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Abstract

The classical Kloosterman sums give rise to a Galois representation of the function field un-
ramified outside 0 and co. We study the local monodromy of this representation at co using l-adic
method based on the work of Deligne and Katz. As an application, we determine the degrees and
the bad factors of the L-functions of the symmetric products of the above representation. Our

results generalize some results of Robba obtained through p-adic method.
1991 Mathematics Subject Classification: Primary 11L05, 14F20.

0. Introduction

Let F, be a finite field of characteristic p with ¢ elements and let ¢ : F;, — Q, be a nontrivial
additive character. Fix an algebraic closure F of F,. For any integer k, let F » be the extension
of Fy in F with degree k. If X lies in Fx, we define the (n — 1)-variable Kloosterman sum by

Kl,(Fr, \) = > G(Trp , (21 + - + 20))-
Ty Tp=A, T; GFqk

For any A € F*, define deg(\) = [F4()) : Fy]. The L-function L(\,T) associated to Kloosterman

sums is defined by

o0 Tm
L\T) = exp(z K, (F jmacson /\)F> .

m=1

One can show that L(\, 7)(=1" is a polynomial of degree n with coefficients in Z[(,], where ¢, is

a primitive p-th root of unity. This follows from 7.4 and 7.5 in [D1]. Write

LTV = 1—=m(NT)--- (1 = mu(N)T).



Then for any positive integer m, we have
Kl (Fgmacsn, A) = (=1)" 7w ()™ + -+ m (A)™).

We have a family of L-functions L(A,T) parameterized by the parameter A. Let |G,,| be the
set of Zariski closed points in G,,, = P! — {0, 00}. This is the parameter space for A. For a positive
integer k, the L-function for the k-th symmetric product of the Kloosterman sums is defined by

L(G,, Sym* (K1), T) = ] [T G=mr - m()mTdes™) -t

XE|G | i1+ Fin=k
This is a rational function in T' by Grothendieck’s formula for L-functions, see 3.1 of [Rapport]
in [SGA 43]. In the proof of Lemma 2.2, we shall see that L(G,,Sym"(Kl,),T) actually has
coefficients in Z. Thus, this rational function is geometric in nature, that is, it should come from
the zeta function of some varieties or motives. What are these varieties and motives? From
arithmetic point of view, our fundamental problem here is to understand this sequence of L-
functions with integer coefficients parameterized by the arithmetic parameter k& and its variation
with k, from both complex as well as p-adic point of view. There is still a long way to go toward a
satisfactory answer of this basic question, most notably from p-adic point of view. We shall make
some remarks at the end of this introduction section.

In [R], Robba studied the L-function L(G,y,,Sym*(Kly),T) in the special case n = 2 using
Dwork’s p-adic methods. He conjectured a degree formula, obtained the functional equation and
the bad factors of the L-function L(G,,,Sym”(Kly),T). On the other hand, Kloosterman sums
have also been studied in great depth by Deligne and Katz using [-adic methods. The purpose of
this paper is to use their fundamental results to derive as much arithmetic information as we can

about this sequence of L-functions L(G.,, Sym* (Kl,,),T) for n > 1 not divisible by p. We have

Theorem 0.1. Suppose (n,p) = 1. Let ¢ be a primitive n-th root of unity in F. For a positive
integer k, let di(n,p) denote the number of n-tuples (jo,J1,...,Jn—1) Of non-negative integers
satisfying jo +j1 + -+ jn_1 = k and jo + j1{ + - -+ + jp_1¢" "' = 0 in F. Then, the degree of the

rational function L(G,,, Sym”(Kl,),T) is
1
n

(577" -sinn).

Note that in most cases, the L-function L(G,,Sym”(Kl,),T) is a polynomial, not just a

rational function. This is the case for instance if pn is odd or n = 2. This follows from Katz’s



global monodromy theorem for the Kloosterman sheaf. Recall that the Kloosterman sheaf is a lisse

Ql—sheaf Kl,, on G, such that for any x € G,,,(F ) = F;‘k, we have
Tr(Fy, Kl z) = (—1)" K1, (Fy, 2),

where F), is the geometric Frobenius element at the point x. For any Zariski closed point A in G,

let 1 (A), ..., mn(A) be all the eigenvalues of the geometric Frobenius element F) on Kl, 5. Then

Kl (Fymacsn, A) = (=1)" " Tr(F{", K1, 5)

= (D" Y N)™ 4 F T (N)™).

So we have
LTV = exp( (-1)" i K, (F maes A)@
b — mn q b) m
= e S CmN T
m=1 m
= 1=mNT)--- (1= mn(NT).
We have
[T @=m@)" - mN) 19N = det(1 — FAT*™, Sym* (K1, 3)).
i1 tin=k

Therefore the L-function for the k-th symmetric product of the Kloosterman sums
L(Gy, Sym* (K1), T') = H H (1 — 7w (A -y (V)i TdesN)) 1
NE|G | i1+ +in=F
is nothing but the Grothendieck L-function of the k-th symmetric product of the Kloosterman
sheaf:

L(G, Sym* (K1), T) =[] det(1 — RT™, Sym* (K1, 5))~".
AE|IGH|

The Kloosterman sheaf ramifies at the two points {0, co}. We would like to determine the bad
factors of the L-function L(G,,, Sym”(Kl,), T at the two ramified points. Assume n|(g—1). Then
we can explicitly determine the bad factor at co. The key is to determine the local monodromy of
the Kloosterman sheaf at oo, that is, to determine Kl,, as a representation of the decomposition
group at co. However, the bad factor at 0 seems complicated to determine for general n. In the case
n = 2, it is easy. Thus, we have the following complete result for n = 2, which is the conjectural

Theorem B in [R]. (Our notations are different from those in Robba).



=2, ¢ = p, and p is an odd prime. Then L(G,,, Sym"(Kly),T) is a

Theorem 0.2. Suppose n
polynomial. Its degree is & — [%] if k is even, and &L — [2% + 1] if k is odd. Moreover, we have
the decomposition
L(G,,, Sym®(Kly), T) = Py(T)My(T)

with

1-T it 2k,

Po(T)={ (1=T)1—psT)™ if 2|k and p = 1 mod 4,

1-7(1 —|—p§T)”k(1 — pgT)mk_”k if 2|k and p = —1 mod 4,

where

1+ [55] if 4k,
my = : .
[55] if 4 Jk,
and ng = [% + 1], and Mj, is a polynomial satisfying the functional equation

1

_ 6
My(T) = ct Mk(m)v

where ¢ is a nonzero constant (depending on k) and § = degMj,.
Note that the slightly different formula for ny in the conjectural Theorem B of [R] is incorrect.

