affine algebraic variety over F,, embedded
in some affine space A™. That is, X is defined by a system of polynomial
equations

Fi(z1,,@n) == Fp(z1,+,7n) =0,

where each F; is a polynomial defined over F,. Let dy,---,d, be positive inte-
gers. For each positive integer k, let

Xdl,--- dn(k) = {ZL‘ S X(Fq)|$1 S qulk,- s, Ty € qunk}.

)

The number #X4,.....q, (k) counts the points of X whose coordinates are in
different subfields of F,. We would like to understand this sequence of integers
#X4, ..., (k) indexed by k. As usual, it is sufficient to understand the following
generating function.

Definition 1.1 Given X and the n positive integers di, ---,d,, the associated
partial zeta function Zg,....q,(X,T) of X is defined to be the following formal
power series

o #Xay,.a, (k

Zdly"',d'n, (X, T) = exp (Z #dl’Td"()Tk> €14+ TQ[[T]]
k=1

Replacing ¢ by a power of g, without loss of generality, we may assume

that the integer d;’s are relatively prime. In the special case that dy = --- =

dn =1, the number #X ... 1 (k) is just the number of F «-rational points on X.
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The partial zeta function Zi...1(X,T') then becomes the classical zeta function
Z(X,T) of the variety X. Dwork’s rationality theorem [2] says that Z(X,T) is
a rational function. Deligne’s theorem [1] on the Weil conjectures says that the
reciprocal zeros and the reciprocal poles of Z(X,T) are Weil g-integers. Recall
that a Weil g-integer « is an algebraic integer such that « and each of its Galois
conjugates have the same complex absolute value ¢*/? for some non-negative
integer w. The integer w is called the weight of a.

One of our motivations to introduce the above more general partial zeta
function comes from potential applications in number theory, combinatorics
and coding theory. From a theoretic point of view, a special case of the partial
zeta function reduces to the geometric moment zeta function [10] attached to a
family of algebraic varieties over F,, which was in turn motivated by our work
on Dwork’s unit root conjecture [7][8]. Intuitively, the partial zeta function
gives many new ways, parametrized by the integers d;’s, to count the geometric
points on X and thus it contains critical information about the distribution of
the geometric points of X. The partial zeta function also provides a simple
diophantine reformulation of many much more technical problems. In [9], the
following two results were proven concerning the possible rationality of the par-
tial zeta function. Recall that for a complex number a and a complex power
series R(T') with constant term 1, we can define the complex power R(T)® in

terms of the binomial series (1 + T%)“.

Proposition 1.2 (Faltings [9]) Letd = [d1,---,d,] be the least common mul-
tiple of the d;. Let (4 be a primitive d-th root of unity. There are d rational
functions R;(T) (1 < j < d) with R;(0) = 1 and with algebraic integer coeffi-

cients such that .

Zayean (X, T) = [] Ry (T)%.

=1

Furthermore, the reciprocal zeros and reciprocal poles of the R;(T)’s are Weil
g-integers.

This result shows that the partial zeta function is nearly rational. It is
proved by using a geometric construction of Faltings and the general fixed point
theorem in f-adic cohomology.

Proposition 1.3 ([9]) If the integers {di,da,---,dn} can be rearranged such
that di|ds|---|dn, then the partial zeta function Zg, .. aq,(X,T) is a rational
function in T, who reciprocal zeros and reciprocal poles are Weil q-integers.

This result shows that the partial zeta function has the stronger property
of being a rational function in some non-trivial special cases. It is proved by
viewing X as a sequence of fibered varieties and inductively using the Adams
operation of the relative £-adic cohomology. Although it was felt that the partial
zeta function may not be always rational in general, no counter-examples were
found. The aim of this note is to prove the following result.



Theorem 1.4 For any variety X as above and any positive integers {dy,---,d,},
the partial zeta function Zg, ... 4, (X,T) is a rational function in T, who recip-

)

rocal zeros and reciprocal poles are Weil g-integers.

