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Abstract We present a new sieve for the distinct coordinate counting problem. This significantly improves

the classical inclusion-exclusion sieve for this problem, in the sense that the number of terms is reduced from

2

(
k
2

)
to k!, and reduced further to p(k) in the symmetric case, where p(k) denotes the number of partitions of

k. As an illustration of applications, we give an in-depth study of a basic example arising from coding theory

and graph theory.
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1 Introduction

We begin with a general combinatorial setting. Let D be a finite set. For a positive integer k, let
Dk = D × D × · · · × D be the Cartesian product of k copies of D. Let X be a subset of Dk. Every
element x ∈ X can be written in a vector form x = (x1, . . . , xk) with the i-th coordinate xi ∈ D.
Motivated by diverse applications in coding theory and graph theory, we are interested in counting the
number of elements in X with distinct coordinates. That is, we would like to count the cardinality of the
set

X = {(x1, x2, . . . , xk) ∈ X | xi �= xj , ∀ i �= j}.
Traditionally, this is handled by the classical inclusion-exclusion principle. We recall this briefly.

For 1 � i < j � k, let

Xij = {(x1, x2, . . . , xk)|(x1, x2, . . . , xk) ∈ X, xi = xj}.
Let Xc

ij = X\Xij, which is the set difference of X and Xij . By definition, |X| = |⋂1�i<j�k Xc
ij |. One

then applies the following well-known inclusion-exclusion principle.

|X| =
∣∣∣∣

⋂
1�i<j�k

Xc
ij

∣∣∣∣

= |X | −
∑

1�i<j�k

|Xij | +
∑

1�i<j�k,1�s<t�k

|Xij ∩ Xst| − · · · + (−1)(
k
2)

∣∣∣∣
⋂

1�i<j�k

Xij

∣∣∣∣. (1)
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In favorite applications, each term of the above formula admits a nice asymptotic formula and thus
one also obtains a nice asymptotic formula for |X | if k is small. If k is large which is usually the case
in applications, the number of terms in the inclusion-exclusion is 2(k

2) which can easily add up to a total
error term which is greater than the main term. In this case, one obtains no information at all about
|X|. This is the major bottle-neck of the inclusion-exclusion. In some cases, weaker information can be
obtained by using inequalities. For instance, the idea of Brun sieve gives the lower bound

|X | � |X | −
∑

1�i<j�k

|Xij |,

which has only 1 +
(
k
2

)
terms. This is often useful but it can still be restrictive.

Our main new idea for estimating |X| is that there is a great deal of cancellations in the above inclusion-
exclusion formula, and we can greatly simplify the formula by using the cycle structure of the symmetric
group Sk which acts on Dk by permuting its coordinates. In this way, the number of terms is reduced
from 2(k

2) to k!. In particular, when X is invariant under the action of Sk, the number of terms is further
reduced to the partition function p(k), which is roughly eπ

√
2
3 k, significantly smaller than k!.

We now describe our main result precisely. For a given permutation τ ∈ Sk, write its disjoint cycle
product as τ = (i1i2 · · · ia1)(j1j2 · · · ja2) · · · (l1l2 · · · las) with 1 � ai, 1 � i � s. Then, the sign of τ is
given by sign(τ) = (−1)a1+···+as−s. Define

Xτ = {(x1, x2, . . . , xk) ∈ X, xi1 = · · · = xia1
, . . . , xl1 = · · · = xlas

}.
Each element of Xτ is said to be of type τ . Thus Xτ is the set of all elements in X of type τ . Now we
can state our main formula.

Theorem 1.1. We have

|X| =
∑
τ∈Sk

sign(τ)|Xτ |. (2)

It is clear that this formula has only k! terms. If X is invariant under the action of Sk, we can collect
similar terms in the above formula and this immediately gives

Proposition 1.2. Let Ck be the set of conjugacy classes of Sk. If X is invariant under the action of
Sk, then

|X | =
∑

τ∈Ck

sign(τ)C(τ)|Xτ |, (3)

where C(τ) is the number of permutations in Sk conjugate to τ .

The number of terms is now the number of conjugacy classes of Sk, which is given by the partition
function p(k). This improvement leads to several significant arithmetic applications in number theory
and finite fields. We shall state one of them below. More will be given elsewhere.

Let D = Fq be a finite field of q elements with characteristic p. Let m be a positive integer. Given
b = (b1, . . . , bm) ∈ Fm

q , let Nm(k, b) be the number of un-ordered k-tuple x = (x1, . . . , xk) with distinct
xi ∈ Fq such that

1 + b1t + · · · + bmtm ≡
k∏

i=1

(1 + xit)(mod tm+1).

