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0. Introduction

One of the basic problems in arithmetic mirror symmetry is to compare the

number of rational points on a mirror pair of Calabi-Yau varieties. At present, no

general algebraic geometric definition is known for a mirror pair. But an important

class of mirror pairs comes from certain quotient construction. In this paper, we

study the congruence relation for the number of rational points on a quotient mirror

pair of varieties over finite fields. Our main result is the following theorem:

Theorem 0.1. Let X0 be a smooth projective variety over the finite field Fq with q

elements of characteristic p. Suppose X0 has a smooth projective lifting X over the

Witt ring W = W (Fq) such that the W -modules Hr(X, Ωs
X/W ) are free. Let G be a

finite group of W -automorphisms acting on the right of X. Suppose G acts trivially

on H i(X,OX) for all i. Then for any natural number k, we have the congruence

#X0(Fqk) ≡ #(X0/G)(Fqk) (mod qk),
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where #X0(Fqk) (resp. #(X0/G)(Fqk)) denotes the number of elements of the sets

of Fqk-rational points of X0 (resp. X0/G).

The main application of the above theorem is to Calabi-Yau varieties. This

gives the following theorem announced in [W], which was the main motivation of

the present paper.

Theorem 0.2. Let X0 be a geometrically connected smooth projective Calabi-Yau

variety of dimension n over the finite field Fq with q elements of characteristic p.

Suppose X0 has a smooth projective lifting X over the Witt ring W = W (Fq)

such that the W -modules Hr(X, Ωs
X/W ) are free. Let G be a finite group of W -

automorphisms acting on the right of X. Suppose G fixes a non-zero n-form on X.

Then for any natural number k, we have the congruence

#X0(Fqk) ≡ #(X0/G)(Fqk) (mod qk).

Proof. If X is a Calabi-Yau scheme over W of dimension n, then H i(X,OX) = 0

for i 6= 0, n and G acts trivially on them. If the generic fiber of X is geometrically

connected, then G acts trivially on H0(X,OX). By Serre duality, Hn(X,OX) is dual

to H0(X, Ωn
X/W ). Since X is Calabi-Yau, Ωn

X/W is a trivial invertible sheaf. In order

for G to act trivially on Hn(X,OX/W ), it suffices for G to fix a nonzero n-form.

Theorem 0.2 thus follows from Theorem 0.1.

In particular, we have the following corollary:

Corollary 0.3. Let X0 be the smooth (n − 1)-dimensional hypersurface

xn+1
0 + · · · + xn+1

n + λx0 · · ·xn = 0

in Pn
Fq

, where λ ∈ Fq. Let

G = {(ζ0, . . . , ζn)|ζi ∈ Fq, ζ
n+1
i = 1,

n∏

i=0

ζi = 1}.
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Consider the action G × X0 → X0 defined by

(ζ0, . . . , ζn) × [x0 : . . . : xn] 7→ [ζ0x0 : . . . : ζnxn].

We have #X0(Fqk) ≡ #(X0/G)(Fqk) (mod qk) for any natural number k.

It is well known that the above hypersurface is Calabi-Yau. A G-equivariant

nonzero (n − 1)-form is (−1)idx0∧···∧d̂xi∧···∧dxn

1+
∑

j 6=i xn+1
j −λ

∏
j 6=i xj

on the affine space xi = 1 of Pn.

It is known that for the above hypersurface X0, X0/G is a strong singular mir-

ror of X0 if (n + 1)|(q − 1). It is conjectured in [W] that for a strong mirror

pair of Calabi-Yau varieties {X0, X
′
0} over the finite field Fq, we have #X0(Fqk) ≡

#X ′
0(Fqk) (mod qk) for any integer k. See [W] for a fuller discussion on this and

other arithmetic mirror conjectures. In the situation of Theorem 0.2, if X/G is a

singular mirror of X and if Y is a smooth crepant resolution of X/G, then the pair

(X,Y ) forms a strong mirror pair of smooth projective Calabi-Yau varieties. The

congruence mirror conjecture in this case then reduces to showing the congruence

#(X/G)(Fqk) ≡ #Y (Fqk) (mod qk).

