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ABSTRACT. Suppose p is a prime, ¢ is a positive integer, and f € Z[z] is a univariate polynomial of
degree d with coefficients of absolute value <p’. We show that for any fized t, we can compute the
number of roots in Z/(p*) of f in deterministic time (d log p)o(l). This fixed parameter tractability
appears to be new for ¢ > 3. A consequence for arithmetic geometry is that we can efficiently
compute Igusa zeta functions Z, for univariate polynomials, assuming the degree of Z is fixed.

1. INTRODUCTION

Given a prime p, and a univariate polynomial f € Z[x] of degree d with coefficients of absolute
value < pt, it is a basic problem to count the roots of f in Z/(p'). Aside from its natural number
theoretic relevance, counting roots in Z/(p') is closely related to error correcting codes [3] and
factoring polynomials over the p-adic rationals Q, [8, 4, 17], and the latter problem is fundamental
in polynomial-time factoring over the rationals Q [24], the study of prime ideals in number fields
[9, Ch. 4 & 6], elliptic curve cryptography [22], the computation of zeta functions [5, 23, 30, 6], and
the detection of rational points on curves [28].

There is surprisingly little written about root counting in Z/(p') for ¢t > 2: While an algorithm
for counting roots of f in Z/(p') in time polynomial in dlogp has been known in the case t = 1 for
many decades (just compute the degree of ged(a? —z, f) in Fy,[z]), the case t = 2 was just solved in
2017 by some of our students [18]. The cases t >3, which we solve here, appeared to be completely
open (see also [29, 27, 14| for further background). One complication with ¢ > 2 is that polynomials
in (Z/(p"))[z] do not have unique factorization, thus obstructing a simple use of polynomial ged.

However, certain basic facts can be established quickly. For instance, the number of roots can be
exponential in logp. (It is natural to use log p, among other parameters, to measure the size of a
polynomial since it takes O(dt log p) bits to write down f.) The quadratic polynomial 22 = 0, which
has roots 0,p,2p,...,(p — 1)p in Z/(p?), is such an example. This is why we focus on computing
the number of roots of f, instead of listing or searching for the roots in Z/(p).

Let Ny(f) denote the number of roots of f in Z/(p') (setting No(f):=1). The Poincare series
for fis Pp(x) =3 ;2o Ne(f)z". Assuming Ps(z) is a rational function in z, one can reasonably
recover N;(f) for any ¢ via standard generating function techniques. That Py(x) is in fact a rational
function of x (even for multivariate f) was first proved in 1974 by Igusa (in the course of deriving
a new class of zeta functions [19]), applying resolution of singularities. Denef found a new proof
(using p-adic cell decomposition [10]) leading to more algorithmic approaches later. While this
in principle gives us a way to compute N¢(f), there are few papers studying the computational
complexity of Igusa zeta functions [31]. Our work here thus also contributes in the direction of
arithmetic geometry by significantly improving [31], where Py is computed in the special case where
f is univariate and splits completely over Q.

To better describe our results, let us start with a naive description of the first key idea: How
do roots in F, lift to roots in Z/(p")? A simple root of f in FF,, can be lifted uniquely to a root in
Z/(p'), according to the classical Hensel’s lemma (see, e.g., [15]). But a root with multiplicity > 2
in F, can potentially be the image (under mod p reduction) of many roots in Z/(p'), as illustrated
by our earlier example f(x)=22. Or a root may not be liftable at all, e.g., #2 + p = 0 has no roots
mod p?, even though it has a root mod p. More to the point, if one wants a fast deterministic
algorithm, one can not assume that one has access to individual roots. This is because it is still
an open problem to find the roots of univariate polynomials modulo p in deterministic polynomial
time (see, e.g., [11, 16]).
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Nevertheless, we have overcome this difficulty and found a way to keep track of how to correctly
lift roots of any multiplicity.

Theorem 1.1. There is a deterministic algorithm that computes the number of roots of f in Z/(p")
in time (dlog(p) + 21)°W), where the implied constant in the big O notation is absolute.

