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Abstract

Over finite fields, if the image of a polynomial map is not the entire field,
then its cardinality can be bounded above by a significantly smaller value.
Earlier results bound the cardinality of the value set using the degree of the
polynomial, but more recent results make use of the powers of all monomials.

In this paper, we explore the geometric properties of the Newton polytope
and show how they allow for tighter upper bounds on the cardinality of the
multivariate value set. We then explore a method which allows for even
stronger upper bounds, regardless of whether one uses the multivariate degree
or the Newton polytope to bound the value set. Effectively, this provides
improvement of a degree matrix-based result given by Zan and Cao, making
our new bound the strongest upper bound thus far.
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1. Recent Multivariate Value Set Theorems

For a given polynomial f(x) over a finite field Fq, let Vf ..= Im(f) denote
the value set of f . Determining the cardinality and structure of the value set
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is a problem with a rich history and wide variety of uses in number theory,
algebraic geometry, coding theory and cryptography.

Relevant to this paper are theorems which provide upper bounds on the
cardinality of our value set when f(x) is not a permutation polynomial.1

These upper bounds have been extensively studied in the case of univari-
ate polynomials (see [10] for more information), but results on multivariate
polynomial maps have gained more recent attention.

A result published by Mullen, Wan, and Wang in 2012 [8] gives a bound
on the value set of polynomial maps, one with no error terms:

Theorem 1.1. Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)) be a poly-
nomial map over the vector space Fnq , and let deg f = maxi deg fi.

If |Vf | < qn, then |Vf | ≤ qn −min

{
q,
n(q − 1)

deg f

}
.

Since the time their paper was published, multiple refinements have been
made to this theorem.

One approach towards improving Theorem 1.1 is to replace the term
n(q−1)
deg f

by using different properties of the polynomial map f . Note that the
degree only takes one monomial of f into account, so it is reasonable to expect
tighter bounds on |Vf | if we account for every monomial. Smith [10] improved
upon Theorem 1.1 by generalizing Mullen, Wan, and Wang’s p-adic lifting
approach and utilizing the Newton polytope ∆(f) of the polynomial map f .
The Newton polytope is constructed using all monomials of f using discrete
geometry, meaning it encodes more information than deg f and allows for a
stronger statement to be made:

Theorem 1.2 (Smith [10], 2014). Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn))
be a polynomial map over the vector space Fnq , let ∆(f) be the Newton poly-
tope of f , and let µf be a certain constant (defined explicitly later) dependent
on ∆(f).

If |Vf | < qn, then |Vf | ≤ qn −min{q, µf · (q − 1)},

1Permutation polynomials have also been studied extensively in literature, in view of
their application to cryptography and combinatorics. For more information about other
ways value sets have been studied historically, please refer to [6].
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Zan and Cao also refine Theorem 1.1 by using the degree matrix Df of
the polynomial map f in order to account for all of the monomials of f .
Their approach generalizes the p-adic lifting technique as well and improves
upon Smith’s statement in [10]:

Theorem 1.3 (Zan, Cao [15], 2014). Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn))
be a polynomial map over the vector space Fnq and let Df be the degree matrix
of f .

If |Vf | < qn, then |Vf | ≤ qn −min{q, ωf},

where the constant ωf (defined explicitly later) depends on Df .

Overall, each new refinement gives us stronger bounds, i.e. ωf ≥ µf · (q−
1) ≥ n

degf
(q − 1) (see [1] and [15]). In addition, in the univariate case, it has

been shown that there are instances when ωf is strictly larger than q−1
degf

(as

opposed to µf always being equal to 1
degf

when n = 1). However, since each

of these bounds are of the form |Vf | ≤ qn − min{Cf , q} with Cf dependent
on the theorem, we are limited to removing at most q elements from these
cardinality bounds.

Another type of improvement on Theorem 1.1 removes this dependence
on subtracting the minimum of two constants. Though still dependent on the
polynomial map degree, a theorem by Kosters allows for a stronger bound
whenever n > deg f :

Theorem 1.4 (Kosters [7], 2014). Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn))
be a polynomial map over the vector space Fnq , and let deg f = maxi deg fi.

If |Vf | < qn, then |Vf | ≤ qn − n(q − 1)

deg f
.