A slightly more general situation is to replace the modulus monomial tm+1 by a polynomial f(t) ∈ Fq[t]
of degree m + 1 and consider the congruence

1 + b1t + · · · + bmtm ≡
k∏

i=1

(1 + xit)(mod f(t)).

Our method works in this more general situation as well. For simplicity of illustration, in this paper
we restrict to the case f(t) = tm+1. We are interested in when Nm(k, b) > 0 and when there is a good
asymptotic formula. This problem arises from several applications in coding theory [1, 3, 4, 10]. In graph
theory, it reduces to the study of the girth of Chung’s graph [6], which has been studied extensively in
the literature.
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For instance, using the Lang-Weil estimate, Katz [8] showed that if m � k − 2 and q is sufficiently
large, then Nm(k, b) > 0 for all b ∈ Fm

q . The key is to prove that a certain surface over Fq is absolutely
irreducible. Using a suitable effective Chebatarev density theorem of function fields, Cohen [7] showed
more precisely that if m � k − 2 and q > (k(k + 2)!)2, then Nm(k, b) > 0 for all b ∈ Fm

q . Note that the
assumption on q is that it is at least exponential in k. That is, k is very small compared to q. This is
something that cannot be avoided if m is very close to k − 2. In coding theory applications [4, 5], one
would like to have the situation that q is linear in k (corresponding to the condition that the information
rate is positive) and m can be somewhat smaller but not too much smaller. In this case, k is necessarily
large and we can try to apply our new sieving formula. Again a simple heuristic argument shows that
the main term for Nm(k, b) is

(
q
k

)
/qm. The key is its error term. In this direction, using our new sieve

formula and Weil’s bound for character sums, we obtain

Theorem 1.3. For all b ∈ Fm
q , we have

∣∣∣∣Nm(k, b) − 1
qm

(
q

k

)∣∣∣∣ �
(

q/p + (m − 1)
√

q + k − 1
k

)
.

As a corollary, we obtain

Theorem 1.4. For any ε > 0, there is a constant cε > 0 such that if m < εk1/2 and 4ε2 ln2 q < k � cεq,
then Nm(k, b) > 0 for all b ∈ Fm

q .

In the special case when q is a square, this type of theorem was first proved in [4, 5] by using the Brun
sieve, Weil’s bound and a dual argument. The general q case was raised as an open problem. This is
completely solved in the present paper. Note that q can be linear in k in the above theorem, as desired
in coding theory applications. A further more important open problem is if the condition m < εk1/2 can
be improved to m < εkc for some absolute constant c > 1/2 (and hopefully c can be taken to be close to
1). This problem has a major application in coding theory [5].

In the easier special case m = 1, the number

N1(k, b) = �{{x1, x2, . . . , xk} ⊆ D | x1 + x2 + · · · + xk = b}

is simply the number of subsets of Fq with cardinality k and with sum equal to b. Our inequality above
reduces to ∣∣∣∣N1(k, b) − 1

q

(
q

k

)∣∣∣∣ �
(

q/p + k − 1
k

)
.

In this special case, a much more precise result is known. We have

Theorem 1.5. If p � k, then

N1(k, b) =
1
q

(
q

k

)
.

If p | k, then

N1(k, b) =
1
q

(
q

k

)
+ (−1)k+ k

p
v(b)
q

(
q/p

k/p

)
,

where v(b) = −1 if b �= 0, and v(b) = q − 1 if b = 0.

This explicit formula was first proved by the authors [9] using a sophisticated inductive argument. It
can now be proved in a much simpler way using our new sieve formula. It also shows that the unpleasant
factor q/p cannot be dropped from the error estimate of Nm(k, b).

Remarks. The Eratostheses sieve over the integers is the starting point for the study of many funda-
mental problems in classical analytic number theory such as the Goldbach conjecture. The Eratostheses
sieve is also some sort of inclusion-exclusion principle. Its subsequent improvements by Brun, Selberg
and others led to lots of fruitful progresses on many of these problems. In particular, Professor Yuan
Wang had worked on improving these sieves during the period 1953–1957, and he was able to prove the
so-called “2 + 3” version of the Goldbach conjecture, that is, every sufficiently large positive even integer
is a sum of two positive integers both greater than 1 such that one of them is a product of at most two
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primes and the other is a product of at most three primes [13]. He also proved the conditional “1 + 3”
version of the Goldbach conjecture, assuming GRH. The GRH assumption can be removed with the later
introduction of the Vinogradov-Bombieri large sieve. This line of research culminates in Chen’s proof of
“1+2”, which is still the best result today on the Goldbach conjecture. It would be interesting to explore
if these sophisticated sieve techniques from analytic number theory can be used to refine our results on
the distinct coordinate counting problem, and vice versa.