The idea of the proof is to exploit the geometric construction of Faltings
and its relation to Galois action. Once the rationality is proved, one main new
problem about the partial zeta function is to understand its dependence and
variation on the arithmetic parameters d;’s. This would raise many interesting
new questions to be explored, as already illustrated in the special case of moment
zeta functions [10]. The first question one could ask for is about the number of
zeros and poles of the partial zeta function. In Fu-Wan [3], using Katz’s bound
[5] on the £-adic Betti numbers, an explicit total degree bound for Zy4, ... 4, (X, T)
is given, which grows exponentially in d. The true size of the total degree could
be much smaller and may even be bounded by a polynomial in d.

Question 1.5 There are two positive constants ¢ (X) and c2(X) depending
only on X such that the total degree of the partial zeta function Zg, ... q,(X,T)
is uniformly bounded by c1(X)d*X) for all positive integers {dy,---,d,}.

The answer to this question is shown to be positive in Fu-Wan [4] in the
special case that dy = --- =d, = 1 and d,41 = --- = d,, = d, corresponding
to the so-called moment zeta function case which has been studied more exten-
sively in connection to Dwork’s unit root conjecture. We believe that the above
conjecture (if true) together with a deeper analysis of the weights of the zeros
and poles of the partial zeta function would have many important applications.
Under suitable conditions, we would like to have optimal estimates of the form

Xt e, () — gAMb,

see section 4 for some results in the case of Artin-Schreier hypersurfaces (m = 1).
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2 Rationality of partial zeta functions

We slightly generalize the setup in the introduction. Let f; : X — X; (1 <
i < n) be morphisms of schemes of finite type over F,. Assume that the map
f:X — X; x--- x X, defined by

f(@) = (fi(z),---, fa(2))

is an embedding. For each positive integer k, let

fd1,"',dn(k) = {37 € X(Fq)|f1(.’L') € Xl(qulk)7 o 7fn(x) € X’n(qu"k)}'

This is a finite set since f is an embedding.



Definition 2.1 Given the morphism f and the n positive integers {dy,---,d.},
the associated partial zeta function Zg, ... q, (f,T) of the morphism f is defined
to be the following formal power series

Zay i, (f,T) = exp (i #deTd”(k)T’“) € 1+TQ[T].

k=1

It is clear that the special case in the introduction corresponds to the case
that X is affinein A™ and f; is the projection of x to the i-th coordinate z; € Al.

Theorem 2.2 For any morphism f and any positive integers {di,---,d,}, the
partial zeta function Zy, ..., (f,T) is a rational function in T, whose reciprocal
zeros and reciprocal poles are Weil g-integers.

To prove this theorem, we begin with the geometric construction of Faltings.
Let d =[dy,---,d,] be the least common multiple. The set of geometric points
on the d-fold product X? of X has two commuting actions. One is the ¢~ 1-th
power geometric Frobenius action denoted by Frob. Another is the automor-
phism o on X? defined by the cyclic shift

0(3/1, T 7yd) = (ydayh o '7yd—1)7

where y; denotes the j-th component (1 < j < d) of a point y = (y1,---,Yaq)
on the d-fold product X? Thus, each component y; is a point on X. Let
Y =Y (dy,---,dn, f) be the subvariety of X¢ defined by the equations

fioo% = fi, 1<i<n,

where fl D X4 > de denotes the map f’i(yla"'ayd) = (fl(yl)aafl(yd))
Thus, a point y = (y1,---,y4) € X% is on the subvariety Y if and only if

fz(y]):fl(y,1+dl)7 1 SZSTL, 1S]Sd7 (21)

where j + d; is taken to be the smallest positive residue of j + d; modulo d. It
is clear that Y is stable under the action of o which commutes with Frob.