In order to achieve this result, Kosters completely averted the use of
p-adic liftings, instead using a method more akin to Turnwald’s univariate
proof in [11].

2. Main Result

In this paper, we will refine these multivariate value set bounds even fur-
ther, removing the minimum condition from Theorems 1.2 and 1.3, ultimately
proving the following theorem:
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Theorem 2.1. Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)) be a poly-
nomial map over the vector space Fnq and let Df be the degree matrix of f .

If |Vf | < qn, then |Vf | ≤ qn − ωf ,

where the constant ωf depends on Df .

To properly convey the significance of this bound in relation to prior
bounds, we will describe the Newton polytope in Section 3 and the degree
matrix in Section 4. We will also define the constants associated with these
objects and connections between the two.

3. The Newton Polytope

Let F be an arbitrary field and let h ∈ F [x1, ..., xn]. If we write h in the
form

h(x1, ..., xn) =
m∑
j=1

ajX
Dj , aj ∈ F ∗ (1)

where

Dj = (d1j, ..., dnj)
T ∈ Zn≥0, XDj = x

d1j
1 · · ·xdnjn , (2)

then we have the following definition:

Definition 3.1 (Newton polytope). The Newton polytope of polynomial h ∈
F [x1, ..., xn], ∆(h), is the convex closure of the set {D1, ..., Dm} ∪ {(0, ..., 0)}
in Rn.

Geometric properties of the Newton polytope, such as its dilation by
k ∈ R, its volume or its decomposition into other polytopes via Minkowski
Sum, are useful tools in discerning properties of their associated polynomials.
For more information, see [3], [13], and [12].

The significance of the Newton polytope to the multivariate value set
problem comes from the definition of the following quantity:

Definition 3.2 (Minimal dilation factor µh). Let F be a field, let h ∈
F [x1, ..., xn], and let ∆(h) be the Newton polytope of h.

µh ..= inf{k ∈ R>0 | k∆(h) ∩ Nn 6= ∅}.
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In other words, µh is the infimum of all positive real numbers k such
that the dilation of ∆(h) by k contains a lattice point with strictly positive
coordinates, and we define µh = ∞ if such a dilation does not exist. For
our purposes, since the vertices of our polytopes have integer coordinates,
µh will always be finite and rational so long as we consider h which is not
a polynomial in some proper subset of {x1, ..., xn}. If h is polynomial in a
proper subset of {x1, ..., xn}, then we may make a linear change of variables
{z1, ..., zν}, ν < n, which allows us to consider ∆(h(z1, ..., zν)) ⊂ Rν , where
µh will be finite.

The quantity µf is used by Adolphson and Sperber [1] to put a lower
bound on the q-adic valuation ordq of the number of Fq-rational points on
a variety V , N(V ), over Fq. Namely, let V = Z(f1, ..., fm) be the vanishing
set of f1, ..., fn, where fi ∈ Fq[x1, ..., xn]. If the collection of polynomials
f1, ..., fm is not polynomial in some proper subset of x1, ..., xn, then we have
for f(x1, ..., xn, y1, ..., ym) = f1(x1, ..., xn)y1 + · · ·+ fm(x1, ..., xn)ym,

ordq(N(V )) ≥ µf −m.

Note that in the above definitions, the multivariate polynomial h maps
the vector space F n into its base field F . However, for the value set problem,
we are interested in studying the polynomial vector f : Fnq −→ Fnq . Fortu-
nately, the definitions we have developed in this section can be extended to
polynomial vectors. If we denote the support of h by Γ(h) ..= {D1, ..., Dm},
then we define ∆(f) to be the convex closure of Γ(f1)∪· · ·∪Γ(fn)∪{(0, ..., 0)}
in Rn.

4. The Degree Matrix and Comparison of Constants

For our multivariate polynomial h as in Section 3, we define the n ×m
degree matrix of h, Dh

..= (D1, ..., Dm) ∈ Zn×m≥0 . The degree matrix has
been used by Cao and his collaborators in [2], [4], and [5] in rational point
counting and p-adic estimates. In relation to the value set problem, Zan and
Cao use the degree matrix in [15] as a succinct way of keeping track of the
exponent vectors Dj that does not explicitly rely on a geometry. Using this,
they define the following invariant of h.