2 The main theorem and its weighted version

In this section, we prove our main sieve formula and state a weighted version which will be needed in
later applications.

Let D be a finite set, and let Dk = D × D × · · · × D be the Cartesian product of k copies of D. Let
X be a subset of Dk. Recall that we are interested in counting the number of elements in the set

X = {(x1, x2, . . . , xk) ∈ X | xi �= xj , ∀ i �= j}.

Let Sk be the symmetric group on {1, 2, . . . , k}. Each permutation τ ∈ Sk factorizes uniquely (up to
the order of the factors) as a product of disjoint cycles and each fixed point is viewed as a trivial cycle
of length 1. For simplicity of the notation, we usually omit the 1-cycles. For instance, (12) denotes the
permutation (12)(3)(4) · · · (k) in Sk. Two permutations in Sk are conjugate if and only if they have the
same type of cycle structure (up to the order). Let Ck be the set of conjugacy classes of Sk. For a given
τ ∈ Sk, let l(τ) be the number of cycles of τ including the trivial cycles. Then sign(τ) = (−1)k−l(τ). For
a given permutation

τ = (i1i2 · · · ia1)(j1j2 · · · ja2) · · · (l1l2 · · · las)

with 1 � ai, 1 � i � s, define

Xτ =
{
(x1, . . . , xk) ∈ X, xi1 = · · · = xia1

, . . . , xl1 = · · · = xlas

}
. (4)

Each element of Xτ is said to be of type τ . Thus Xτ is the set of all elements in X of type τ . Our main
formula is

Theorem 2.1. We have

|X| =
∑
τ∈Sk

sign(τ)|Xτ |. (5)

Proof. By equation (1), we have

|X| = |X | −
∑

1�i<j�k

|Xij | +
∑

1�i<j�k,1�s<t�k

|Xij ∩ Xst| − · · · + (−1)(
k
2)

∣∣∣∣
⋂

1�i<j�k

Xij

∣∣∣∣. (6)

Define a partial order “�” on Sk as follows: τ � δ if each cycle in τ as a set is contained in a cycle in δ.
For instance, (12)(34)(567) � (1234)(567) and (123) � (132).

Case 1. For x∈X , x �∈ Xτ for each τ with τ �=1. Thus x occurs on both sides of (6) with multiplicity 1.

Case 2. For x �∈ X, then x ∈ Xτ for a maximal non-trivial τ with respect to the order �. Suppose
τ = τ1τ2 · · · τr, where τi are disjoint cycles. Then x occurs on the right side of (6) with multiplicity

∑
δ�τ

sign(δ) · 1 =
r∏

j=1

( ∑
δj�τj

sign(δj)
)

= 0. �

Now the symmetric group Sk acts on Dk by permuting coordinates. That is, for given τ ∈ Sk and
x = (x1, x2, . . . , xk) ∈ Dk we have τ ◦ x = (xτ(1), xτ(2), . . . , xτ(k)). Before stating some useful corollaries,
we first give several definitions.

Definition 2.2. Let G be a subgroup of Sk. A subset X ⊂ Dk is said to be G-symmetric if for any
x ∈ X and any g ∈ G, g ◦ x ∈ X. In particular, a Sk-symmetric X is simply called symmetric.
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Definition 2.3. Let G be a subgroup of Sk. Two permutations τ1 and τ2 in Sk are said to be G-
conjugate if there is g ∈ G such that τ2 = gτ1g

−1. Let Gk be the set of G-conjugacy classes of Sk.

Corollary 2.4. Let Gk be the set of G-conjugacy classes of Sk. If X is G-symmetric, then we have

|X | =
∑

τ∈Gk

sign(τ)G(τ)|Xτ |, (7)

where G(τ) is the number of permutations in Sk which is G-conjugate to τ .

Proof. Suppose that two permutations τ1 and τ2 are G-conjugate, say τ2 = gτ1g
−1, where g ∈ G.