Remarks. Theorem 0.2 only addresses the L-function L(G,,, Sym*(Kly), T) and the polynomial
My (T) from the complex point of view. A more interesting arithmetic problem is to understand
their p-adic properties. For example, the first basic question would be to determine the p-adic
Newton polygon of the polynomial My (T) with integer coefficients. This is expected to be a
difficult problem. A weak but already non-trivial version is to give an explict quadratic lower
bound for the p-adic Newton polygon of My (T'), which is uniform in k. Such a uniform quadratic
lower bound is known [W1] in the geometric case of the universal family of elliptic curves over
F,, where one considers the L-function of the k-th symmetric product of the first relative f-adic
cohomology which is lisse of rank two outside the cusps. This latter L-function, which is an analogue
of the above M (T), is essentially (up to some trivial bad factors) the Hecke polynomial of the
U,-operator acting on the space of weight £ 4 2 cusp forms. From this point of view, we can also
ask for an explicit automorphic interpretation of the polynomial My (T) with integer coefficients.
The question on the slope variation of My (T') as k varies p-adically is related to the Gouvéa-Mazur
type conjecture, see Section 2 in [W3] for a simple exposition.

More generally, for any fixed n, the sequence of L-functions L(G,, Sym® (Kl,), T) is essentially
p-adically continuous in k£ as a formal power series in T" with p-adic coefficients. In fact, viewed

as p-adic integers, it is easy to show that the numbers m;(A) can be re-ordered such that mq())



is a 1-unit and all other m;(\) are divisible by p (the exact slopes of the 7;(\) are determined by
Sperber [Sp]). From this and the Euler product definition of L(Gm,Symk(Kln),T), one checks

that if k1 = ko + p™ks with ke and k3 non-negative integers, we have the following congruence:
L(G, Sym™ (K1,,), T) = L(G,,, Sym*2(Kl,), T) (mod pmin{m:kz}y,

For any p-adic integer s € Z,, let k; be an infinite sequence of strictly increasing positive integers

which converge p-adically to s. Then, the limit

L(n;s,T) = lim L(G,,,Sym" (Kl,),T)

i—00
exists as a formal power series in T with p-adic integral coefficients. It is independent of the choice
of the sequence k; we choose. This power series is closely related to Dwork’s unit root zeta function.
It follows from [W2] that for any p-adic integer s, the L-function L(n;s,T) is the L-function of
some infinite rank nuclear overconvergent o-module over G,,. In particular, L(n;s,T) is p-adic
meromorphic in 7. In fact, L(n;s,T) is meromorphic in the two variables (s,T") with |s|, < 1.
Grosse-Klonne [GK] has extended the p-meromorphic continuation of L(n;s,T) to a larger disk of
s with |s|, < 14 € for some ¢ > 0. Presumably, this two variable L-function L(n;s,T) is related
to some type of p-adic L-functions over number fields. It would be very interesting to understand
the slopes of the zeros and poles of these p-adic meromorphic L-functions. Some explicit partial
results were obtained in [W2], see [W4] for a self-contained exposition of such L-functions in the

general case.

This paper is organized as follows. In §1, we study the local monodromy of the Kloosterman
sheaf at co. The main result is Theorem 1.1 which determines Kl,, as a representation of the
decomposition subgroup at co. In §2, we calculate the bad factors at oo of the L-functions of the
symmetric products of the Kloosterman sheaf. Using these results, we can then complete the proof
of Theorem 1.1. In §3, we calculate the degrees of the L-functions of the symmetric products of
the Kloosterman sheaf. In particular, Theorem 0.1 is proved and some examples are given. Finally

in §4, we study the special case n = 2 and prove Theorem 0.2.
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1. Local Monodromy at oo

In [D1], Deligne constructs a lisse Q,-sheaf Kl,, on G,, = P! — {0,000}, which we call the
Kloosterman sheaf. It is lisse of rank n, puncturely pure of weight n — 1, tamely ramified at 0,

totally wild at oo with Swan conductor 1, and for any x € G, (Fyr) = F?., we have
Tr(Fp, Kl z) = (—1)" "KL, (F ., 2),

where F, is the geometric Frobenius elements at the point z. Since Kl,, is a lisse sheaf on G,,, it
corresponds to a galois representation of the function field Fy(t) of G,,. In this section, we give
a detailed study of Kl,, as a representation of the decomposition subgroup at co. This result will
then be used to study L-functions of symmetric products of Kl,,.

Before stating the main theorem of this section, let’s introduce some notations. Fix a separable

closure F(t) of Fy(t). Let x be an element in F () satisfying 7 — x = ¢t. Then F(¢, z) is galois

over F,(t). We have a canonical isomorphism
Fy = Gal(Fy(t,7)/Fy(t))

which sends each a € Fy to the element in Gal(F,(t,2)/F,(t)) defined by z — x + a. For the

additive character ¢ : F; — Q;, let £, be the galois representation defined by

Gal(F, (1)/F (1)) — Cal(F,(t,z)/F,(1) > F, "> Q.

It is unramfied outside oo, and totally wild at co with Swan conductor 1. This galois representation
defines a lisse Q;-sheaf on A! = P! — {00} which we still denote by L.
Let pm = {u € F|u™ = 1} be the subgroup of F* consisting of m-th roots of unity. Suppose

m|(¢g — 1). Then p,, is contained in F,. Let y be an element in F,(¢) satisfying y™ = t. Then

F,(t,y) is galois over F(t). We have a canonical isomorphism

L

M, Gal(Fq(t7 y)/Fq (t))

which sends each p € py, to the element in Gal(F,(t,y)/F,(t)) defined by y — py. For any

character x : ty, — Q;, let £, be the galois representation defined by
[ o -1 —%
Gal(F,(1)/Fy(t) — Gal(Fy(t,y)/Fq(t) = pm = Q.

It is unramified outside 0 and oo, and tamely ramified at 0 and oco. This galois representation

defines a lisse Q;-sheaf on G, which we still denote by L.



Let 6 : Gal(F/F,) — Q; be a character of the galois group of the finite field. Denote by Ly
the galois representation

Gal(F,(£)/F,(1)) — Gal(F/F,) % Q.

It is unramified everywhere, and hence defines a lisse Q,-sheaf on P! which we still denote by L.

Finally let Q, (1_7") be the sheaf on SpecF, corresponding to the galois representation of

Gal(F/F,;) which maps the geometric Frobenius to q%. For any scheme over F,, the inverse
1-—n

image of Q, (T) on this scheme is also denoted by the same notation.

Now we are ready to state the main theorem of this section.

Theorem 1.1. Suppose n|(q — 1). As a representation of the decomposition subgroup D, at oo,

the Kloosterman sheaf Kl,, is isomorphic to

(Lo, @ L)@ L0 @ (157

where [n] : G, — G, is the morphism defined by x — ™, 9, is the additive character

n(a) = p(na),

X is trivial if n is odd, and x is the (unique) nontrivial character
—x%
X:p2 = Q

if n is even, and 0 : Gal(F/F,) — Q, is a character of Gal(F/F,) with the following properties:
(1) If » is odd, then 6 is trivial.
(2) If n is even, then 62 can be described as follows: Let ¢ be a primitive n-th roots of unity in

F,. Fix a square root /¢ of ¢ in F. We have a monomorphism

Gal(Fy(v/()/Fq) = p2

defined by sending each o € Gal(F,(v/C)/F,) to g(_\/\/g) € pz. The character 62 is the composition

Gal(F/F,) — Gal(F,(v/Q)/Fy) = n2 > Q).