Definition 4.1 (Integral dilation factor ωh). Let F be a field, let h ∈
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F [x1, ..., xn] be as in equation (1).

ωh ..= min

{
m∑
j=1

kj

∣∣∣∣∣kj ∈ {0, 1, ..., q − 1},
m∑
j=1

kjDj ∈ (q − 1)Nn

}
. (3)

This constant can be thought of as the minimal number of exponent
vectors (up to q − 1 duplicates of each) needed to be summed together to
reach a lattice point where all coordinates are positive multiples of q − 1.
Again, so long as h is not polynomial in some proper subset of {x1, ..., xn},
ωh will always exist.

Though ωf and µf may seem different by their definitions, a lemma in [3]
gives us that

µf = min

{
m∑
j=1

αj

∣∣∣∣∣αj ∈ Q≥0,
m∑
j=1

αjDj ∈ Nn

}
. (4)

Intuitively, studying the dilation of ∆(f) is equivalent to studying linear
combinations of the exponent vectors geometrically. Because of similarity,
we can use both Df and ∆(f) to study µf and ωf .

2

In fact, because of this similarity, we have a direct comparison of the two
terms proven by [15]. This, alongside a result of Adolphson and Sperber [1],
gives us the following inequalities:

Lemma 4.2. ωf ≥ µf (q − 1) ≥ n(q−1)
d

.

Not only does ωf provide a better value set bound for nonpermutation
polynomials, but [15] gives sharp examples which improve previously known
univariate bounds.

5. Single Variable Value Set

To provide insight towards the proof of our main result, we will investigate
upper bounds of |Vf | for the case when f is a single variable polynomial. Parts
of this proof will generalize to the multivariate case.

2Our main theorem which is dependent on ωf uses ∆(f) in the proof given.
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Theorem 5.1. Let f(x) ∈ Fq[x] be a single variable polynomial of degree
d > 0. If |Vf | < q, then

|Vf | ≤ q − q − 1

d
.

The proof of this theorem relies on the following definition:

Definition 5.2 (The quantity U(f)). Let Zq denote the ring of p-adic in-
tegers with uniformizer p and residue field Fq. Also let f̃(x) ∈ Zq[x] be the
lifting of f taking coefficients from the Teichmüller lifting Lq ⊂ Zq of Fq.
Then we define U(f) to be the smallest positive integer k such that the sum

Sk(f) ..=
∑
x∈Lq

f̃(x)k 6≡ 0 (mod pk).

By taking into account the following sum,

∑
x∈Lq

xk =


0, q − 1 - k,
q − 1, q − 1 | k, k 6= 0,
q, k = 0,

(5)

and remembering that we are only summing over a finite number of terms,
we have that, for f not identically zero, q−1

d
≤ U(f). We also have that if

f is a permutation polynomial, then Sk(f) = Sk(x) =
∑

x∈Lq x
k, implying

U(f) = q−1. The fact that U(f) exists for all nonpermutation polynomials as
well is a corollary of lemma 5.3. Overall, the lemma and the above argument
give us that

q − 1

d
≤ U(f) ≤ q − 1.

Theorem 5.1 also follows directly from the lemma 5.3:

Lemma 5.3. If |Vf | < q, then

|Vf | ≤ q − U(f).

The proof of this result is given by Wan, Shiue, and Chen in [14], and
their paper also includes more details regarding this lemma. Mullen, Wan,
and Wang [8] also describe an alternate proof of this lemma presented to
them by Lenstra through private communication.
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6. From Single Variable to Multivariable

Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)) be a polynomial vec-
tor, and note deg f = maxi{deg fi}. This maps the vector space Fnq to itself.
Now, take a basis e1, ..., en of Fqn over Fq. Denote x = x1e1 + · · ·+ xnen and
define

g(x) ..= f1(x1, ..., xn)e1 + · · ·+ fn(x1, ..., xn)en.

In this way, we can think of the function g as a non-constant univariate
polynomial map from the finite field Fqn to itself. Even better, we have the
equality |Vf | = |g(Fqn)|. Therefore, using Lemma 5.3, we know

if |Vf | < qn, then |Vf | ≤ qn − U(g),

where g is viewed as a univariate polynomial.