We prove Theorem 1.1 in Section 5. Note that Theorem 1.1 implies that if ¢ = O(loglogp) then
there is a deterministic (dlogp)®") algorithm to count the roots of f in Z/(pt). We are unaware
of any earlier algorithm achieving this complexity bound, even if randomness is allowed. Following
this work, an improved complexity was obtained in a preprint [20] recently. It is worth noting that
further speed-ups in terms of sparsity (e.g., polynomials with a fixed number of monomial terms)
may be difficult to derive: Merely deciding the existence of roots in IF,, or Q, is already NP-hard
(under BPP-reductions) with respect to the sparse encoding [1, 7]. An interesting open problem
in this direction is then the following: If c1, ¢, c3,a,b€{1,...,p* — 1} with a<b<p? — p, can one
decide if ¢; 4 cox® + c32® has a root in Z/(p?) in time polynomial in log p?
Our main technical innovations are the following:
e We use ideals in the ring Z,[z1, . .., x| of multivariate polynomials over the p-adic integers
to keep track of the roots of f in Z/(p'). More precisely, from the expansion

flx1+pxo + -+ +pkl‘k—1) = g1(w1) + pga(z1, 2) +p293(551,$2,$3) + e

we build a collection of ideals in Zp[z1, ..., ], starting from (gi(x1)). We then decompose
the ideals according to multiplicity type and rationality. This process produces a tree of
ideals which ultimately encode the summands making up our final root count.

e The expansion above is not unique. (For example, adding p to g; and subtracting 1 from go
gives us another expansion.) However, we manage to keep most of our computations within
F,, and maintain uniformity for the roots of our intermediate ideals, by using Teichmiiller
lifting (described in Section 4).

2. OVERVIEW OF OUR APPROACH

To count the number of roots in Z/(p') of f € Z[x], our algorithm follows a divide-and-conquer
strategy. First, partially factor f over F, according to multiplicity and rationality as follows:

(1) f=nffEfF (modp),

where each f; € Fp[x] is monic and splits completely into a product of distinct linear factors over
[F,, the f; are pairwise relatively prime, and F is free of linear factors in I, [x]. Such a factorization
is classically known to be doable in deterministic polynomial-time (see, e.g., [2, pp. 170-171]). For
an element a € [F), we call any element of its inverse image under the natural map Z — F, a lift
of a to Z. Similarly, we can define a lift of a to Z, or to Z/(p'), and we can naturally extend this
concept to polynomials in [F,[x] as well. The core of our algorithm counts how many roots of f in
Z/(p') are lifts of roots of f; in Fp, for each i. For f1, by Hensel’s lifting lemma, the answer should
be deg f; for all t. For other f;, however, Hensel’s lemma will not apply, so we run our algorithm
on the pair (f,m), where m is the lift of (a factor of) f; to Z[z], for each i € {2,...,1}, to see how
many lifts (to roots of f in Z/(p')) are produced by the roots of the f; in F,. The final count is
then the summation of the results over all the f;, since the roots of f in Z/(p') are partitioned by
the roots of the f;.

Remark 2.1. If one instead uses a randomized factorization algorithm (e.g., [21]) to find roots of
f in Fy in polynomial time then one may assume degm =1, and greatly simplify the analysis of
our algorithm.

LAl factors of all fi are ultimately exhausted.
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Since m|f (and in fact m?|f) in Fp[z], we have f(x) = 0 (mod (m(z),p)) and, in Z[zy,z2], we
have the containment

f(x1 + pz2) € (m(z1),p).
If we have the refined containment f(x1 + pxs) € (m(z1),pt) then for any root ry of m in Z/(p'),
and any integer 0 < ro < p'~!, f(r1 + pra) = 0 (mod p’). Thus each root of m in F, lifts to

exactly p~! roots of f in Z/(p'), and the counting problem for (f,m) is solved. Otherwise we can
efficiently find an integer s € {1,...,t — 1} and a g €Z[x1, z2] such that

(2) f(z1 4 pra) = p°g(x1,22) (mod (m(z1),p")),

where deg,, g <t —1, deg,, g < degm and g(x1,22) # 0 (mod p,m(z1)). Let

gl@i,x2) = Y gj(w1)zh.