Remark. For even n, the above description of §? shows that §2 = 1 if n =0 (mod 4). If n = 2
(mod 4) and 4|(q — 1), then since n|(q — 1), we must have 2n|(q — 1). So (y/{)?™! = ¢z =1and
hence /¢ € F,. So #*> =1if n =2 (mod 4) and 4|(g — 1). In the remaining case that n = 2 (mod
4) and 4 f(g—1), we have /¢ ¢ F, and 6? is a primitive quadratic character. We don’t know how

to determine 6 itself completely in the case where n is even.



Throughout this section, we assume n|(q — 1). Then the group p, = {p € F|u" = 1} of n-th
roots of unity in F is contained in F,. Fix an algebraic closure F,(t) of F,(t). The aim of this
section is to determine as much as possible Kl,, as a representation of the decomposition subgroup
D, at 0o. The proof of Theorem 1.1 will be completed in Section 2. Before that, we need a series

of Lemmas. Our starting point is the following result of Katz:

Lemma 1.2. As a representation of the wild inertia subgroup P,, at oo, the Kloosterman sheaf

K1, is isomorphic to [n].Ly,, .
Proof. This follows from Propositions 10.1 and 5.6.2 in [K].

Lemma 1.3. Let G be a group, H a subgroup of G with finite index, and p : H — GL(V) a

representation. Suppose H is normal in G. For any g € G, let pg be the composition
adj, P
H =" H - GL(V),

where adj g(h) = g~ 'hg. Then the isomorphic class of the representation pg depends only on the
image of ¢ in G/H, and

ResHIndgp% EB Pg-
geG/H

Proof. This is a special case of Proposition 22 on Page 58 of [S].

Lemma 1.4. We have

(n]*[n].Ly, = D Ly,

pr=1

where 1y, is the additive character vy, (z) = ¥ (nuzx).

Proof. Let y, z be elements in F,(¢) satisfying y” = ¢ and 29 — z = y. Note that F,(z) and F,(y)
are galois extensions of Fy(t). Let G = Gal(F,(z)/F4(t)) and H = Gal(Fy(2)/F4(y)). Then H is

a normal subgroup of G. Let p be the representation

Yol =
Fq — Ql'

N

H = Gal(F,(2)/Fy(y))

Then [n]*[n].Ly, is isomorphic to the composition of ResyInd%p with the canonical homomor-

phism Gal(F,(t)/F,(y)) — Gal(F,(2)/F,(y)) = H. We have canonical isomorphisms

G/H = Gal(Fy(y)/Fy(t)) = fin.



For each p € pin, let g, € G = Gal(Fy(2)/F4(t)) be the element defined by g,,(2) = pz. Then the
images of g,, (4 € pp) in G/H form a family of representatives of cosets. By Lemma 1.3, we have
ResHIndep% @ Py,

pr=1
where p,, is the composition

adj o —1 —k
H S HER," Q.

One can verify that we have a commutative diagram

adj_qH

H
~| =
Fq w——)éj’a FQ’

where the vertical arrows are the canonical isomorphism H = Gal(F,(z)/F,(y)) = F,. So pgy, is
the composition

~ Yo —x
H-=F, = Q.

This proves the lemma.

Before stating the next lemma, let us introduce some notations. Let 7o, be the generic point

of the henselization of P! at co and let 7, be a geometric point located at 7.,. Fix an embedding

of F,(t) into the residue field k(7 ) of 7. This defines a monomorphism Gal(k(7)/k(Ns)) —
Cal(F,(t)/F,(t)) whose image is the decomposition subgroup Do, of Gal(F,(t)/F,(t)) at co. We
identify Gal(k (7., )/k(1s0)) With Do, through this monomorphism. The category of lisse Q;-sheaves
on 7. is equivalent to the category of Q,-representations of D.,. For convenience, we denote a

lisse sheaf on 7, and the corresponding representation of D, by the same symbol. The morphism

[n] : G — Gy, induces a morphism 7., — 7o, which we still denote by [n]. The lemma is proved.

Lemma 1.5. As a representation of the decomposition subgroup Do, at oo, the Kloosterman

sheaf Kl,, is isomorphic to [n].(Ly, ® ¢) for some tamely ramified one dimensional representation

¢: Do — Q.

Proof. Let V be the stalk of the Kloosterman sheaf Kl,, at 7,,. Then D, acts on V. Since
the Swan conductor of Kl,, at co is 1, V is irreducible as a representation of the inertia group I,
and hence irreducible as a representation of D.,. Since n is relatively prime to p, the morphism
[n] : G — G, induces an isomorphism [n], : Ps, — Pas on the wild inertia subgroup Ps. By

Lemma 1.2, V has a one-dimensional subspace L, stable under the action of P.,, and isomorphic to



Ly, as a representation of P,,. By Lemma 1.4, the restriction of V' to Py, is not isotypic. Let D/
be the subgroup of D, consisting of those elements leaving L stable. Then by Proposition 24 on
page 61 of [S], V is isomorphic to Indgz (L) as a representation of D,. Since the rank of V' is n,
D! is a subgroup of Dy, with index n. It defines a finite extension of degree n over the residue field
k(Nso) of Noo. Since D’ contains P.,, this finite extension is tamely ramified. The degree of inertia
of this finite extension is necessarily 1. Otherwise, the family of double cosets Io,\Doo /DY, would
contain more than one elements and Res;__Ind®) ” (L) would not be irreducible by Proposition 22
on page 58 of [S]. This contradicts to the fact that V is irreducible as a representation of I..
These facts imply that the above finite extension is just [n] : 7o — 7o and D’_ is the image of
the monomorphism [n]. : Do, — Do induced by the morphism [n]. Since L is isomorphic Ly,
as a representation of Py, L is isomorphic to L, ® L' as a representation of D’_, where L’ is a
representation of D/ of rank 1 which is trivial when restricted to Pao, that is, L’ is tamely ramified.
Composing with the isomorphism [n], : Do — D’_, L' defines a tamely ramified one-dimensional

representation ¢ : Dy, — 6;, and V is isomorphic to [n].(Ly, & ¢).

Lemma 1.6. Keep the notation of Lemma 1.5. As a representation of the inertia subgroup I,
¢ is isomorphic to L, where x is trivial if n is odd, and x is the unique nontrivial character

~* . .
X : pe — Qg if n is even.

Proof. First recall that making the base extension from F, to F has no effect on the inertia
subgroup I.. So we can work over the base F. By the Appendix of [ST], the representation
¢: Doy — Q; is quasi-unipotent when restricted to I, and hence has finite order when restricted
to I, (since the representation is one-dimensional). Since ¢ is tamely ramified, there exists a
positive integer m relatively prime to p so that as a representation of I, ¢ is isomorphic to the

restriction to I, of the galois representation

Gal(F( v/5)/F(y) S pm > Q)

for some primitive character x : um — Q.

Let us calculate det([n].(Ly, ®Ly)). Let y, z, w be elements in F(¢) satisfying y™ = ¢, 29—z =y,
and w™ = y. Then F(z,w) and F(y) are galois extensions of F(t). Let G = Gal(F(z,w)/F(t))

and H = Gal(F(z,w)/F(y)). Then H is normal in G, and we have canonical isomorphisms

G/H = Gal(F(y)/F(t)) = pin.