Then one checks that it is a one to one correspondence from Xτ1 to Xτ2 by sending (x1, x2, . . . , xk) to
(xg(1), xg(2), . . . , xg(k)). Hence |Xτ1 | = |Xτ2 | and the formula follows from Theorem 2.1. �

The number of terms in the above formula depends on the size of G-conjugacy classes. If X has more
symmetry, that is, G is bigger, then there are fewer number of terms. In many interesting cases, X

is symmetric, that is, X is invariant under the action of G = Sk. Even more, X sometimes satisfies
the “strongly symmetric” condition, that is, for any τ and τ ′ in Sk, one has |Xτ | = |Xτ ′| provided
l(τ) = l(τ ′). In this case, X is called strongly symmetric. Before stating the simplest formula in the
strongly symmetric case, we recall some basic combinatorial facts about the symmetric group Sk.

A permutation τ ∈ Sk is said to be of type (c1, c2, . . . , ck) if τ has exactly ci cycles of length i. Note that∑k
i=1 ici = k. We denote by N(c1, c2, . . . , ck) the number of permutations in Sk of type (c1, c2, . . . , ck)

and we have [11]:

N(c1, c2, . . . , ck) =
k!

1c1c1!2c2c2! · · ·kckck!
. (8)

Let Ck be the set of conjugacy classes of Sk. For given τ ∈ Sk, denote by τ the conjugacy class
determined by τ and it can also be viewed as the set of permutations conjugate to τ . Conversely, for
given conjugacy class τ ∈ Ck, denote by τ a representative permutation of this class. Sometimes we also
identify these two symbols.

Let C(τ) be the number of permutations conjugate to τ . Let τ be of type (c1, c2, . . . , ck). Since in Sk

two permutations are conjugate if and only if they have the same type, we have C(τ) = N(c1, c2, . . . , ck).
The signless Stirling number of the first kind c(k, i) is defined to be the number of permutations in Sk

with exactly i cycles. It can also be defined by the following classic equality [11]:
k∑

i=0

(−1)k−ic(k, i)qi = (q)k, (9)

where (x)k = x(x − 1) · · · (x − k + 1) for k ∈ Z+ = {1, 2, 3, . . .} and (x)0 = 1.
Now we state the following simpler formula.

Proposition 2.5. Let Ck be the set of conjugacy classes of Sk. If X is symmetric, then

|X | =
∑

τ∈Ck

(−1)k−l(τ)C(τ)|Xτ |, (10)

where C(τ) is the number of permutations conjugate to τ . Furthermore, if X is strongly symmetric, then
we have

|X| =
k∑

i=1

(−1)k−ic(k, i)|Xi|, (11)

where Xi is defined as Xτi for some τi ∈ Sk with l(τi) = i and c(k, i) is the signless Stirling number of
the first kind.

For simplicity and clarity, we have restricted ourselves to the simpler point counting version. There is
a natural weighted version which is also very useful in counting points with weight. Now we extend all
above formulas to the general weighted case. We omit the proof since it is completely similar.
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Let f(x1, x2, . . . , xk) be a complex valued function defined over X . Many problems arising from coding
theory, additive number theory and number theory are reduced to evaluate the summation

F =
∑

x∈X

f(x1, x2, . . . , xk). (12)

Note that if we let f(x1, x2, . . . , xk) ≡ 1, then F is just the number of elements in X. Similarly for
τ ∈ Sk, we define

Fτ =
∑

x∈Xτ

f(x1, x2, . . . , xk).

The weighted version of our sieve formula then becomes

Theorem 2.6. We have

F =
∑

τ∈Sk

sign(τ)Fτ . (13)

Definition 2.7. Let G be a subgroup of Sk. A complex-valued function f defined on X is called
G-normal on X if X is G-symmetric and for any two G-conjugate elements τ and τ ′ in Sk, we have

∑
x∈Xτ

f(x1, x2, . . . , xk) =
∑

x∈Xτ′

f(x1, x2, . . . , xk).

If f is Sk-normal on X, then f is also called normal on X.

The function f on X is called strongly normal on X if X is symmetric and for each τ and τ ′ in Sk, we
always have ∑

x∈Xτ

f(x1, x2, . . . , xk) =
∑

x∈Xτ′

f(x1, x2, . . . , xk)

whenever l(τ) = l(τ ′).

Remark. If f(x1, x2, . . . , xk) is a symmetric function and X is symmetric, then f(x1, x2, . . . , xk) must
be normal on X .

Proposition 2.8. Let Ck be the set of conjugacy classes of Sk. If f is normal on X, then we have

F =
∑

τ∈Ck

(−1)k−l(τ)C(τ)Fτ , (14)

where C(τ) is the number of permutations conjugate to τ .
If f is strongly normal on X, for given 1 � i � k, we choose τi ∈ Sk satisfying l(τi) = i, and let

Fi =
∑

x∈Xτi

f(x1, x2, . . . , xk)

(this is independent of the choice of τi), then we have

F =
k∑

i=1

(−1)k−ic(k, i)Fi, (15)

where c(k, i) is the signless Stirling number of the first kind, that is, the number of permutations in Sk

with exactly i cycles.