0<j<t

Then either g; = 0 (mod p) or ged(m(x1),g;(x1)) = 1 over Fp,. (Otherwise, we apply the algorithm

to the pairs (f,ged(m, g;)) and (f, m/ged(m, gj)).)
If s = 1 then, since m?|f over F,, we must have

f(z1 4 pr2) = pgo(z1)  (mod m(zy), p?).

Since ged(m, go) = 1 over F,, none of the roots of m in F, can be lifted to Z/p?. So from now on
we assume that 1 < s < t.

2.1. The algorithm for ¢ = 3. The only interesting case is when s = 2.

Theorem 2.2. The number of roots in Z/(p®) of f that are lifts of roots of m (mod p) is equal to
p times the number of roots in IFIQ, of the 2 X 2 polynomial system below:

m(z1) =0

(3) g(xlva) =0

and thus the number of roots can be calculated in deterministic polynomial time.

Proof. To calculate the number of the roots, we run the Euclidean algorithm to compute the ged
of two polynomials:

g(z1,22) and b — x4,

viewed as polynomials in o over F,lx1]/(m(z1)). If we encounter a zero divisor of Fy[x1]/(m(z1))
during the computation, then we have a nontrivial factorization of m(z1) = mimsy. We recursively
count the I, solutions of the equation system mi(z1) = 0 and g(x1,22) = 0, and the system
ma(z1) = 0 and g(x1,z2) = 0, output the sum of these two numbers.

Otherwise assume that the degree of the ged (a monic polynomial in x5 ) is ny. The number of
[F,-roots of (3) equals to ny deg(m(z)).

Since m(x1) has at most deg(m(z)) many factors, and the Euclidean algorithm can be done in
deterministic polynomial time, the theorem follows. B

More details and generalization (to the Grobner base computation ) of the algorithm can be found
in Section 6. Note that since deg,, g < 2 any root of m in I, can be lifted to at most 2p roots in
Z/ ().

Assume that f € Z[z] is not divisible by p. The preceding ideas are formalized in the following
algorithm:
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Algorithm 1 The case t =3

: function cOUNT(f(z) € Z[z], f(x) # 0 (mod p) )
: Factor f as in (1).

1

2

3 count = deg fi > Every root of fi can be lifted uniquely.
4: Push fs, f3,..., fi onto a stack S

5: while S # () do

6 Pop a polynomial from the stack, find its lift to Z and denote it by m

7 if f(z1+pre) =0 (mod (m(x1),p)) then

8 count < count + p* degm

9

: else
10: Find s and g satisfying the conditions in Equation (2)
11: if deggcd(m,g;) >0 for some j then
12: Push ged(m, g;) and m/ ged(m, g;) onto the stack
13: else
14: if s =2 then
15: count <— count +p-(the number of the solutions of (3) in }F]%)
16: end if
17 end if
18: end if
19: end while
20: return count

21: end function

2.2. A Proposition for General t. Let r € F,, be any root of m, r’ be the corresponding lifted
root of m in Z,, and a € Z,. We then have

f@' +ap) =p°g(r',a) (mod p").
So ' + ap is a root in Z/(pt) for f if and only if
g(r';a) =0 (mod p'~*).
The preceding argument leads us to the following result.

Proposition 2.3. The number of roots in Z/(p') of f that are lifts of the roots of m (mod p) is
equal to p*~ ! times the number of solutions in (Z/(p'=*))? of the 2 x 2 polynomial system (in the
variables (x1,x2)) below:

m(z1)

g(x1,m2) =

0
@ .