Unfortunately, as a univariate polynomial, we do not have good control of
the univariate degree of g in relation to the multivariate degree of f . Even if
one were to construct a closed form for g(x) using methods such as Lagrange
Interpolation, the degree of g would likely be high enough as to make the
resulting upper bound on |Vf | trivial. Because of these issues with the degree
of g, we cannot use the bounds from the previous section directly, and must
rely on another method to bound U(g).

Previously, we introduced g(x) as a univariate polynomial. However, us-
ing a basis e1, ..., en of Fqn over Fq as before, we can also define a multivariate
polynomial

g(x1, ..., xn) ..= f1(x1, ..., xn)e1 + · · ·+ fn(x1, ..., xn)en

mapping the vector space Fnq into the field Fqn . In this sense, g as a multi-
variate polynomial shares some important properties with f as a polynomial
vector, such as the fact that deg(g) = maxi{deg fi}. Whereas the paper by
Mullen, Wan, and Wang determine a bound for U(g) relying on the multi-
variate degree of f , in this paper we will use the Newton polytope of the mul-
tivariate polynomial g(x1, ..., xn) to improve upon these bounds. With this in
mind, we define ∆(f) ..= ∆(g(x1, ..., xn)), µf ..= µg(x1,...,xn), ωf

..= ωg(x1,...,xn)
and prove our main theorem.
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7. A Method to Improve Prior Proofs

A major limitation of the p-adic liftings methods in the proofs given in
[8], [10], and [15] is how they limit the p-divisibility we can discern from the
sum Sk(f). Indeed, if we immediately split Sk(f) amongst the monomials
of the multivariate polynomial g(x1, ..., xn)k (as is done in [8] and [10], and
as is equivalent to the methods of [15]), we lose much of the structure and
divisibility of each term. Therefore, we will manipulate our summand to
leverage a larger p-adic valuation before splitting it into monomials. To do
this, we need the following lemma:

Lemma 7.1. Let x1, ..., xn be in a commutative ring R, and let e ∈ N. Then

(x1 + · · ·+ xn)p
e

= xp
e

1 + · · ·+ xp
e

n + ph1(x
pe−1

1 , ..., xp
e−1

n ) + p2h2(x
pe−2

1 , ..., xp
e−2

n )

+ · · ·+ pehe(x1, ..., xn)

where ht(x
pe−t

1 , ..., xp
e−t
n ) ∈ R[x1, ..., xn] is such that deg ht(x1, ..., xn) = pt.

Proof. We use the multinomial theorem on the left hand side of the above
equation.

(x1 + · · ·+ xn)p
e

= xp
e

1 + · · ·+ xp
e

n +
∑

a1+···+an=pe
a1 6=pe,...,an 6=pe

(
pe

a1, ..., an

)
xa11 · · · xann . (6)

For simplicity of notation, let

A =

(
pe

a1, ..., an

)
xa11 · · ·xann .

Then the sum in (6) can be split as follows:∑
a1+···+an=pe

A = xp
e

1 + · · ·+ xp
e

n +
∑

a1+···+an=pe
pe−1||(a1,...,an)

A+
∑

a1+···+an=pe
pe−2||(a1,...,an)

A

+ · · ·+
∑

a1+···+an=pe
p||(a1,...,an)

A+
∑

a1+···+an=pe
p -aε for some ε

A.
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Now, let

σt =
∑

a1+···+an=pe
pe−t||(a1,...,an)

A, 1 ≤ t ≤ e.

If we can show for 1 ≤ t ≤ e that σt has the form ptht(x
pe−t

1 , ..., xp
e−t
n ) with

deg ht(x1, ..., xn) = pt, then the proof is done.

Notice that the summand A always has degree a1 + · · ·+ an = pe, which
means deg σt = pe. Since pe−t|aε for all ε between 1 and n, we know that σt
has the form τt(x

pe−t

1 , ..., xp
e−t
n ) ∈ R[x1, ..., xn] and deg τt(x1, ..., xn) = pe

pe−t
=

pt.

The fact that pt|
(

pe

a1,...,an

)
under the conditions that pe−t||(a1, ..., an) has an

elegant proof by Singmaster in [9]. Therefore, we have pt|τt(xp
e−t

1 , ..., xp
e−t
n ).