Another application of the theorem is to geometrically connected varieties with

the property H i(X,OX) = 0 for all i 6= 0. Again in this case, G acts trivially on

H i(X,OX) for all i. Let K be the algebraic closure of the fraction field of W =

W (Fq). By [E], if the l-adic cohomology group H i(X⊗W K,Ql) satisfies the coniveau

1 condition for each i 6= 0, that is, if any cohomology class in H i(X ⊗W K,Ql)

vanishes in H i(U,Ql) when restricted to some nonempty open U ⊂ X ⊗W K, then

we have H i(X,OX) = 0 for all i 6= 0. The converse is true if we assume the

generalized Hodge conjecture. It turns out that in this case, we can prove a theorem

stronger than Theorem 0.1. We don’t need to assume X0 can be lifted to W .

Theorem 0.4. Let X0 be a smooth geometrically connected projective variety over

the finite field Fq. Suppose H i(X0,OX0) = 0 for all i 6= 0. Then for any natural

number k, we have

#X0(Fqk) ≡ 1 (mod qk).
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Let G be a finite group of Fq-automorphisms acting on the right of X0. We have

#(X0/G)(Fqk) ≡ #X0(Fqk) ≡ 1 (mod qk).

The liftable condition in Theorem 0.1 cannot be dropped in general. However,

if the order of G is prime to p, then the liftable condition can be dropped. This is

given in the following general result of Berthelot-Bloch-Esnault, proved using their

theory of Witt vector cohomology for singular varieties. In contrast, our method is

based on crystalline cohomology and the Mazur-Ogus theorem.

Theorem 0.5 ([BBE]) Let X0 be a proper scheme over Fq, and G a finite group

acting on X0 so that each orbit is contained in an affine open subset of X0. Suppose

that the order of G is prime to the characteristic p and suppose that G acts trivially

on H i(X0,OX0) for all i. Then for any natural number k, we have the congruence

#X0(Fqk) ≡ #(X0/G)(Fqk) (mod qk).

Acknowledgements. The research of Lei Fu is supported by the Qiushi Science

& Technologies Foundation, by the Fok Ying Tung Education Foundation, by the

Transcentury Training Program Foundation, by the Project 973, and by the SRFDP.

The research of Daqing Wan is partially supported by NSF. Part of this work is done

while Lei Fu was visiting the University of California at Irvine. He would like to

thank the Mathematics Department for its hospitality.

1. Proof of the Theorems

First we introduce some notations. For any smooth proper scheme X0 over Fq,

let H i(X0/W ) be the crystalline cohomology group of X0. It is a finitely generated

module over the Witt ring W = W (Fq). Denote by F : X0 → X0 the Frobenius

correspondence, that is, it is the identity map on the underlying topological space

of X0, and it maps a section of OX0 to its q-th power.
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Let κ be a field and let Z be a scheme over κ. Denote by |Z| the set of Zariski

closed points in Z. For any z ∈ |Z|, define deg(z) = [k(z) : κ], where k(z) is the

residue field at z. Let f : Z → Z be a κ-endomorphism with isolated fixed points.

Set

Zf = {z ∈ |Z||f(z) = z and f induces identity on k(z)},

and define

Λ(f) =
∑

z∈Zf

deg(z).

Let κ′ be a field extending κ and let f ′ : Z ⊗κ κ′ → Z ⊗κ κ′ be the base change of

f . Then we have Λ(f) = Λ(f ′).

Lemma 1.1. Let X0 be a smooth projective variety over the finite field Fq, let g :

X0 → X0 be an Fq-automorphism of finite order, and let K = FracW be the fraction

field of W = W (Fq). Then Tr(F k, H i(X0/W )⊗W K) and Tr(gF k, H i(X0/W )⊗W K)

are algebraic integers for any positive integer k and any i, and

Λ(F k) =

2dimX0∑

i=0

(−1)iTr(F k, H i(X0/W ) ⊗W K),

Λ(gF k) =

2dimX0∑

i=0

(−1)iTr(gF k, H i(X0/W ) ⊗W K).

Proof. Let l be a prime number distinct from p. By Deligne’s theorem ([D] 3.3.9),

Tr(F k, H i(X0 ⊗Fq
Fq,Ql)) are algebraic integers. By the comparison theorem of

Katz-Messing ([KM]), we have

Tr(F k, H i(X0/W ) ⊗W K) = Tr(F k, H i(X0 ⊗Fq
Fq,Ql)).

So Tr(F k, H i(X0/W ) ⊗W K) are algebraic integers. The formula for Λ(F k) fol-

lows from the Lefschetz fixed point formula in crystalline cohomology theory ([B]

Théorème VII 3.1.9).