3 Proof of Theorem 1.5

In this section, we explain how the main theorem can be used to prove the explicit formula in Theorem 1.5.
We first state the following lemma.

Lemma 3.1. Assume p | k. Let p(k, i) be the number of permutations in Sk of i cycles with the length
of its each cycle divisible by p. Then we have

k∑
i=1

(−1)k−ip(k, i)qi = (−1)k+ k
p k!

(
q/p

k/p

)
. (16)
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Proof. Let N(c1, c2, . . . , ck) be the number of permutations in Sk of type (c1, c2, . . . , ck). Recall we
have the following counting formula

N(c1, c2, . . . , ck) =
k!

1c1c1!2c2c2! · · ·kckck!
. (17)

Define the generating function

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)tc1
1 tc2

2 · · · tck

k (18)

and from (17) we have

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

k!
c1!c2! · · · ck!

(
t1
1

)c1( t2
2

)c2

· · ·
(

tk
k

)ck

.

Thus we obtain the following exponential generating function
∑
k�0

Ck(t1, t2, . . . , tk)
uk

k!
= eut1+u2· t2

2 +u3· t3
3 +···.

Let pk(t) =
∑

p(k, i)ti. By (18) we have pk(t) = Ck(0, 0, . . . , t, 0, . . .), where t appears at the indices
divisible by p. For given generating function f(x), denote by [xi]f(x) the coefficient of xi in the formal
power series expansion of f(x). Then we have

pk(t) =
[
uk

k!

]
et( up

p + u2p

2p +··· ) =
[
uk

k!

]
e−

t
p log (1−up) =

[
uk

k!

]
1

(1 − up)t/p
.

Thus,

pk(−q) =
[
uk

k!

]
(1 − up)q/p = (−1)

k
p

(
q/p

k/p

)
k!.

Hence (16) follows from
∑k

i=1(−1)k−ip(k, i)qi = (−1)kpk(−q). The proof is complete. �

Proof of Theorem 1.5. Let X be the set of all solutions of the equation x1 + x2 + · · · + xk = b in Fq.
Let

Xij =
{
(x1, x2, . . . , xk)

∣∣(x1, x2, . . . , xk) ∈ X, xi = xj

}
.

Since X is symmetric, by applying Proposition 1.2 we have

k! · N1(k, b) =
∣∣∣∣

⋂
1�i<j�k

Xij
c

∣∣∣∣ =
∑

τ∈Ck

(−1)k−l(τ)C(τ)|Xτ |, (19)

where |Xτ | is defined as in (4).
In particular, when p � k, one checks that X is strongly symmetric. Since x1 + x2 + · · · + xk = b is

linear, it is easy to check that when p � k we always have |Xτ | = ql(τ)−1, where l(τ) is the number of
cycles of τ . Thus by Proposition 1.2 we conclude

N1(k, b) =
1
k!

k∑
i=1

(−1)k−ic(k, i)|Xi| =
1
k!

k∑
i=1

(−1)k−ic(k, i)qi−1

=
1
q

1
k!

k∑
i=1

(−1)k−ic(k, i)qi =
1
q

1
k!

(q)k =
1
q

(
q

k

)
.

When p | k, denote CPk to be the conjugacy classes in Ck whose every cycle length is divisible by p.
Then by (19) we have

k! · N1(k, b) =
∑

τ∈Ck

(−1)k−l(τ)C(τ)|Xτ | =
∑

τ �∈CPk

(−1)k−l(τ)C(τ)|Xτ | +
∑

τ∈CPk

(−1)k−l(τ)C(τ)|Xτ |. (20)
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If there is at least one cycle of τ such that the length of it is not divisible by p, then we still have
|Xτ | = ql(τ)−1. Otherwise, since p | k, |Xτ | = 0 if b �= 0 and |Xτ | = ql(τ) if b = 0. In other words, unless
each cycle length of τ is divisible by p, |Xτ | relies only on l(τ).