10



We have an isomorphism

Fq X fm i H = Gal(F(z,w)/F(y))

which maps (a, ) € Fg X piy, to the element g,,,) € Gal(F(z,w)/F(y)) defined by g(a,.)(2) = 2+a

and g, ) (w) = pw. Let w: H — Q; be the character defined by

W(G(am) = Yn(—a)x(u™1).

Then [n].(Ly, ® L) is just the composition of Ind%(w) with the canonical homomorphism
Cal(F(t)/F(t)) — Gal(F(z,w)/F(t)) = G. Let ¢ be a primitive n-th root of unity in F. Choose
an m-th root %/C of (. (Then %/C is a primitive mn-th root of unity). Let g be the element in
G = Gal(F(z,w)/F(t)) defined by g(z) = ¢z and g(w) = %/Cw. Then the image of g in G/H is a
generator of the cyclic group G/H. So G is generated by g(,,.,) € H ((a, 1) € Fg X i) and g. By
Lemma 1.3, we have

n—1
ResyInd$ (w) = @ Wi,
i=0

where w: is the composition
adj_; _
H' Y 72q.
One can verify that

Wyi (g(a,u)) = wn(_gia)X(N_l)~

So
(det(Ind5 (@) (gany) = ] Wnl~Ca)x(u™))
1=0
= (3 (™
1=0
= Yp(0)x(n™")
= x(u™)
We have
1
(det) (IndS ()))(g) = det 1
w(g")

11



One can verify ¢" = g(o,( w/en)- So w(g") = x(( ¥/¢)~") and hence
(det)(Ind (w)))(g) = (=1)"X((R/O)™™).

By Lemma 1.5, det(Kl,,) is isomorphic to det([n].(Ly, ® ¢)) as a representation of I,. By [K]
7.4.3, det(Kl,) is geometrically constant. On the other hand, as representations of I, we have
det([n]«(Ly, @¢)) = det([n]«(Ly, ®Ly)), and det([n].(Ly, ®Ly)) is isomorphic to the composition
of det(Ind% (w)) with the canonical homomorphism Gal(F(t)/F(t)) — Gal(F(z,w)/F(t)) = G.
So det(Ind% (w)) is trivial as a representation of I... Hence x(u™") = 1 for all & € pp, and
x((R/¢)~™) = (—1)"*L. Since ( is a primitive n-th root of unity, ( /)™ is a primitive m-th root
of unity. This implies that the order m of y is at most 2. If n is odd, the relation x(( ¥/¢)™") =
(—=1)"*1 = 1 implies that x is trivial. If n is even, the relation x(( %/¢)™") = (—=1)"*! = -1

implies that the order m of x is exactly 2. This finishes the proof of the lemma.

Lemma 1.7. As a representation of D, the Kloosterman sheaf Kl,, is isomorphic to

(] (Ly, © L)) ® Lo ®Q, <1 ;n) :

where x is trivial if n is odd, and x is the nontrivial character x : pus — 6; if n is even, and

0 : Gal(F/F,) — Q; is a character of Gal(F/F,).

Proof. By Lemma 1.5, as a representation of D, Kl,, is isomorphic to [n].(Ly, ® ¢) for some
character ¢ : Doo — 61* By Lemma 1.6, ¢ is isomorphic to £, when restricted to /. So as a
representation of Du, ¢ is isomorphic to £, ® Ly ® Q; (152) for some character 6 : Gal(F/F,) —

6; So as a representation of D, Kl,, is isomorphic to

[ (ﬁwn ® Ly ®Ly®Q (1;n>) > ] (L, @ Ly) © Lo Q, (1;"> ,

Lemma 1.7 is proved.

Lemma 1.8. Keep the notation in Lemma 1.7. The character 6 : Gal(F/F,) — Q, has the
following properties:

(1) If n is odd, then 6™ is trivial.

(2) If n is even, then 62 can be described as follows: Let ¢ be a primitive n-th roots of unity in

F,. Fix a square root v/C of ¢ in F. We have a monomorphism

Gal(F, (V) /Fy) = po

12



defined by sending each o € Gal(F,(v/{)/F,) to g(_\/\/g) € pz. The character 62 is the composition

Gal(F/F,) — Gal(F,(v/Q)/Fy) < ps > Q

where x : iz — Q, is the nontrivial character on is.

(3) If n is odd and p = 2, then 6 is trivial.

Proof. Suppose n is odd. By Lemma 1.7, Kl,, is isomorphic to [n].Ly, ® Ly ® Q, (an) as a
representation of D.,. Using the same method as in the proof of Lemma 1.6 (but working over

the base F), one can show that det([n].Ly, ) is trivial. So

det ([n]*ﬁwn ® Ly ®Q, (%)) = Lo @ Q, (M) )

By [K] 7.4.3, we have det(Kl,) = Q, (@) So 6™ is trivial. This proves part (1) of Lemma
1.8.

Suppose n is even. In this case, Kl, is isomorphic to [n].(Ly, ® Ly) ® Lo ® Q; (152) as
a representation of Do, where y is the nontrivial character x : ps — Q;. By [K] 4.1.11 and
4.2.1, there exists a perfect skew-symmetric pairing Kl,, x KI,, — Ql(l —n), and any such pairing
invariant under the action of I, coincides with this one up to a scalar. So the I,-coinvariant
space (A’ Kl,) 7. of A>Kl, is isomorphic to Q;(1 — n) as a representation of Gal(F/F,). Hence
(/\Q[n]*(ﬁwn ®Ly))r1.. @ L2 @Q,(1—n) is isomorphic to Q,(1 —n). Note that /\2[n]*(£,¢,n ®Ly) is
a semisimple representation of I, since it has finite monodromy. So the canonical homomorphism

2 2

(A (Lo, ® L)'= = (N(Ly, ® L)1

is an isomorphism. We will show that as a representation of Gal(F/F,), (/\Q[n]*(ﬁwn ® L)) is

isomorphic to the composition

Gal(F/F,) — Gal(F,(v/O)/F,) — pn Q.

This will prove part (2) of Lemma 1.8.

Let ¢ be a primitive n-th root of unity in F,. Fix a square root v/ of ¢ in F. Let y, z, w be
elements in m satisfying y" = t, 29 — z = y, and w? = y. Then F,(z,w, /) and F,(y) are
galois extensions of Fy(t). Let G = Gal(F,(z,w,v/()/F4(t)) and H = Gal(Fy(z, w,/C)/F,4(y)).

Then H is normal in G, and we have canonical isomorphisms

G/H = Gal(Fy(y)/Fy(t)) = fin.
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Consider the case where /¢ does not lie in F,. We then have an isomorphism

Fq X 2 X b2 i H = Gal(Fq(zaw» \/E)/Fq(y))

which maps (a,p/, 4"") € Fgq X pa X pa to the element g(q v ) € Gal(Fy(z,w,/C)/Fq(y)) defined

by glauwy(2) = 2 + @, gau o (w) = p'w, and g w0y (vVC) = p’v/C. (In the case where /¢

lies in F,, we have F,(z,w,/() = F,(z,w), and we have an isomorphism

Fq X 2 i H = Gal(Fq(vaa \/Z)/Fq(y))

which maps (a, 1') € Fgx iz to the element g, 1) € Gal(Fy(z, w, /() /Fq(y)) defined by g(q,,1)(2) =
z+a and g(q,,)(w) = p'w. All the following argument works for this case with slight modification.