Since the root of m is liftable only when s > 1 (see the discussion at the beginning of the section),
this yields the following dichotomy corollary:
Corollary 2.4. If m?|f in Fy[z], and t > 2, then any root of m in F, is either not liftable to a
root in Z/(p') of f, or can be lifted to at least p roots of f in Z/(p").
3. FROM TAYLOR SERIES TO IDEALS
For any univariate polynomial m of degree n let us define

yz 1dz
ny Z Z )'

1<i<y



COUNTING ROOTS FOR POLYNOMIALS MODULO PRIME POWERS 5

Note that if m € Z[z] then 5 (‘g;;i (x), being a Taylor expansion coefficient, also lies in Z[z]. So T, ;

is an integral multivariate polynomial for any j. Since 75,1 does not depend on y, we abbreviate
Tn,1(x,y) by Tn(x). The following lemma follows from a simple application of Taylor expansion:

Lemma 3.1. Let m € Z[x] be a polynomial that is irreducible in Z[z| but splits completely, without
repeated factors, into linear factors in Fplz]. Let r € F), be any root of m and let ' € Z, be the
corresponding p-adic integer root of m. Then

m(r' + ap) = apTy,(r)  (mod p?).
To put it in another way, we have the following congruence:
m(z1 + pra) = proTpn(r1) (mod m(a;l),pQ)
in the ring Z[x1, z2].

That one can always associate an r € F), to a root 7’ € Z, as above is an immediate consequence
of the classical Hensel’s Lemma [15]. More generally, we have the following stronger result:

Lemma 3.2. Let m € Z[zx] be a polynomial that is irreducible in Z[z] but splits completely, without
repeated factors, into linear factors in Fy[z]. Let r € F), be any root of m, and let v’ € Z, be the
corresponding p-adic integer root of m. Then for any positive integer u,

m(r' + ap) = apTypu—1(r';ap) (mod p*).
Also, in the ring Z[x1,x2], we have
m(x1 + pra) = 12pThy deg(m) (T1,p2)  (mod m(z1)).
Proof. By Taylor expansion:

m(r’ + ap) = m(r') + Z

1<i<u

_ Z (ag)z (ngi(r,) (mod p*)

a i—1 im
—ap 3 DT ) (anod p)

As observed earlier, %%(z) is an integral polynomial (even when ¢ > p — 1), so we are done. l

Note that in the setting of Lemma 3.2, Ty, o—1(7’, ap) = Tp, (") # 0 (mod p).
The following theorem is a generalization of the preceding lemmas to ideals.

Theorem 3.3. Let I be a ideal in Zy[x1,...,x5—1]. Assume that I (mod p) is a zero-dimensional
radical ideal in Fplz1,...,x,_1] whose zero set in Fé“*l lies in Flgfl and lifts to Z,. Let f €
Zlxy,. .. xy) satisfy deg, f <p. If f(r1,...,7) =0 (mod p®) for every Zy-root (r1,...,m%—1) of
I, and every integer 1y, then there must exist a polynomial g(x1,...,xy) such that

f(xlw"a‘rk)Epsg($17"'vl‘k‘) (mOd I)

Theorem 3.3 can be proved by induction on k. Lemma 3.2 is basically the special case of
Theorem 3.3 when s = 1,k = 2, I = (m(x1)) and f(z1,22) = m(x1 + pxe). It is important in
Theorem 3.3 that the ideal I (mod p) be radical, just like in Lemma 3.2, where m is free of repeated
factors over F,,.
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4. THE CASE t =4 AND THE NEED FOR TEICHMULLER LIFTING.

Here we work on the case t = 4. Earlier, we saw that in the course of our algorithm, m is a lift
of a factor of f; to Z[z]. In this section we will show the need for Teichmiiller lifting. We start with

f(@1 +pra) = p°g(a1,m3)  (mod m(x1),p?),
where 1 < s < 4. If s = 3 then we have the following root count, thanks to Proposition 2.3:

Theorem 4.1. The number of roots in Z./(p*) of f that are lifts of roots of m (mod p) is equal to
p? times the number of roots in Fy of the 2 x 2 polynomial system (in the variables (x1,x2)) below:

5) m(x1) =0
g (x 1y x2) =0
which can be calculated in deterministic polynomial time.
The most interesting subcase is thus s = 2. From Equation (3), we first build an ideal

(m(x1)7g(x17x2)) (mOd p) C Fp[$1,.%'2].