This tells us σt has the form ptht(x
pe−t

1 , ..., xp
e−t
n ) with deg ht(x1, ..., xn) = pt,

and thus the lemma is proved.

Let f be a polynomial map over Fnq , char Fq = p. Also let e1, ..., en
be a basis of the field Fqn over Fq, and let x = x1e1 + · · · + xnen as be-
fore in Section 6, allowing us to identify the polynomial map f(x1, .., xn) =
(f1(x1, ..., xn), ..., fn(x1, ..., xn)) with the univariate polynomial f(x) or multi-
variate polynomial f(x1, ..., xn) = f1(x1, ..., xn)e1+· · ·+fn(x1, ..., xn)en. Also
let Sk(f) and U(f) be as in Section 5.1. To improve upon the p-adic lifting
method, we will apply Lemma 7.1 to f(x1, ..., xn)k, split Sk(f) amongst these
polynomials, and then split the summand polynomials further into monomi-
als.

Write k = pek1 with p - k1. For simplicity of notation, assume f has
already been lifted with coefficients in Lqn . Then by Lemma 7.1, there exist
polynomials F0, ..., Fe ∈ Fqn [x1, ..., xn] such that

(f1(x1, ..., xn)e1 + · · ·+ fn(x1, ..., xn)en)p
e

= F0(x
pe

1 , ..., x
pe

n ) + pF1(x
pe−1

1 , ..., xp
e−1

n )

+ · · ·+ peFe(x1, ..., xn),

where deg Ft(x1, ..., xn) ≤ dpt. This means that
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(f1(x1, ..., xn)e1 + · · ·+ fn(x1, ..., xn))k =
(
F0(x

pe

1 , ..., x
pe

n ) + pF1(x
pe−1

1 , ..., xp
e−1

n )

+ · · ·+ peFe(x1, ..., xn)
)k1

=
∑

b0+···+be=k1

(
k1

b0, ..., be

)
pb1+2b2+···+ebeF0(x

pe

1 , ..., x
pe

n )b0 · · ·Fe(x1, ..., xn)be .

Now for fixed b0, ..., be, let λ be the positive integer such that bλ 6=
0, bλ+1 = · · · = be = 0, and let yi = xp

e−λ

i . This means we can reduce
the power and degree of our summand polynomials in the following way:

F0(x
pe

1 , ..., x
pe

n )b0 · · ·Fλ(xp
e−λ

1 , ..., xp
e−λ

n )bλ = F0(y
pλ

1 , ..., y
pλ

n )b0 · · ·Fλ(y1, ..., yn)bλ . (7)

Note that each term may have a different substitution, but we may split
Sk(f) amongst each summand to bound the p-divisibility of the entire sum.
Using the reduction of f(x1, .., xn)k to (7), we are given sums of the form

pb1+2b2+···+λbλ
∑

y1,...,yn∈Lq

F0(y
pλ

1 , ..., y
pλ

n )b0 · · ·Fλ(y1, ..., yn)bλ . (8)

Now the fact that bλ 6= 0 tells us this sum is divisible by pλ, i.e. Sk(f) ≡
0 (mod pλ). From here, we must further split this summand product into
monomials and determine the p-divisibility of the smaller sums. Let

F0(y
pλ

1 , ..., y
pλ

n )b0 · · ·Fλ(y1, ..., yn)bλ =
m∑
j=1

cjY
Wj , cj ∈ F∗qn ,

where

Wj = (w1j, ..., wnj)
T ∈ Zn≥0, Y Wj = y

w1j

1 · · · ywnjn . (9)

This allows the sum in (8), and ultimately Sk(f), to be split among the
monomials in (9) into sums of the form

pb1+2b2+···+λbλ
∑

y1,...,yn∈Lq

cjY
Wj = cjp

b1+2b2+···+λbλ
n∏
i=1

∑
yi∈Lq

y
wij
i . (10)
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Let C be an upper bound on k, i.e. k < C (C will be made explicit in
the next section). Our goal is to show C ≤ U(f) and therefore come up with
a nicer bound on |Vf | (thanks to Lemma 5.3). Let vp be the p-adic valuation
with vp(p) = 1, and let `j be the number of nonzero entries of Wj. We can
accomplish our goal by showing the sum in (10) is congruent to zero mod
pλqn−`j , and that vp(p

λqn−`j) ≥ vp(pk), i.e.