We leave to the reader to treat this case.) Let w: H — Q; be the character defined by

w(g(a,u’,u”)) = wn(fa)X(Nlil)'

Then [n].(Ly, ® Ly) is just the composition of Ind%(w) with the canonical homomorphism

Gal(F,(t)/F,(t)) — Gal(F,(z,w,/)/F4(t)) = G. Let g be the element in G = Gal(Fy(z,w, /) /Fy(t))
defined by g(z) = ¢z, g(w) = /Cw and g(v/{) = v/¢. Then the image of g in G/H is a generator

of the cyclic group G/H. So G is generated by g(q, v ) € H ((a, 1/, ") € Fg X pp X pa) and g.

By Lemma 1.3, we have

n—1
ResyInd% (w) = @ Wyi,
i=0

where wg: is the composition

adjgi *

H — H&Ql

One can verify that

/=1 11—

Wi (g(a,/,l/,[l.”)> = wn(_CiQ)X(M 1% )

Let V' be the stalk of [n].(Ly, ® L) at the geometric point 77,,. The above calculation shows that
there exists a basis {eg,...,e,—1} of V such that geq = e, ge; = ea,...,g€n—2 = e,_1, and for

any ga,u .y € H ((a, ', p1") € Fy X pa X pia), we have
/=1, 1"—i

g(a,u’,u”)(ei) = Wyi (g(a,u’,u”))ei = LZJn(*gZQ)X(,U, w )61‘.

One can verify g" = g(o (ye)n,1)- SO

g"e0 = x((v/)")eo = —eo.
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L
2

Consider the element »_ e; Aejin € A’ V. We have
i=0

gleoNen +---+en_1Nep1) = erNerpn+--+erx_1Ae,1+en Agleg

= 60/\€%+"‘+6%_1/\€n_1

and
g
Yagr (D €iNeipn)
i=0
21
= ) a(=Ca)x (' W (=T a)x (' T B e Ay g
i=0
n_1
= D a(—Ca(l+ )XW 2" 5 e Aeiy s
i=0
2
= x(u")? Z € Neipn
=0
since (2 = —1 and x is of order 2. In particular, g and g(4,,,1) act trivially on > e; A €itz.
i=0
21 21 '
So

;) e; A\ ez lies in (A®V)I>=. Note that

(2

> €i Aeiyn spans (A’ V)%= as the latter space
=0
21
is one dimensional. On the other hand, for any p"” € u2, we have go1,,7)( Y. € Aeiyn) =
i=0

1

x(u")z Z%) ei/\ei+z. So as arepresentation Gal(F/F,), (A\® V)%= is isomorphic to the composition
1=

Gal(F/F,) — Gal(F,(V/()/Fy) — u2 = Q.

This finishes the proof of part (2) of Lemma 1.8.

Finally suppose n is odd and p = 2. Then Kl,, is isomorphic to [n].Ly, @ Ly ® Q, (I’T")
as a representation of D.,. By [K] 4.1.11 and 4.2.1, there exists a perfect symmetric pairing
Kl, x Kl, — Q,(1 —n), and any such pairing invariant under the action of I, coincides with

this one up to a scalar. So the I.-coinvariant space (Sym?(Kl,))s_ of Sym?(Kl,) is isomorphic

to Q;(1 —n) as a representation of Gal(F/F,). Hence (Sym?([n].Ly, )1, ® Loz @ Q,(1 — n) is
isomorphic to Q,(1 —n). Note that Sym?*([n].Ly, ) is a semisimple representation of I, since it

has finite monodromy. So the canonical homomorphism

(Sym®([n].Ly,,)) ' — (Sym*([n}+Ly,)) 1.

is an isomorphism. One can show that as a representation of Gal(F/F,), (Sym?([n].Ly,)) /> is

trivial. (Using the notation in the previous paragraph, one verifies e2 +e? +- - - +€2_, is a generator
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of (Sym?V)!>~ and the geometric Frobenius acts trivially on this vector.) So #? is trivial. By (1),
0™ is also trivial. So € must be trivial. This finishes the proof of part (3) of Lemma 1.8. The proof

of Lemma 1.8 is complete.

2. The bad factors of the L-functions of symmetric products

Let ¢ be a primitive n-th root of unity in F. For each positive integer k, let Si(n,p) be
the set of n-tuples (jo,--,jn—1) of non-negative integers satisfying jo + j1 + -+ + jn—1 = k and

jo+ i+ -+ jn1¢" ' =0in F. Let o denote the cyclic shifting operator

O-(.j07 e 7j7l—1) = (.jn—lija o 7jn—2)'

It is clear that the set Si(n,p) is o-stable.

Let V be a Q-vector space of dimension n with basis {eg,---,e,_1}. For an n-tuple j =
(Jos -+, Jn—1) of non-negative integers such that jo + - - + j,—1 = k, write
ej — eéoejil . e.ZLn_—ll

as an element of Sym*V. For such an n-tuple j, we define

n—1

=0

This is an element of Sym*V. If k = jo + j1 + - - + jn_1 is even, then we have Vo (j) = (—1)In-10;,
and hence the subspace spanned v; depends only on the o-orbit of j. Let ax(n,p) be the number
of o-orbits in Si(n,p). When k is even, let by(n,p) be the number of those o-orbits in Sk(n,p)

such that the subspace spanned by the orbit is not zero.

Lemma 2.1. Suppose (n,p) = 1. We have

ar(n,p) if nis odd,
dim(Sym*(K1),,)!~> =< 0 if n is even and k is odd,
bi(n,p) if n and k are both even.

Proof. Since (n,p) = 1 and the inertia subgroup I, does not change if we make base change from
F, to its finite extensions, we may assume that n|(¢ — 1).
We use the notations in the proof of Lemma 1.6. Recall that we have m = 1 if n is odd, and

m = 2 if n is even. Let 3, be a primitive m-th root of unity in Q. Thus 3,, = 1 if n is odd, and
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Bm = —1if n is even. Let V be the stalk of [n].(Ly, ® £,) at the geometric point 7,,. There
exists a basis {eg,...,en—1} of V such that geg = e1, ge; = ea,...,9€n—2 = €n_1,9€n—1 = Bmeo,

and for any g,y € H ((a,p) € Fg X py,), we have

g(a,p)(ei) = Wyi ( ,/L)) 1Z)n( Cia)X(:u’_l)ei'

. n—1
A basis for Sym*V is {eJ" It el" 1Y where j; are non-negative integers satisfying |j| = 3 j; =

n—1
k. Suppose v = a;el0el - el lies in (Sym*V)I=. Then g and g(, 1) (a € Fy) act trivially
70 €1 n—1 (a,1) q

lil=k
on it. We have

Jo ,Ji Jnl Jn—1 Jnljo”.jn—z
g ajey’ el g Bin=ra,el e .