The leading coefficient of g(z1,z2), viewed as a polynomial in 9, is assumed to be invertible in
Fpy[z1]/(m(z1)). So g can be made monic (as a polynomial in z2). So we may assume that the ideal
is given as
(m(z1), 73° + fa(z1, 22)),

where ny < 2 and deg,, fo < na. If (r,72) is a root in I, of the ideal, and 7 is the lift of r to the
Zy-root of m, then r; + pry is a solution of f (mod p3). We compute the rational component of
the ideal, and find its radical over F,. In the process, we may factor m in F,[x]. If we lift naively
a factor my of m over I, the p-adic roots of m; may not be p-adic roots of m. So how do we keep
the information about p-adic roots of m, a polynomial with integer coeflicients?

Our solution to this problem is to use Teichmiiller lifting: Recall that for an element « in the
prime field F/p, the Teichmiiller lifting of « is the unique p-adic integer w(a) € Z, such that
w(a) = a mod p and w(a)? = w(a). If a is any integer representative of «, then the Teichmiiller
lifting of v can be computed via

w(a) = lim ", w(a) = a”  mod p'.
k—o0
Although the full Teichmiiller lifting cannot be computed in finite time, we will see momentarliy
how its mod p reduction can be computed in deterministic polynomial time.

Let us now review how the mod p’ reduction of the Teichmiiller lift can be computed in deter-
ministic polynomial time: If m € Z[x] is a monic polynomial of degree d > 0 such that m mod p
splits as a product of distinct linear factors

d
m(z) = H(m — ;) modp, oy € Fp,
i=1
then the Teichmiiller lifting of m mod p is defined to be the unique monic p-adic polynomial
m € Zplx] of degree d such that the p-adic roots of 1 are exactly the Teichmiiller lifting of the

roots of m mod p. That is,
d

m(z) = [ (& — w(ew)) € Zy[a].
i=1
The Teichmiiller lifting 7 can be computed without factoring m mod p: Using the coefficients of
m, one forms a d X d companion matrix M with integer entries such that m(z) = det(xI; — M).
Then, one can show that

i(x) = lim det(xly — MP"), (z) = det(zI; — MP')  mod p'.
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This construction and computation of Teichmiiller lifting of a single polynomial m(z) mod p can
be extended to any triangular zero-dimensional radical ideal with only rational roots as follows.
Let I be a radical ideal of the form

I= (gl(x1)792(x17x2)7 ce. 7gk3(xla ey l'k)) - Fp[xl’ cee ,LEk],
having only rational roots, where g; € Z[x1, ..., z;] is a monic polynomial in x; of the form
gi(arl, - 7573@') = a;:“ -+ f,-(a:l, - ,xi), n; > 1

satisfying deg, f; < m;. Such a presentation of the ideal I is called triangular form. It is clear that
such an [ is a zero-dimensional complete intersection. Using the companion matrix of a polynomial,
we can easily find n; X n; matrices M;_1(x1,...,z;—1) whose entries are polynomials with coefficients
in Z such that

gi(x1,...,z;) = det(z;il,, — Mi(z1,...,2;—1)) modp, 1<i<k.
Recursively define the polynomial f; € (Z/(p!))[z1,...,x;] for 1 <i <k such that

f1(z1) = det(z1 1, — Mgt) mod p',

fo(x1, ) = det(xal,, — Ml(:cl)pt) mod (pt, fi(z1)),

fe(mr, ... xp) = det(zpln, — My_1(z1,...,21)") mod (0, f1,..., fr_1)-

The ideal I = (f1,..., fr) € (Z/(p"))[z1,..., 2] is called the Teichmiiller lifting mod p* of I. Tt

is independent of the choice of the auxiliary integral matrices M;. The roots of I over Z/p'Z
are precisely the Teichmiiller liftings mod p’ of the roots of I over F,. In particular, each root
(r1,...,rx) over Z/(pt) of I satisfies the condition ¥ = r; mod p'.