We will reduce the statements about gF k to the corresponding statements for

F k. Suppose g : X0 → X0 has finite order m. Let X1 = X0 ×SpecFq
SpecFqm , and
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let ϕ ∈ Gal(Fqm/Fq) be the Frobenius substitution. For any σ ∈ Gal(Fqm/Fq), we

have σ = ϕk for some integer k uniquely determined modulo m. Define

fσ : X1 → X1

to be the isomorphism of schemes

fσ = (idX0 × σ∗) ◦ (g−k × idSpecFqm ) : X0 ×SpecFq
SpecFqm → X0 ×SpecFq

SpecFqm .

Note that fσ is independent of the choice of k since g has order m. Since g−k ×

idSpecFqm is an Fqm-morphism of X1, the following diagram commutes:

X1
fσ
→ X1

↓ ↓

SpecFqm
σ∗

→ SpecFqm .

Moreover we have

fτfσ = fστ

for any σ, τ ∈ Gal(Fqm/Fq). By the theory of galois descent, ([S] Chapter V, No.

20, or Corollarie 7.7 in [SGA 1] Exposé VIII), there exists a scheme X ′
0 over SpecFq

such that we have an Fqm-isomorphism

X1
∼= X ′

0 ×SpecFq
SpecFqm

and the following diagrams commute:

X1
fσ
→ X1

∼=↓ ↓∼=

X ′
0 ×SpecFq

SpecFqm

idX0
′×σ∗

→ X ′
0 ×SpecFq

SpecFqm .

For any scheme Z of characteristic p, let FZ : Z → Z be the Frobenius corre-

spondence, that is, FZ is identity on the underlying topological space and the mor-

phism of sheaves F ♯
Z : OZ → FZ∗OZ maps each section to its q-th power. On

X1 = X0 ×SpecFq
SpecFqm , we have

FX1 = (idX0 × ϕ∗) ◦ (FX0 × idSpecFqm ) = fϕ ◦ (g × idSpecFqm ) ◦ (FX0 × idSpecFqm )

= fϕ ◦ (gFX0 × idSpecFqm ).
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Through the isomorphism X1
∼= X ′

0 ×SpecFq
SpecFqm , FX1 is identified with (idX′

0
×

ϕ∗) ◦ (FX′
0
× idSpecFqm ). Moreover, the commutative diagram above shows that fϕ

is identified with idX′
0
× ϕ∗. So the morphism gFX0 × idSpecFqm on X0 ×Fq

Fqm is

identified with the morphism FX′
0
× idSpecFqm on X ′

0 ×SpecFq
Fqm . So we have

Tr

(
gFX0 × idFqm , H i

(
X0 ×Fq

Fqm/W (Fqm)
)
⊗W (Fqm) Frac(W (Fqm))

)

= Tr

(
FX′

0
× idFqm , H i

(
X ′

0 ×Fq
Fqm/W (Fqm)

)
⊗W (Fqm) Frac(W (Fqm))

)
.

By the base change theorem in crystalline cohomology theory ([B] Corollaire V

3.5.7), we have

Tr(gFX0 , H
i(X0/W ) ⊗W K)

= Tr

(
gFX0 × idFqm , H i

(
X0 ×Fq

Fqm/W (Fqm)
)
⊗W (Fqm) Frac(W (Fqm))

)
,

Tr(FX′
0
, H i(X ′

0/W ) ⊗W K)

= Tr

(
FX′

0
× idFqm , H i

(
X ′

0 ×Fq
Fqm/W (Fqm)

)
⊗W (Fqm) Frac(W (Fqm))

)
.

So we have

Tr(gFX0 , H
i(X0/W ) ⊗W K) = Tr(FX′

0
, H i(X ′

0/W ) ⊗W K).

In particular, Tr(gFX0 , H
i(X0/W )⊗W K) are algebraic integers for all i. Moreover,

we have

Λ(gFX0) = Λ(gFX0 × idSpecFqm )

= Λ(FX0
′ × idSpecFqm )

= Λ(F ′
X0

)

=

2dimX0∑

i=0

(−1)iTr(FX′
0
, H i(X ′

0/W ) ⊗W K)

=

2dimX0∑

i=0

(−1)iTr(gFX0 , H
i(X0/W ) ⊗W K).