Now, let a be a fixed positive integer relatively prime to d. Let y =
(y1,---,y4) be a geometric point of Y. One checks that

o o Frob*(y) = y <= Frob*(y;) = yjya, 1<j <d. (2.2)
The latter is true if and only if
Frob*(fi(y;)) = fi(yj4a); 1<i<n, 1<j<d (2.3)
as f is an embedding. Iterating equation (2.3) d; times, we get

Frobd"k(fi(yj)) = fi(Yj+ad;)-



Since y is on Y, by (2.1), we deduce that

Frob™* (f;(y;)) = fi(y;)-

Taking j = 1, we see that every fixed point y € Y( of 0 o Frob® uniquely

)
determines a point y; € X(Fq_) satisfying fi(y1) € Xi(quik) forall1<i<n.

Conversely, given y; € X (F) such that f;(y1) € X;(Fya;x) forall 1 <i <n,
we define

Yy; = HObkhj (y1)7 1 S .7 S da

where h; is the unique integer between 0 and d—1 such that ah; +1 = j( mod d).
The integer h; is clearly well defined since a and d are relatively prime. If
j = j'( mod d;), then h; = hj( mod d;). Since fi(y1) € X;(F,a;x), we deduce
that

fiy;) = Frob* (fi(y1)) = Frob™' (fi(y1)) = filys)-

This shows that the point y = (y1,---,y4) is on Y. Since f is an embedding and
filyr) € Xi(quik) for all i, we deduce that y; € X (Fax). Using the congruence
a(hj +1)+ 1 = j + a( mod d), we derive that

Frob®(y;) = Frob* "5 (y,) = y;,..

This proves that ¢® o Frobk(y) = y. In summary, we have proved the following
result.

Lemma 2.3 Let a be a positive integer relatively prime to d. Then, for each
positive integer k > 1, we have the following equality

#faya, (k) = #Fix(c® o Frob® |V (F,)). (2.4)

This lemma was proved in the case a = 1 in [9]. It together with the general
f-adic fixed point theorem gives

# fay i (k) = Y _(=1)/Tx(0 o Frob*| HI (Y © Fy, Qu)),
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where £ is a prime number different from p and H? denotes the f-adic cohomol-
ogy with compact support. This formula is likely explicitly stated somewhere in
SGA. We have not found it. The quasi-projective case is explained in [3]. The
general finite type case follows by excision.

Since o and Frob commute, 0% = 1, we can decompose the cohomology space
into the eigenspaces of o. The eigenvalues of o are d-th roots of unity. The
eigenvalues of Frob are algebraic integers (in fact, Weil g-integers by Deligne’s
theorem). It follows that there are finitely many d-th roots of unity «; and
finitely many algebraic integers A; such that for all integers k£ > 1, we have

#fay,ed, (k) = Z +a;\F.



We collect similar terms in terms of A; and rewrite the above expression as

#laran () =D AN,

where the );’s are distinct and A; € Z[(4]. Replacing ¢ by ¢* with (a,d) =1
and using Lemma 2.3, we deduce that for all 7 € Gal(Q(¢{4)/Q),

#faryenan (B) =D T(A)N}
J
This sequence of expression is unique since the A;’s are distinct. It follows that
T(A;) = A; for all j and all 7. Thus, A; € Z and

Zay o, (£, T) =[] (1 = N T)
J

is indeed a rational function. Theorem 2.2 is proved.

3 A graph theoretic generalization

In this section, we give Lenstra’s generalization of the partial zeta function and
its rationality in a graph theory setup. Let G = (V, E) be a finite directed
graph, where V is the set of vertices of G and E is the set of directed edges
of G. For each edge e € E, let s(e) (resp. t(e)) denote the starting (resp. the
terminal) vertex of the edge e. Suppose that for each v € V, we are given a
scheme X, of finite type over F,. Suppose that for each edge e € E, we are
given a morphism f. : X ) = Xy() of finite type over F,. Let d, (v € V) be
positive integers. For each positive integer k, we define

N(k) = #{z = (zv)vev € H X(quv’“)we €k, fe(ms(e)) = xt(e)}-
veV

Define the graph zeta function to be

Zgy,dn (G, X,T) = exp (i @T’ﬁ € 14+ TQ[[T]]-

k=1
One can ask if this power series is a rational function in T'.
Theorem 3.1 (Lenstra) For any graph G, any schemes X, and any mor-

phisms f. as above, the graph zeta function Zg, ...q, (G, X,T) is a rational func-
tion in T, whose reciprocal zeros and reciprocal poles are Weil g-integers.