We require that m be the Teichmiiller lift of (a factor of) f; at beginning of the algorithm. Then
we compute the Teichmiiller lift of the ideal (m(z1), x5* + fa(x1, 22)), which is an ideal in Zp[z1, z2].
We only need it modulo p*. Denote the ideal by I. For every root (ri,r2) of Iy, 71 + pro is a
solution of f(x) =0 (mod p3). Namely, for any integer r3, we have f(r;+pro+p?rs) =0 (mod p3),
since f(z1 + pr2) =0 (mod Iz, p3).

According to Theorem 3.3, there exists a polynomial G € Z[z1, z2, x3] such that

f(z1 + pro 4 p*x3) = p*G(x1, 22, 23) (mod Iy),
since I (mod p) is radical. We have
f(@1 4 pra + pPas) = gi(x1, 22)p’zs + go(21, 22)p*  (mod (Iz,p)).
Hence if (r1,72) is a root of Iy, then ry + pro + p?r3 is a root of f (mod p?) iff (ry, 79, r3) satisfies
g1(r1,m2)73 + go(r1,72) = 0.
Assume that g1 Z 0 (mod I3, p). We count the number of rational roots of
(I2, g1(z1, z2)x3 + go(z1,22)) (mod p) C Fplx1, x2, 23]

Multiplying the resulting count by p yields the number of roots of f in Z/(p*).
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5. GENERALIZATION TO ARBITRARY ¢ > 5

We now generalize the idea for the case of ¢t = 4 to counting roots in Z/(p?) of f(x) when t > 5
and f is not identically 0 mod p. (We can of course divide f by p and reduce t by 1 to apply our
methods here, should p|f.) In the algorithm, we build a tree of ideals. At level k, the ideals belong
to the ring (Z/(p"))[z1, ..., 2k]. The root of the tree (level 0) is {0} C Z/(p'), the zero ideal. At
the next level the ideals are of the form (m(z1)), where m is taken to be the Teichmiiller lift of f;
in Equation (1). We study how the roots in Z, of m can be lifted to roots of f in Z/(p').

Let Iy, I, ..., Iy be the ideals in a path from the root to a leaf. We require:

o Ip={0} CZ/(p") and I; C (Z/(p"))[x1, - - -, 2i];

o ;=11 NZ/(pY)[z1,..., 2] forall 0 <i <k —1;

e The ideal I; (mod p) in Fp[z1,...,x;] is zero-dimensional, radical, and has only rational
roots for all i € {0,...,k}; furthermore, I; can be written in the form

(i1, 2" + fi(wr, ..., @)
C(Z/ ()l
where deg, fi <n;.
e The ideal I; is the mod p’ reduction of the Teichmiiller lift of the mod p reduction of I;.

The basic strategy of the algorithm is to grow every branch of the tree until we reach a leaf
whose ideal allows a trivial count of solutions. (In which case we output the count and terminate
the branch.) Once all the branches terminate, we then compute the summation of the numbers on
all the leaves as the output of the algorithm. The tree of ideals contains all necessary information
about the solutions of f (mod p') in the following sense:

e For any ideal I; in the tree, there exists an integer s € {i,...,t}, such that if (ry,...,r;) is
a solution of I; in (Z/(pt))?, then 71 + pro + - - -+ p*~lr; + pir is a solution of f(x) (mod p*)
for any integer r. Denote the maximum such s by s(I;).

o If r € Z/(p') is a oot of f (mod p'), then there exists a terminal leaf Iy, in the tree such
that

k=1 (mod pk)

r=ri+prot+---+p
for some root (r1,...,7,)(Z/(p"))* of Ij.

e The root sets of ideals from distinct leaves are disjoint.