1=k lil=Fk
From g(v) = v, we get
i — — Qin—1+in— no1tin— _ gk
— ﬁgn 1ag(j) — ﬂfn 1+J 2q o2(j) = ﬂj 1+Jn—2+ +]oa n(j) = 5maj.
If n is even and k is odd, then 3% = —1. The above relation then shows that a; = 0. So

(SymFV)T = 0 in this case.
Now assume that either n is odd or k is even. The above vector v is a linear combination of

the following vectors
n—1
— -1+ +in—i 0" (j
UJ_Z@JH 1 Jn—i ot ()
i=0

The g-invariant subspace (Sym*V)¢ is thus spanned by the vectors v; with |j| = k, where j runs

only over g-orbits. On the other hand, one computes that

9a)(V) = Gla1)( Zageff’@{l'” e
7=k
= 3" Yal=alo + J1C + -+ jur G agedrelt el
7=k

for all a € Fy. Since g(4,1)(v) = v, if a; is non-zero, then we must have jo +j1¢+-- A" =0
in F, that is, j € Sk(n,p). Thus, we have proved that the inertia invariant (SymkV)Ioo is spanned
by the vectors v; where j runs over the g-orbits of Si(n,p).

If n is odd, then (,,, = 1 and each v; is non-zero. As j runs over the g-orbits of Si(n,p), the
vectors v; are clearly independent. We thus have dim(Sym*V)’= = a(n, p).

If both n and k are even, then 3,, = —1. In this case, some of the vectors v; can be zero. The
remaining non-zeros vectors v;, as j runs over the g-orbits of Si(n, p), will be linearly independent.

We thus have dim(Sym* V)% = by (n,p). The lemma is proved.
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Lemma 2.2. Suppose p is odd and either n is odd or n = 2. Let j : G,, — P! be the
open immersion. Then the L-functions L(G,,, Sym*(Kl,),T) and L(P!,j.(Sym"(Kl,)),T) are
polynomials. All the reciprocal roots of the polynomial L(P!,j,(Sym*(Kl,)),T) have weight
k(n —1) + 1. The polynomial L(G,,,Sym"(Kl,),T) has coefficients in Z.
Proof. By Grothendieck’s formula for L-functions, we have

L(P', j.(Sym* (Kl,)),T) = ﬁdet(l — FT,H'(P' ®F, j,(Sym*(K1,))) """

=0

Under our conditions on p and n, the global monodromy group of Kl,, is SL(n) by [K] 11.1. In par-
ticular Sym” (Kl,) is irreducible as a representation of the geometric fundamental group 71 (G, ®F)
and hence H'(P' ®F, j, (Sym”(Kl,))) vanishes for i = 0,2. So L(P', j.(Sym*(Kl,)), T) = det(1 —
FT, H'(P'®F, j.(Sym*(Kl,))) is a polynomial. Since Kl,, is a lisse sheaf on G,,, puncturely pure of
weight n— 1, all the reciprocal roots of the polynomial det(1—FT, H (P! ®F, j, (Sym”(Kl,))) have
weight k(n — 1) 4+ 1 by [D2] 3.2.3. Similarly, one can show L(G,,, Sym”(Kl,),T) is a polynomial.
Let’s prove it has coefficients in Z. For any a € F7, let o, denote the element of Gal(Q(,)/Q)
such that o(,) = &5, where §, # 1 is a p-th root of unity in Q. Using the definition of Kloosterman
sums, one checks that

7oKl (Fgi, A)) = KL, (F g, a™A),

and thus

0o(L(A,T)) = L(a"\, T).
Recall from the Introduction that
LAT)Y =1 —m,(NT) - (1 — 1y (N)T).
Write
Sym* (LT = [ G =ap()---mr (VD).

Then, we deduce

0o (SymF (LA, T) V™)) = SymF (L(a™A, )7V,

Now, by definition,

1
Sym* (L (X, T4 (-7

L(G,,,Sym"(Kl,),T) =
AE|G,, |
Thus,
1
Sym" (L(am, Tdes(V)) (=1

0a(L(Gpm, Sym* (K1), 7)) =[]
AE|G |
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The right side is clearly the same as L(G,,,Sym"*(Kl,),T). The lemma is proved.

Proposition 2.3. Let Fy be the geometric Frobenius element at 0 and I the inertia subgroup at
0. The reciprocal roots of the polynomial det(1 — FyT, (Sym”(Kl,))’°) are of the form ¢, where
0 <i < k(n—1)/2. In particular, det(1—FyT, (Sym*(K1,,))°) is a polynomial in integer coefficients

of weights at most k(n — 1). In the case n = 2, we have

det(1 — FyT, (Sym*(Kl,))°) =1 - T.

Proof. By [K] 7.3.2 (3) and [D2] 1.8.1, the eigenvalues of Fy acting on Sym”(Kl,))! are of the
form ¢* with 0 < < k(n — 1)/2. This proves the first part of the Proposition.

By [K] 7.4.3, the local monodromy at 0 of Kl, is unipotent with a single Jordan block, and
Fy acts trivially on (Kl,)%. If n = 2, using this fact, one can show the local monodromy at 0 of

Sym”(Kly) has the same property. Proposition 2.3 follows.
Remark. We do not know a precise formula for det(1 — FyT, (Sym* (K1,))?) in general for n > 2.
Lemma 2.4. Keep the notation in Lemma 1.7. Suppose pn is odd. Then 6 is trivial.

Proof. Take a positive integer k such that (k,n) = 1 and such that Si(n,p) is non-empty. For
instance, we can take kK = n + mp for any positive integer m prime to n. (Recall that we always
assume (n,p) = 1). Then ay(n, p) # 0. By Lemma 2.2, L(G,,, Sym”(Kl,,), T) is a polynomial with
coefficient in Z. So each pure weight part of L(G,,Sym”*(Kl,),T) also has coefficients in Z. We

have

L(G,, Sym* (Kl,), T)

= L(P',j,(Sym*(Kl,)), T)det(1 — FyT, (Sym* (Kl,))%)det(1 — Fo T, (Sym" (K1, ))’>),

where F, is the geometric Frobenius element at oo. Since n is odd, by Lemmas 1.7 and 1.8, we
have
2

(Sym" (K1,))"> = (Sym" ([n].Ly,))"> ® Lox ©Q (M) :

Using the calculation in Lemmas 1.8 and 2.1, one can verify Fi, acts trivially on (Sym*([n]. Ly, ))!>.

Let A = 0(F). Then A™ =1 by Lemma 1.8 (1), and

k(n—1)
Pl

det(1 — Foo T, (Sym” (K1, ))'>=) = (1 — M\*q T)or ()
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So we have
L(Gy,, Sym* (Kl,),T) =

k(n 1)

det(1 — FyT, (Sym" (Kl,))°)(1 — Mg~ =z T)* P (P!, j,(Sym*(K1,)), T).
By Lemma 2.2, L(P!, j,(Sym*(Kl,)), T is pure of weight k(n—1)41. So the part of L(G,, Sym”(Kl,), T")
with weight at most k(n — 1) is given by

k(n

det(1 = By, (Sym*(IK1,))"2) (1 — Aeq 5 T)snw),

It must have coefficients in Z. The first factor also has coefficients in Z. Working with the

coefficients of T, we see that )\qu(n;l) must be an integer. Since A" = 1, we must have \* = +1.