To prove this theorem, it suffices to reduce the above graph zeta function to
the case of partial zeta functions. For this purpose, let X be the fibred product
of the schemes X, (v € V') over all morphisms f, (e € E). That is,

X={zc¢€ H Xo|Ve € E, fo(Ts(e)) = Tu(e) }-
veV



The scheme X is a closed subscheme of the Cartesian product [],cy X,. For
each v € V, let f, be the composed map

fo: X o I X = X,
veV

where the last map is the projection to X,. With these definitions, it is clear
that the graph zeta function Zg, ... 4, (G, X, T) is simply the partial zeta function
Zg, -...a, (f, T) attached to the morphisms f, : X — X,. The theorem is proved.

It may be of interest to explore possible graph theoretic applications of this
zeta function.

4 Artin-Schreier hypersurfaces

To give an example, we consider the case of Artin-Schreier hypersurfaces. Let

f(xla"'axnayla"'ayn’) € Fq[xla"'7$n5y17"'ayn’]7
where n,n’ > 1. For each d > 1, let

Nd(f) = #{($07'--7mn7y17"'7yn’) 1$g_$0 = f(xla"wwn:yla'"7yn’)}7

where z; € Fyu (0 <i<n)andy; € F, (1 <j <n'). Heuristically (for suitable
f), we expect

Nu(f) = ¢*"+™ + O(gl¥nr)/2)
where the constant depends on p, f, and d. Deligne’s estimate [1] on exponential
sums implies the following result.

Theorem 4.1 (Deligne) Given f as above, we write f = f, + fr—1+...+ fo,
where f; is homogeneous of degree i. Assume that the leading form f,. defines
a smooth projective hypersurface in P;j"lil, and assume that p fr. Then for
d =1, we have the following inequality

|N1(f) - q"*"l\ < (p — 1)(7- _ 1)ﬂ+n'q(n+n')/2‘

What can be said about d > 1?7 To answer this question, we introduce the
following terminology.

Definition 4.2 Let d be a positive integer and let f be a polynomial as above.
We define the dth fibred sum of f to be the following new polynomial

@Zf :f(mllr"7x1n7y17"'7yn’)+'"+f(mdla-"denaylr"ayn’)'
The following estimate on Ny4(f) is proved in [4].

Theorem 4.3 (Fu-Wan) Given f as above, we write f = fr+ fro1+...+ fo,
where f; is homogeneous of degree i. Assume that EBZ fr is smooth in P%‘TF" -1

and assume that p fr. Then, we have the following inequality

INa(f) — g®™ ™| < (p — 1)(r — 1)t gldntnD)/2,



Example 4.4 Consider the case that
f(x7y) = fl,T('rl) - 7'7:”) + f2,’r‘(y17 e 7y’n’) + fS’r'fl(a%y);

where f; , is smooth in P;q_l, f2,r is smooth in P;Iq_l and f<,_1 is a polynomial
of degree at most r — 1. It is then straightforward to check that GB; fr is smooth

in P%‘Tr"”l if and only if d is not divisible by p. Since the condition that the
fibred sum be smooth is Zariski open, there exist many more examples of such
f to which the theorem applies if d is not divisible by p.

It would be interesting to prove similar results for the Kummer hypersurface

2P = f(x1,.. -, Tn,Y1,-- -, Yn); see Katz [6] for some related weaker results in

this direction.
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