Suppose that at the end of a branch we have an ideal I, C (Z/(p!))[z1,...,xx]. The ideal I}
(mod p) is zero-dimensional and radical in Fy[z1,...,zx], with only rational roots. There are two
termination conditions:

o If s(I;;) = t then each root of Ij in Z’Ij produces exactly p!=* roots of f in Z/(pt). We
can count the number of roots in ]F]; of Ij,, multiply it by p'=*
terminate the branch.
e Let g be the polynomial satisfying

f(x1 + pxo +pPrg +pk_1$k +pk$k+1) =p g(x1,...,2p11) (mod Iy).

Such a polynomial exists according to Theorem 3.3. If g (mod p) is a constant polynomial
in xg41, and its constant is an invertible element (mod I, p), then the count on this leaf
is zero.

, output the number, and

s(Ix)

Example 5.1. Suppose t = 2. For the polynomials x> = 0 and 2% + p = 0, the ideal (z1) is a
terminal leaf with count p for the former polynomial, and with count O for the latter.

If none of the conditions hold then let

g= Z gj(:):l,...,avk)avé+1 (mod p).
J<t/k
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The degree bound ¢/k is due to the fact that p*/ divides any term in the monomial expansion of
flxy+pro+---+p* Loy +pFr4q) that has a factor xiﬂ. If any of g; vanish at some rational root
of I, in ]F]; then this allows Iy (mod p) to expressed as an intersection of simpler ideals. Otherwise,
for the ideal (I,g) C (Z/(p"))[x1,...,%k4+1], We compute its decomposition in Fplz1,...,zE11]
according to multiplicity type, find the radicals of the underlying ideals, and then lift them back to
(Z/(p"))[x1,. .., 7re1]. They become the children of Ij. Note that if (I, g) does not have rational
roots, it means that none of the roots of Ij can be lifted to solution of f (mod p**!), and thus the
branch terminates with count 0.

Proof of Theorem 1.1: If p < d then factoring polynomials over F, can be done in time polyno-
mial in d by brute force, and all the ideals in the tree are maximal. The number of children that an
ideal with distance k from the root can have is bounded from above by ¢/k or the degree of g. (More
precisely, number of non-terminal child nodes is bounded from above by t/(2k).) The complexity
is determined by the size of the tree, which is bounded from above by d[[\_,(t/k) = d% < de'.

If p > d then our upper bound above on the tree size still holds. Since we use Teichmiiller
lifting during the algorithm, the tree size will never decrease. The algorithm must stop once
the tree size approaches the upper bound |de!|. For each tree size change, we either create new
children, or split a node. We need to compute in the ring Fp[z1,...,2]/I;. Observe that in (6),
we must have n; < t/(i — 1) for i > 2. So the ring is a vector space over I, of dimension at most

tt71

dHfz2 n; = dm < de'. Theorem follows from the fact that each tree size change involves a

number of bit operations at most polynomial in de’logp. B

6. COMPUTER ALGEBRA DISCUSSION

In this section, we explain how to split ideals over [, into triangular form so that the Teichmiiller
lift to Z, can be computed. We start with the one variable case: For any given ideal I = (f(z)) C
[F,[x], we can split f into the following form

d d
f :911"'9tt90

where d; > --- > d; > 0, the polynomials g1,...,g: € Fp[z] are separable, pairwise co-prime and
each splits completely over IF,,, and gy has no linear factors in Fp[z]. Such a factorization can be
computed deterministically in time polynomial in log(p) deg(f). Note that, for 1 < i < ¢, each root
of g; has multiplicity d; in I. This means that we can count the number of F)-rational roots of I,
and their multiplicities, in polynomial time. Also, the rational part of I (i.e., excluding the factor

go) is decomposed into t factors gy, ..., g:.
Now we show how to go from k variables to k + 1 variables for any & > 1. Suppose J =