As (k,n) =1 and n is odd, we must have A = 1. So @ is trivial.
Now Theorem 1.1 in Section 1 follows from Lemmas 1.7, 1.8, and 2.4.

In the following, we calculate the bad factors at oo of the L-function of the k-th symmetric

product of Kl,.

Theorem 2.5. Suppose n|(q — 1). Let F, be the geometric Frobenius element at oo.

(1) If n is odd, then for all k, we have
det(1 — Fuo T, (Sym* (Kl,))l=) = (1 — ¢~z > 1)as(mp),
(2) If n is even and k is odd, then we have

det(1 — Fyo T, (Sym* (K,))">) = 1.

(3) Suppose n and k are both even. We have

det(1 — Fso T, (Sym” (K1, ))%=)
(1- :" e if 2n|(q — 1),
= (144 T)Ck(”’p)(l —q 2 T)wp)=ex(np) if 9n f(g — 1), either 4|n or 4|k,
(1— ¢ =2 T)ex (P (1 4 "2 7)o () =en(np) if 9y f(g—1), 4 fnand 4 Jk.

where ci(n,p) denotes the number of g-orbits j in Si(n,p) such that v; # 0 and such that

J1+2j2+ -+ (n—1)j,—1 is odd.
Proof. By Lemmas 1.7 and 1.8, we have

(Symk(Kln))Ioc = (Symk([n]*(ﬁw” & Acx)))loo ® Lo @ Q, (M) :

2
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Suppose 1 is odd. Then y and 6 are trivial. One can verify Fi, acts trivially on (Sym” ([n]. Ly, ))">.
(1) then follows from Lemma 2.1.
Suppose n is even and k is odd. Then (Sym*(Kl,,))!~ = 0 by Lemma 2.1. (2) follows.
Suppose n and k are even. If 2n|(g — 1), then (y/)7~! = (=" =1 and hence \/C € F,. In this
case, one verifies that 6 is trivial and Fl, acts trivially on (Sym”([n].(Ly, ® £y)))">. The first
case of (3) then follows from Lemma 2.1. Suppose 2n [(q—1), then /¢ € F,. We use the notation

in the proof of Lemma 1.8. Note that g, ,—1) is a lifting of the geometric Frobenius element in

Gal(F/F,). Recall that (Sym*V)/> is generated by the vectors

n—1

vj = Z(—1)j”"1+"'+j”""e"i(j)7
i=0

where j runs over the o-orbits of Si(n,p). One checks that

9(0,1,-1)(v5)
n—1 )
— Z(_l)jn,—l+"'+jn—i (_1)0'jn—i+1'jn—i+1+'"+(i71)jn—l+ij0+(i+1)jl+"‘+(n71)jn—i—1eo'z(j) )

i=0
We have

0-Jni+ 1l -fnoiy1+- 40—t +ijo+ @+ )i+ +(n—=1)jn1
= i(jo+ji+- F it F it A 1)
i+ 22+ (n—i— 1)1
+(0 =) jn—i + (1 = ) Jn—it1 + -+ (=1)Jn-1
= ik
+<j1 +2p2 4+ (n—i—1)jni1
F= i+ (= 8 Do oo (0= D )
—N(Jn—i + Jn—it1 + F Jn-1)-
But n and k are even. So we have

(71)j1+2j2+"'+(n71)jn71

9(0,1,-1)(”1’) = Uj.

So w; is an eigenvector of Fy, on (Sym"V)!= with eigenvalue (—1)71+22++(=Djn-1 On the
other hand, we have 0% (F,.) = 1 if either 4|n or 4|k, and 6*(F,) = —1if 4 fn and 4 fk. The last

two cases of (3) follows.

3. The degrees of the L-functions of symmetric products
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Let ¢ be a primitive n-th root of unity in F and let k be a positive integer. Denote by di(n,p)
the number of the set Si(n,p), that is, the number of n-tuples (jo,j1,---,jn—1) of non-negative
integers satisfying jo +j1 + -+ + jn—1 = k and jo + j1{ + - -+ 5,—1¢" "' = 0 in F. In this section,

we prove the following result, which is Theorem 0.1 in the Introduction:

Theorem 3.1. Suppose (n,p) = 1. The degree of L(G,,, Sym”(Kl,),T) is

(2 wn)

Proof. By Grothendieck’s formula for L-functions, L(G,,,Sym*(Kl,),T) is a rational function,

and its degree is the negative of the Euler characteristics
2 . .
Xe(Gm @ F,Sym*(K1,)) = > (=1)'dimH}(Gy, ® F, Sym*(Kl,,))
i=0

To calculate the FEuler characteristic, we may replace the ground field F, by its finite extensions.
So we may assume n|(q — 1). Then ( lies in F;. By Lemmas 1.2 and 1.4, [n]*Kl,, is isomorphic to
Ly, ® Ly, ®--- DLy, as arepresentation of the wild inertia subgroup Pus at oo, where for
any a € Fy, ¢, is the additive character ¢, (z) = ¢ (azx). So we have

[n]*(symk(Kln)) = @ Cw"b(j0+j14+-~-+1'n—14"71)

Jotiit+t+in-1=k, jo,j1,--;in—-120
as representations of P.,. But the Swan conductor of L, at oo is 1 if a # 0, and 0 if @ = 0. So
the Swan conductor of [n]*(Sym”(Kl,)) at oo is the number of those n-tuples (jo, ji,. - -,jn_1) of
non-negative integers satisfying jo + j1 + -+ + jn—1 = k and jo + j1{ + -+ + jn—1¢""1 # 0 in F,,.
This number is exactly (k:ff) — dy(n,p). By [K] 1.13.1, the Swan conductor of Sym*(Kl,) at
0o is 1 of the Swan conductor of [n]*(Sym"(Kl,)) at co. Since Kl, is tame at 0, Sym*(Kl,,) is
also tame at 0, and hence its Swan conductor at 0 vanishes. By the Grothendieck-Ogg-Shafarevich

formula, —x (G, Sym”*(Kl,)) is equal to the sum of the Swan conductors of Sym*(Kl,,) at 0 and

at oo. Theorem 3.1 follows.

In some special cases, an explicit formula for the degree of L(G,,,Sym"(Kl,),T) can be ob-

tained. The following is one example.

Corollary 3.2. Suppose n is a prime number different from p such that p is a primitive (n — 1)-th

root of unity mod n. Let (%) be the smallest non-negative integer so that its image in F), is %

Then the degree of L(G,,, Sym”(Kl,),T) is
1 ktn—17 _ k_:}%)—kn—l
n n—1 n—1 .
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Proof. Let d = [F,({) : Fp]. Then we have ¢?"~1 = 1. Since ¢ has order n, we must have
n|p? — 1. On the other hand, since p is a primitive (n — 1)-th root of unity mod n, n — 1 is the
smallest natural number with the property p"~! = 1 in Z/n, that is, n|p"~! — 1. So we have
n—1<d. Since 1+ (+---+¢" ! =0, we have d = [F,(¢) : Fp] < n—1. So we must have
d=[Fy(¢):Fp]=n—1and 1+ X +---+ X" ! is the minimal polynomial of ¢ over F,. Therefore,

if jo +j1¢ + - -+ jn_1¢""t =0 in F for some integers jo, j1, ..., jn_1, then we must have
Jo=j1=-++ = jn-1 (mod p).