λ+ (n− `j)vp(q) ≥ e+ 1.

If this holds true for all monomials, then Sk(f) ≡ 0 mod pk and C ≤ U(f).

Now the sum in (10) equals zero if one of the wij’s is not divisible by
q− 1, so all that is left is to consider the case when q− 1|wij for all i. In this
case, since bλ 6= 0, and since `j is the number of nonzero wij, we have n− `j
zero terms, which tells us

pb1+2b2+···+λbλ
∑

y1,...,yn∈Lq

cjY
Wj ≡ 0 (mod pλqn−`j).

The above substitution method allows us to refine the recently published
results mentioned in Section 1, whose proofs simply used the monomials
of f(x1, ..., xn)k directly. These proofs required that k < q to bound the
value set, but our proofs do not. The next section will show how the added
structure our method provides a tighter upper bound on the cardinality of
the value set.

8. Improved Integral Dilation Bound

Theorem 8.1. Let f(x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)) be a poly-
nomial vector over the vector space Fnq . Without loss of generality, suppose
f is not polynomial in some subset of {x1, ..., xn}. Let ωf be the integral
dilation factor associated with ∆(f). If |Vf | < qn, then

|Vf | ≤ qn − ωf .

Proof. If we can show that, for 1 ≤ k < ωf and k = pek1 with p - k1,

Sk(f) ..=
∑
x∈Lqn

f̃(x)k =
∑

x1,...,xn∈Lq

(
f̃1(x1, ..., xn)ẽ1 + · · ·+ f̃n(x1, ..., xn)ẽn

)k
≡ 0 (mod pk),
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then U(f) ≥ ωf and we are done by Lemma 5.3.

For simplicity of notation, assume f is already lifted to characteristic
zero over Lqn . Split Sk(f) into sums of the form (8). Notice that, by our
substitution and Lemma 7.1, the exponent vectors of the monomials of the

product F0(y
pλ

1 , ..., y
pλ

n )b0 · · ·Fλ(y1, ..., yn)bλ are contained in k
pe−λ

∆(f). When

we further split these sums into sums of the form (10), we have that

pb1+2b2+···+λbλ
∑

y1,...,yn∈Lq

cjY
Wj ≡ 0 (mod pλqn−`j).

Since this sum equals 0 if one of the wij’s is not divisible by q − 1, assume
q − 1|wij for all i. By this assumption, we have that

Wj ∈
k

pe−λ
∆(f) ∩ (q − 1)Zn≥0. (11)

To further develop this proof, we require additional terminology.

Definition 8.2 (The quantity γ).

γ ..= min

|S|
∣∣∣∣∣∣S ⊆ {W1, ...,Wm},

∑
Wj∈S

Wj ∈ Nn

 .

In other words, γ is the size of smallest subset of the exponent vectors,
{W1, ...,Wm}, such that the sum of its elements lie in Nn. Since f(x1, ..., xn)
is not polynomial in some proper subset of {x1, ..., xn}, we have that the

polynomials F0(y
pλ

1 , ..., y
pλ

n ), ..., Fλ(y1, ..., yn) are not either. This means γ
will exist. Also, assume without loss of generality that W1, ...,Wγ satisfy the
sum property of γ, i.e.

W1 + · · ·+Wγ ∈ Nn.

Using this and (11), we have that

W1 + · · ·+Wγ ∈
γk

pe−λ
∆(f) ∩ (q − 1)Nn, (12)

which means that ωf ≤ γk
pe−λ

. Reorganizing this, and using our assumption

on k at the beginning of the proof, we have pe−λ

γ
ωf ≤ k < ωf , or pe−λ < γ.

To make use of this inequality, we have the following lemma:
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Lemma 8.3. For all integers 1 ≤ j ≤ m, we have

γ − 1 ≤ n− `j.