Recall that the signless Stirling number of the first kind c(k, i) is defined to be the number of permu-
tations in Sk with exactly i cycles. Let p(k, i) be the number of permutations in Sk of i cycles with the
length of its each cycle divisible by p. Let s(k, i) = c(k, i) − p(k, i). Thus we have

N1(k, b) =
1
k!

k∑
i=1

(−1)k−is(k, i)qi−1 +
1
k!

k∑
i=1

(−1)k−ip(k, i)|Xi|

=
1
q

1
k!

k∑
i=1

(−1)k−i(c(k, i)qi − p(k, i)qi) +
1
k!

k∑
i=1

(−1)k−ip(k, i)|Xi|

=
1
q

(
q

k

)
− 1

q

1
k!

k∑
i=1

(−1)k−ip(k, i)qi +
1
k!

k∑
i=1

(−1)k−ip(k, i)|Xi|.

If b �= 0, then we have |Xi| = 0 for each i and thus

N1(k, b) =
1
q

(
q

k

)
− 1

q

1
k!

k∑
i=1

(−1)k−ip(k, i)qi.

If b = 0, then we have |Xi| = qi, and hence

N1(k, b) =
1
q

(
q

k

)
− 1

q

1
k!

k∑
i=1

(−1)k−ip(k, i)qi +
1
k!

k∑
i=1

(−1)k−ip(k, i)qi

=
1
q

(
q

k

)
+

q − 1
q

1
k!

k∑
i=1

(−1)k−ip(k, i)qi.

Thus it suffices to evaluate
∑k

i=1(−1)k−ip(k, i)qi and the theorem follows from (16). Hence the proof is
complete. �

4 Some combinatorial formulas

For the purpose of our proof, we will need a few combinatorial formulas and inequalities.

Lemma 4.1. Let N(c1, c2, . . . , ck) be the number of permutations in Sk of type (c1, c2, . . . , ck), that is,

N(c1, c2, . . . , ck) =
k!

1c1c1!2c2c2! · · ·kckck!
,

and define the generating function

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)tc1
1 tc2

2 · · · tck

k .

If t1 = t2 = · · · = tk = q, then we have

Ck(q, q, . . . , q) =
∑

∑
ici=k

N(c1, c2, . . . , ck)qc1qc2 · · · qck = (q + k − 1)k. (21)

In another case, suppose q � d and d|(q − s), if ti = q for d | i and ti = s for d � i, then we have

Ck(
d−1︷ ︸︸ ︷

s, . . . , s, q,

d−1︷ ︸︸ ︷
s, . . . , s, q, . . .) =

∑
∑

ici=k

N(c1, c2, . . . , ck)qc1qc2 · · · scdqcd+1 · · ·

= k!
�k/d�∑
i=0

( q−s
d + i − 1
q−s

d − 1

)(
s + k − di − 1

s − 1

)
. (22)
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Proof. Firstly, note that we have the following exponential generating function

∑
k�0

Ck(t1, t2, . . . , tk)
uk

k!
= eut1+u2· t2

2 +u3· t3
3 +···.

Then, when t1 = t2 = · · · = tk = q, we deduce that

Ck(q, q, . . . , q) =
[
uk

k!

]
eq(u+ u2

2 + u3
3 +··· ) =

[
uk

k!

]
e−q log (1−u) =

[
uk

k!

]
1

(1 − u)q

=
[
uk

k!

] (
q + k − 1

k

)
uk = (q + k − 1)k.

Similarly, if ti = q when d | i and ti = s for d � i, then we have

Ck(
d−1︷ ︸︸ ︷

s, . . . , s, q,

d−1︷ ︸︸ ︷
s, . . . , s, q, . . .) =

[
uk

k!

]
eus+u2· s

2+···+ud−1· s
d−1+ud· q

d +ud+1· s
d+1 ···

=
[
uk

k!

]
e−s log (1−u)− q−s

d log(1−ud) =
[
uk

k!

]
1

(1 − u)s(1 − ud)(q−s)/d

=
[
uk

k!

]( ∑
j�0

(
s − 1 + j

j

)
uj

)( ∑
i�0

(
(q − s)/d + i − 1

i

)
udi

)

= k!
∑
i�0

(
(q − s)/d − 1 + i)

(q − s)/d − 1

)(
s + (k − di) − 1

s − 1

)
.

Lemma 4.2. For given positive integers m, n, q and l, we have

∑
i�0

(
l + i

n

)(
q − i

m

)
�

(
l + q + 1

m + n + 1

)
. (23)

Proof. Note that for integer a � 0,
∞∑

j=0

(
a + j

a

)
xj = (1 − x)−a−1.