(91,---,95) C Fplz1,...x4) has triangular form:

g1 = ait +ri(a),

g2 = x5 +ra(z1,22),

g = xpF + (e, e, ., Tg),
where g; is monic in z; (i.e., deg,, 1 < n;) for 1 <i < k. We further assume that J is radical and
splitting completely over IF,, — that is, J has ning---ny distinct solutions in JFI;. In particular,
g1(z1) has n; distinct roots in F, and, for each root a; € F, of g1, there are ny distinct as € Fa
such that (ai,az) is a root of ga(w1,72). In general, for 1 < i < k, each root (ay,...,a;) € F),
of (g1,...,9i) can be extended to n;+q distinct solutions (aq,...,a;,a;+1) € IF;H of gi+1. For

convenience, any ideal with these properties is called a splitting triangular ideal.
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Let f € Fplz1, ..., ok, xx11] be any nonzero polynomial which is monic in x4, and let I = (J, f)
be the ideal generated by J and f in Fplx1, ..., 2k, 2511]. We want to decompose I into splitting
triangular ideals, together with their multiplicities. More precisely, we want to decompose I into
the following form:

(7) I=(J, )N (Jo, hE2) N -0 (T, b)) 0 (o, ho),

where J = J1NJoN---NJy N Jy, Io = (Jo, ho) has no solutions in IF’;H, and the ideals I; =
(Jis hi) C Fplz1, ..., x5, k1], 1 < i < m, are splitting triangular ideals and are pairwise co-prime
(i.e., any pair of distinct I; have no roots in common).

To get the decomposition (7), we first compute

e D
w =Ty — Tpt1 mod G.

where G = {g1,92,...,9k, f} is a Grobner basis under the lexicographical order with xjy; >
x > --- > x1. Via the square-and-multiply method, w can be computed using O(log(p)3n?) bit
operations where n = deg(f) - ny - - - ng is the degree of the ideal I. Next we compute the Grobner
basis B of {g1,92,...,9k, [, w} (under lex order with z;,1 > x} > --- > x1), which is radical and
completely splitting (hence all of its solutions are in IF";H and are distinct). This mean that we get
rid of the nonlinear part (Jo, ho) in (7). The ideal (B) is now equal to the radical of the rational
part of I. To decompose (B) into splitting triangular ideals, we view each polynomial in B as a
polynomial in xp1; with coefficient in Fp[z1,...,zx]. Let to =0 < t; < --- < t, be the distinct
degrees of z;41 among the polynomials in B. For 0 < ¢ < v, let B; denote the set of the leading
coefficient of all g € B with deg(g) < t;. We then have a chain of ideals

J C (Bo) C (Bl) c-.--C (vil) C (Bv) = Fp[l‘l,... ,:Ck]

with the following properties:

(i) 1 € By,
/Z: < y < ] ] “ .
(ii) each B; (1 < i < w) is automatically a Grobner basis under the lex order with xj > --- > 2
(one can remove some redundant polynomials from B;),
<~ s . 3 3 .
(iii) for 0 < ¢ < v, each solution of B; that is not a solution of B;y; can be extended to exactly
t;+1 distinct solutions of 1.

We can compute a Grobner basis C; for the colon ideal (B;11) : (B;) for 0 < i < v. These C;
give us the different components of J that have different numbers of solution extensions. Together
with B, we get different components of (I, w). These components are completely splitting, but may
not be in triangular form (as stated above). We again use the Grébner basis structure to further
decompose them until all are splitting triangular ideals (J;, h;). Note that computing Grébner
bases, for arbitrary ideals in Q[z1,...,z,], has exponential worst-case complexity [26]. However,
all of our ideals are of a special form, so their Grébner bases can be computed deterministically in
polynomial-time via the incremental method in [12] (see also [13]).

Finally, to get the multiplicity of each component (J;, h;), we compute the Grobner basis for
the ideal (J;, f, f9)) where fU) denotes the j-th derivative of f for j = 1,2,...,deg(f), until the
Grobner basis is 1. These ideals may not be in triangular form, so they may split further, but the
total number of components is at most deg f. Hence the total number of bit operations used is still
polynomial in log(p) deg(I).
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