Proof. Let Wu be such that `u ≥ `j for all 1 ≤ j ≤ m. If `u = n, then γ = 1
and we are done. If not, Wu has n − `u components which are zero and we
can pick elements from {W1, ...,Wu−1,Wu+1, ...,Wm} to add to Wu until the
resulting sum is an element of Nn. This implies it is possible to pick n−`u+1
vectors from {W1, ...,Wm} whose sum will lie in Nn. By the definition of γ,
we must have γ ≤ n − `u + 1. But by our assumption on Wu, this means
that γ − 1 ≤ n− `j for all j.

With the help of Lemma 8.3 and (12), we have that pe−λ ≤ γ−1 ≤ n−`j.
If we can show that

vp

(
pλqp

e−λ
)
≥ vp(pk),

then Sk(f) ≡ 0 mod (pk) and we are done. In other words, if r = e − λ we
must show

prvp(q) ≥ r + 1. (13)

Fortunately, this is true for all primes p and all positive integers r.

9. Analysis of Cardinality Bounds

Our main bound proven in Section 8 is sharp. Let N(x1, ..., xn−1) be
the field norm of Fqn−1 over Fq. Kosters [7] illustrates that Theorem 1.4
is sharp using the map f(x1, ..., xn) = (x1, x2, ..., N(x1, ..., xn−1)xn). Based
on this example, we give the following sharp example for Theorem 8.1.
Let h(x1, x2, ..., xn) = (x1, x2, ..., N(x1, ..., xn−1)

axn) with a in N. Because
N(x1, ..., xn−1) is a polynomial containing the monomials xn−11 , ..., xn−1n−1 with
nonzero coefficients, we have that (a, a, ..., a, 1) ∈ ∆(h). This explicitly tells
us ∆(h)∩Nn 6= ∅. We also have for all V = (v1, ..., vn) ∈ ∆(h)∩Nn, vn = 1.
This implies ωh = q−1. In addition, since the preimage N−1(0) = {(0, ..., 0)},
we are given |Vh| = qn−(q−1). This example highlights the flexibility granted
by the use of constants derived from the Newton polytope, since deg h =
a(n−1)+1 does not allow for a sharp cardinality bound. This flexibility also
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gives us more freedom to make substitutions when generating more sharp ex-
amples. If z1(x), ..., zn−1(x) are univariate permutation polynomials in Fq[x],
then the maps g(x1, ..., xn) = (z1(x1), ..., zn−1(xn−1), N(x1, ..., xn−1)

axn) and
h(z1(x1), ..., zn−1(xn−1), xn) will share the same constants and value set car-
dinality as h(x1, ..., xn).

Using the constant ωf also has an advantage when determining bounds
on univariate value sets. In this case, since n = 1, we have that µf = 1

deg f

for all f ∈ Fq[x], but Zan and Cao [15] give a sharp example which improves
upon this for ωf . If f(x) = x7 + ax ∈ F19[x] with a 6= 0, 4, 5, 8, 16, 17, then it
is easy to check that ωf = 6, |Vf | = 13 = 19− ωf < 19−

⌈
1
7
(18)

⌉
= 16.

Note that, in general, it is not immediately clear how large of an im-
provement the strongest bound in Theorem 8.1 provides over our bounds in
Theorem 1.4. The first author of the present paper has addressed in [10]
that an effective method for calculating µf is not directly clear from the
definitions given. However, calculation of ωf should be much more efficient
complexity-wise, since only a finite amount of values need to be checked to
determine the minimum value. This quantity of values to check by brute
force grows with complexity O(qn) and is therefore polynomial in q (though
exponential in n). Therefore, there is much value in the use of ωf even when
it is equal to µf · (q − 1).

10. Future Work

It is important to consider whether results such as in Section 8 apply
in more general settings. For instance, there are cases when it is more
convenient to use rational interpolated form of a map than its polynomial
form, especially when the monomials of the rational interpolation have much
smaller degree. Even if we strictly considered Laurent polynomials, where
we have f(x) ∈ Fq[x, x−1] or the Laurent polynomial map f(x1, ..., xn) =
(f1(x1, ..., xn), ..., fn(x1, ..., xn)) with multivariate polynomial fi(x1, ..., xn) ∈
Fq[x1, x2, ..., xn, x−11 , x−12 , ..., x−1n ], can we apply the geometry of the Newton
polytope to bound their cardinalities? Would such bounds be any stronger
than those obtained by using a polynomial-interpolated form of the map?
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