This proves the statements for gF . To prove the statements for gF k, we use the

base change from Fq to Fqk .
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Lemma 1.2. Under the condition of Theorem 0.1, we have

Tr(gF k, H i(X0/W ) ⊗W K) ≡ Tr(F k, H i(X0/W ) ⊗W K) (mod qk)

for all i.

Proof. Let H i = H i(X0/W ). Recall that H i can be identified with the de Rham

cohomology of the lifting X of X0 to W = W (Fq). (Confer [B] Théorème V 2.3.2).

On H i, we have the Hodge filtration

H i = F 0H i ⊃ F 1H i ⊃ · · ·

and this filtration is G stable. By a result of Mazur (the property (8.2) on page 65

of [M]), we have

F (F 1H i) ⊂ qH i.

We have

H i/F 1H i = F 0H i/F 1H i ∼= H i(X,OX).

Choose a basis {e1, . . . , es} of F 1H i and extend it to a basis {e1, . . . , es, es+1, . . . , es+t}

of H i. Since F k(F 1H i) ⊂ qkH i, the matrix of F k on H i with respect to the above

basis is of the form (
qkA qkB
C D

)
,

where A is an s × s matrix, B is an s × t matrix, C is a t × s matrix, and D is a

t × t matrix. Since G acts trivially on H i/F 1H i ∼= H i(X,OX) and G preserves the

Hodge filtration, the matrix of g ∈ G on H i with respect to the above basis is of the

form (
P O
Q I

)
,

where P is an s× s matrix, O is the s× t zero matrix, Q is a t× s matrix, and I is

the t × t identity matrix. So the matrix of gF k is
(

qkA qkB
C D

)(
P O
Q I

)
=

(
qkAP + qkBQ qkB

CP + DQ D

)
.

We have

Tr(gF k, H i) = Tr(qkAP + qkBQ) + Tr(D).
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On the other hand, we have

Tr(F k, H i) = Tr(qkA) + Tr(D).

So we have

Tr(gF k, H i) ≡ Tr(F k, H i) (mod qk).

This finishes the proof of Lemma 1.2.

Lemma 1.3. Let X0 be a quasi-projective scheme over Fq, let G be a finite group

acting on the right of X0. Then for any natural number k, we have

#(X0/G)(Fqk) =
1

#G

∑

g∈G

Λ(gF k).

Proof. This result is well known. We include a proof here for completeness. Let

Y0 = X0/G, and let |X0| (resp. |Y0|) be the set of Zariski closed point in X0 (resp.

Y0). For any x ∈ |X0|, define the decomposition subgroup at x by

Gd(x) = {g ∈ G|gx = x}

and the inertia subgroup at x by

Gi(x) = {g ∈ Gd(x)|g induces identity on the residue field k(x) at x}.

Let y be the image of x in Y0. By Proposition 1.1 in Exposé V of [SGA 1], we have

an isomorphism

Gd(x)/Gi(x) ∼= Gal(k(x)/k(y)),

and for any y ∈ |Y0|, there are exactly #G
#Gd(x)

Zariski closed points in X0 above y

and each of these closed points has degree deg(y)#Gd(x)
#Gi(x)

. We have

#Y0(Fqk) =
∑

y∈|Y0|, deg(y)|k

deg(y)

=
1

#G

∑

y∈|Y0|, deg(y)|k

#G

#Gd(x)

#Gd(x)

#Gi(x)
#Gi(x)deg(y)

=
1

#G

∑

y∈|Y0|, deg(y)|k

∑

x∈|X0|, x 7→y

deg(x)#Gi(x).
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Let y ∈ |Y0| be a Zariski closed point with deg(y)|k, let x ∈ |X0| be a point above y,

and let φy ∈ Gal(k(x)/k(y)) be the Frobenius substitution. Suppose g ∈ Gd(x) and

g−1 7→ φ
k

deg(y)
y under the canonical homomorphism Gd(x) → Gal(k(x)/k(y)). Then

gF k(x) = x and gF k induces identity on k(x). Conversely, if x is a Zariski closed

point in X0 such that gF k(x) = x and gF k induces identity on k(x), then g ∈ Gd(x),

deg(y)|k, and g−1 7→ φ
k

deg(y)
y , where y is the image of x in Y0. On the other hand,

there are exactly #Gi(x) elements g in Gd(x) such that g−1 7→ φ
k

deg(y)
y . So we finally

get

#Y0(Fqk) =
1

#G

∑

y∈|Y0|, deg(y)|k

∑

x∈|X0|, x 7→y

deg(x)#Gi(x)

=
1

#G

∑

g∈G

Λ(gF k).