Comparing the coefficients of xl+q−m−n on both sides of (1 − x)−m−n−2 = (1 − x)−m−1(1 − x)−n−1 we
obtain that, for non-negative integers m, n, l, q,

∑
i+j=l+q−m−n

(
m + i

m

)(
n + j

n

)
=

(
l + q + 1

m + n + 1

)
.

Therefore the required equality follows.

Proposition 4.3. For given positive integers s, d, k with q � s and d|(q − s), we have

∑
i�0

(
(q − s)/d + i − 1)

(q − s)/d − 1

)(
s + k − di − 1

s − 1

)
�

∑
i�0

(
(q − s)/d + i − 1)

(q − s)/d − 1

)(
s + k − i − 1

s − 1

)

�
(

s + k + (q − s)/d − 1
k

)
. (24)

5 Proof of Theorem 1.3

For our proof, we need Weil’s character sum estimate in the following form.
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Lemma 5.1 [12]. Suppose we are given a finite commutative Fq-algebra A, an element t ∈ A, and a
character χ of the multiplicative group A∗ (extended by zero to all of A) which is non-trivial on Fq[t].
Let n denote the dimension of A as Fq-vector space. Then,

∣∣∣∣
∑

a∈Fq

χ(a + t)
∣∣∣∣ � (n − 1)

√
q. (25)

Moreover, if n � 2, χ �= 1 and χ(F∗
q) = 1, then

∣∣∣∣1 +
∑

a∈Fq

χ(a + t)
∣∣∣∣ � (n − 2)

√
q. (26)

We can now start the proof. Let m be a positive integer. Given b = (b1, . . . , bm) ∈ Fm
q , let Nm(k, b)

(resp. Mm(k, b)) be the number of un-ordered (resp. ordered) k-tuple x = (x1, . . . , xk) with distinct
xi ∈ Fq such that

1 + b1t + · · · + bmtm ≡
k∏

i=1

(1 + xit)(mod tm+1).

It is clear that Mm(k, b) = k!Nm(k, b). We are interested in when Mm(k, b) > 0 and when there is a good
asymptotic formula.

Let A = Fq[t]
/
(tm+1) be the residue class ring. Let A∗ be the set of all the invertible elements of A.

A multiplicative character χ : A∗ → C∗ is a homomorphism from A∗ to the non-zero complex numbers
C∗. Let Â∗ be the group of multiplicative characters of A∗. Let G = {χ ∈ Â∗, χ(F∗

q) = 1}. Note that G

is an abelian group of order qm. Let X = Fk
q . Let

X = {(x1, x2, . . . , xk) ∈ Fk
q |xi �= xj , ∀ i �= j}.

It is clear that |X | = qk and |X| = (q)k. Similarly, for a permutation τ ∈ Sk, Xτ consists of the elements
x ∈ X of type τ . By definition, we have

Mm(k, b) =
1

qm

∑

x∈X

∑
χ∈G

χ

(
(1 + x1t)(1 + x2t) · · · (1 + xkt)

1 + b1t + · · · + bmtm

)

=
1

qm

∑

x∈X

∑
χ∈G

χ−1(1 + b1t + · · · + bmtm)χ
( k∏

i=1

(1 + xit)
)

,

For given χ ∈ G, let

fχ(x) = fχ(x1, x2, . . . , xk) = χ

( k∏
i=1

(1 + xit)
)

.

Let b(t) = 1 + b1t + · · · + bmtm. Then, we can rewrite

qmMm(k, b) =
∑
χ∈G

χ−1(b(t))
∑

x∈X

fχ(x1, x2, . . . , xk).

Obviously X is symmetric. It is also easy to check that fχ(x1, x2, . . . , xk) is normal on X . Thus by
applying Proposition 2.8, we deduce

qmMm(k, b) =
∑
χ∈G

χ−1(b(t))
∑

τ∈Ck

sign(τ)C(τ)Fτ (χ) = (q)k +
∑
χ�=1

χ−1(b(t))
∑

τ∈Ck

sign(τ)C(τ)Fτ (χ),

where Ck is the set of conjugacy classes of Sk, C(τ) is the number of permutations conjugate to τ , and

Fτ (χ) =
∑

x∈Xτ

k∏
i=1

χ(1 + xit).

For a non-trivial character χ ∈ G, since χ(F∗
q) = 1, the Weil bound (26) gives
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∣∣∣∣1 +
∑

a∈Fq

χ(a + t)
∣∣∣∣ � (m − 1)

√
q.

This and the fact that χ(t) = 0 implies∣∣∣∣
∑

a∈Fq

χ(1 + at)
∣∣∣∣ � (m − 1)

√
q

and thus ∣∣∣∣
∑
x∈X

k∏
i=1

χ(1 + xit)
∣∣∣∣ � ((m − 1)

√
q)k.