Let us determine the number di(n, p) of n-tuples (jo, j1,. .., Jn—1) of non-negative integers with
the property jo+j1 4 +jn_1 = k and jo+71(+-- -+ jn_1¢(""' = 0in F. By the above discussion,
the second equation implies that jo = j1 = -+ = jn—1 (mod p). Substituting this into the first

equation, we get that

") mod p).

Jo= == Jn-1=(

Write j; = pji + (%), where j/ are non-negative integers. Then the first equation becomes p(j{, +

gL+ +h_y) +n(E) =k, that is,

Jo+ii+-Hin =

k—n(f\/
di(n,p) = ( p Jrln*l )
n —

The corollary then follows from Theorem 3.1.

Thus we have

Sl
-

4. An example

In this section, we prove Theorem 0.2 in the Introduction. Throughout this section, we assume

that n = 2, ¢ = p and p is an odd prime.

Lemma 4.1. The degree of L(G,,, Sym"(Kl),T) is £ — [%] if k is even, and &L — [% +1]if k

is odd.

Proof. Note that —1 is a primitive square root. Let’s determine the number dy(2,p) of pairs

(jo, j1) of non-negative integers satisfying jo + j1 = k and jo — j1 = 0 in F, or equivalently,
jO + jl = k:
jO_.jl =0 (modp)
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This is equivalent to the problem of determining the number of those integers 0 < jo < k with the

property
2jo = k (mod p).

Since p is an odd prime, the inverse of 2 in F, is %, and hence the above equation is equivalent

to the equation
k(p+1)

5 (mod p).

Jo =

So we are reduced to determining the number of those integers j with the property

k(p+ 1
ogm#sh
that is,
Bk _k
o =7 T =gy
or equivalently,
kol +1 k1
R I T

k <L k < k
0w =7 T2 =79,
is 2[%] + 1. When £ is odd, the number of those integers j satisfying
k+1<_+k+1< k;+1
op T2 =TT T =0,

& p
_ %] +1 if kis even,
dr(2,p) { 2[% + %] if k£ is odd.

The lemma then follows from Theorem 3.1.

Lemma 4.2. Let F, be the geometric Frobenius element at co. We have

if 2 [k,
det(1 — Foo T, (Sym" (Kly)) =) = { (1 — p2T)™s if 2|k and p = 1 (mod 4),
(L4 p2T)™ (1 —p2T)™ " if 2|k and p = —1 (mod 4),

where

L+ [55] if 4k,

my = .

[55] if 4 Jk,

and nj = [ﬁ + 1],

Proof. The first case follows from Theorem 2.5 (2). Suppose 2|k. We will treat the case where

p = —1 (mod 4) and leave to the reader to treat the other case. Note that the condition p = —1
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(mod 4) is equivalent to saying that the square root /—1 of the primitive square root of unity —1
does not lie in F),. We use the notation in the proof of Lemma 1.8. The proof of Lemma 2.1 shows

that a basis for (Sym*V)’= is given by

{ebeh™ 4 (—1)*fek el |i — (k — i) = 0 (mod p), 0 <i <

k
5

E ok
)ed ef is nonzero only when 4|k.

[V Ed

(When i = £, the element eheh ™ 4 (=1)k—iek el = (14 (-1)
We exclude this element from the basis if 4 /Iki) A calculation similar to that in the proof of

Lemma 4.1 shows that this basis has 1+ [%] elements if 4|k, and [%] elements if 4 [k. So we have

L+ [£] if 4]k
3 k I — 2p ’
dim(Sym” (Kly)) { [Qkp] s
Note that g,1,—1) is a lifting of the geometric Frobenius element in Gal(F/F,). Let eoek oy

(=1)¥~7ek~%¢! be an element in the above basis. Then

kzk‘zz)

goa-nleger " + (1) g Tlel) = (1) ey + (1) T (=1)'eg el

= (1)i(eheb ™ (1) e,

(Recall that k is even.) So Fi, acts semisimply on (Sym"V )= with eigenvalues 1 and —1, and
the dimension of the eigenspace corresponding to the eigenvalue 1 (resp. —1) is the number of

those even (resp. odd) integers i satisfying 0 < i < £ and i — (k — i) = 0 (mod p). (If 4 fk, we

ISTES ST

don’t count the odd number i = £). We have i = £ (mod p). So dimension of the eigenspace
corresponding to the eigenvalue 1 (resp. —1) is the number of integers j such that 0 < jp+ g < %
and that jp+ & is even (resp. odd). (Again if 4 Jk, we don’t count the odd number i = 0-p+ %).
Note that if 4 fk, then jp + E is even if and only if j is odd; if 4|k, then jp + 5 is odd if and only

k

if j is odd. One can show the number of odd integers j satisfying 0 < jp + £ 5 < g5 is | k

i T 1]. So
if 4 fk (resp. 4|k), then the dimension of the eigenspace corresponding to the eigenvalue 1 (resp.
—1)is [55 + 3]

On the other hand, by Lemma 1.8, (Sym” (Kly))!> is isomorphic to (Sym* V)= ® Ly ©Q, (-%)
as a representation of Gal(F/F)). Since k is even, we have 0% = (#2)%. By the description of 62
in Lemma 1.8, if 4|k, then 0%(F.,) = 1; if 4 fk, then 6*(F,) = —1. Combining with the above

calculation, this proves Lemma 4.2.

Finally, we discuss the functional equation for L(G,,, Sym* (Kly),T). By Lemma 2.2, L(G.,, Sym” (Klp),T)

and L(Pl,j*(Symk(Klg)),T) are polynomials, where j : G,, — P! is the open immersion. By
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Proposition 2.3, we have

det(1 — FyoT, (Sym*(Klp))) =1 - T.

Combining with Lemma 4.2, we see that
det(1 — FoT, (Sym”(Kly))%)det(1 — Foo T, (Sym* (Kly)) =)
is exactly the polynomial P defined in the Introduction. We have

L(Gp, Sym*(Klp), T)

= L(P',j,(Sym"(Kly)), T)det(1 — FyT, (Sym”(Kly))%)det(1 — Foo T, (Sym* (Kly)) ).

So L(P', j.(Sym"(Kly)), T) is the polynomial M, defined in the Introduction.
By [K] 4.1.11, we have (Kly)Y = Kl ® Q;(1). So (Sym"(Kly))Y = Sym"(Kl,) ® Q,; (k) General
theory then shows that we have a functional equation

1

L(PY, 4, (Sym*(Kly)), T) = ct® L(P', j,(Sym"* (Kl,)), Z7k—~_—1T)’

where
2

¢ = [T det(—F, H'(P' & F, j.(Sym* (K1))) 0"
=0

and § = —x(P' @ F, j,(Sym”(Kly), T). This proves the functional equation for My in the Intro-

duction.
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