For given τ ∈ Ck, assume τ is of type (c1, c2, . . . , ck), where ci is the number of i-cycles in τ for
1 � i � k. Note that

∑k
i=1 ici = k and thus we deduce

Fτ (χ) =
( ∑

a∈Fq

χ(1 + at)
)c1( ∑

a∈Fq

χ2(1 + at)
)c2

· · ·
( ∑

a∈Fq

χk(1 + at)
)ck

=
k∏

i=1

( ∑
a∈Fq

χi(1 + at)
)ci

� q
∑k

i=1 cimi(χ)((m − 1)
√

q)
∑ k

i=1 ci(1−mi(χ)), (27)

where mi(χ) is defined as follows: mi(χ) = 1 if χi = 1 and mi(χ) = 0 if χi �= 1. Thus

qmMm(k, b) = (q)k +
∑
χ�=1

χ−1(b(t))
∑

τ∈Ck

sign(τ)C(τ)Fτ (χ)

= (q)k +
∑

χd �=1,∀2�d�k

χ−1(b(t))
∑

τ∈Ck

sign(τ)C(τ)Fτ (χ)

+
∑

χ�=1,χd=1, for some 2�d�k

χ−1(b(t))
∑

τ∈Ck

sign(τ)C(τ)Fτ (χ).

Let τ be a permutation of type (c1, c2, . . . , ck). Since in the first summation we always have χd �= 1 for
every d with 1 � d � k, thus mi(χ) = 0 for any such χ and any i with 1 � i � k. By (27) we conclude
that

Fτ (χ) � ((m − 1)
√

q)c1+c2+···+ck .

Let S = �{χ ∈ G|χd = 1, for some 2 � d � k}. Then, by the enumeration formula for C(τ) given by (17)
we have

|qmMm(k, b) − (q)k| �
∑

χd �=1,∀2�d�k

∑
τ∈Ck

C(τ)|Fτ (χ)| +
k∑

d=2

∑

χd=1,χd′ �=1 for d′<d

∑
τ∈Ck

C(τ)|Fτ (χ)|

� (qm − S)
∑

∑
ici=k

k!
1c1c1!2c2c2! · · · kckck!

((m − 1)
√

q)
∑ k

i=1 ci

+ S ·
∑

∑
ici=k

k!
1c1c1!2c2c2! · · ·kckck!

q
∑ k

i=1 cimi(χ)((m − 1)
√

q)
∑ k

i=1 ci(1−mi(χ)).

Note that the χ in the last summation is a d-th primitive character, that is, mi(χ) = 1 if and only if d|i.
Thus it follows from (21), (22) and Corollary 4 that

|qmMm(k, b) − (q)k| � (qm − S)((m − 1)
√

q + k − 1)k + S max
d

(
q + (d − 1)(m − 1)

√
q

d
+ k − 1

)

k

,

where d runs over the non-trivial divisors of |G| = qn. In particular, d � p. Thus

|qmMm(k, b) − (q)k| � (qm − S)((m − 1)
√

q + k − 1)k + S · (q/p + (m − 1)
√

q + k − 1)k

< qm(q/p + (m − 1)
√

q + k − 1)k.
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It follows that we have

Theorem 5.2. ∣∣∣∣Nm(k, b) − 1
qm

(
q

k

)∣∣∣∣ <

(
q/p + (m − 1)

√
q + k − 1

k

)
.

Theorem 5.3. For any ε > 0, there is a constant cε > 0 such that if m < εk1/2 and 4ε2 ln2 q < k � cεq,
then Nm(k, b) > 0 for all b ∈ Fm

q .

Proof. By Theorem 5.2, it is sufficient to prove

1
qm

(
q

k

)
�

(
q/p + m

√
q + k

k

)
,

that is,
(q)k

(q/p + m
√

q + k)k
� qm.

This leads to the following inequality:
q

q/p + m
√

q + k
� qm/k.

For any ε > 0, assume m < εk1/2 and k � cq, we then have
q

q/p + m
√

q + k
� q

q/p + εc1/2q + qc
� qm/k.

Thus if the constant c satisfies the inequality εc1/2 + c � 1
qm/k − 1

p , then for any k � cq, we have
Nm(k, b) > 0. This is possible if qm/k <

√
e for the natural number e > 1, that is, if m

k < ε√
k

< 1
2 ln q .

This last inequality is satisfied if we take k > 4ε2 ln2 q. The proof is complete. �
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