This proves Lemma 1.3.

Now we are ready to prove Theorem 0.1. By Lemmas 1.3 and 1.1, we have

#(X0/G)(Fqk) =
1

#G

∑

g∈G

Λ(gF k)

=
1

#G

∑

g∈G

2dimX0∑

i=0

(−1)iTr(gF k, H i(X0/W ) ⊗W K).

By Lemmas 1.1 and 1.2, Tr(gF k, H i(X0/W ) ⊗W K) and Tr(F k, H i(X0/W ) ⊗W K)

are algebraic integers, and

Tr(gF k, H i(X0/W ) ⊗W K) ≡ Tr(F k, H i(X0/W ) ⊗W K) (mod qk).

From now on, we work over the integral closure of p-adic integers. Let ordq(#G) = c,

a non-negative rational number. For each k ≥ c, we have

#(X0/G)(Fqk) =
1

#G

∑

g∈G

2dimX0∑

i=0

(−1)iTr(gF k, H i(X0/W ) ⊗W K)

≡
1

#G

∑

g∈G

2dimX0∑

i=0

(−1)iTr(F k, H i(X0/W ) ⊗W K) (mod qk−c)
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≡

2dimX0∑

i=0

(−1)iTr(F k, H i(X0/W ) ⊗W K) (mod qk−c)

≡ #X0(Fqk) (mod qk−c).

Let Z(X0, T ) and Z(X0, T ) be the zeta-functions of X0 and X0/G, respectively.

They are rational functions. Recall that we have

d

dT
log Z(X0, T ) =

∞∑

k=1

#X0(Fqk)T k−1,

d

dT
log Z(X0/G, T ) =

∞∑

k=1

#(X0/G)(Fqk)T k−1.

Take a factorization

Z(X0, T )

Z(X0/G, T )
=

m∏

i=1

(1 − αiT )−ni , αi 6= 0

where the αi’s are distinct and the ni’s are non-zero integers. Taking logarithmic

derivative on both sides, we get

∞∑

k=1

(#X0(Fqk) − #(X0/G)(Fqk))T k−1 =
m∑

i=1

niαi

1 − αiT
.

Using the congruence

#(X0/G)(Fqk) ≡ #X0(Fqk) (mod qk−c)

for all k ≥ c, one deduces that the above power series is p-adic analytic in the open

disk ordq(T ) > −1. This implies that each αi satisfies ordq(αi) ≥ 1, that is, each αi

is divisible by q. We conclude that

#X0(Fqk) − #(X0/G)(Fqk) =
m∑

i=1

niα
k
i ≡ 0 (mod qk).

This finishes the proof of Theorem 0.1.

Let’s prove Theorem 0.4. By Ogus’ generalization of Mazur’s theorem ([BO] The-

orem 8.39), the Newton polygon of the Frobenius correspondence F on H i(X0/W )⊗W

11



K lies on or above the Hodge polygon of X0. For any i 6= 0, we have H i(X0,OX0) =

0. So the slope of each line segment on the Newton polygon is at least 1, that is, all

the eigenvalues of F k on H i(X0/W ) ⊗W K are divisible by qk (as p-adic integers).

So we have

Tr(F k, H i(X0/W ) ⊗W K) ≡ 0 (mod qk)

for all i 6= 0. Since X0 is geometrically connected, we have

Tr(F k, H0(X0/W ) ⊗W K) = 1.

So by Lemma 1.1, we have

#X0(Fqk) =

2dimX0∑

i=0

(−1)iTr(F k, H i(X0/W ) ⊗W K)

≡ 1 (mod qk).

Now let G be a finite group acting on the right of X0. For any g ∈ G, since g

has finite order, the action of g on H i(X0/W ) ⊗W K is diagonalizable and all its

eigenvalues are roots of unity. Combining with the fact that F commutes with g,

we see that all the eigenvalues of gF k on H i(X0/W ) ⊗W K are also divisible by qk

for any i 6= 0. So we have

Tr(gF k, H i(X0/W ) ⊗W K) ≡ Tr(F k, H i(X0/W ) ⊗W K) ≡ 0 (mod qk)

for all i 6= 0. Since X0 is geometrically connected, we have

Tr(gF k, H0(X0/W ) ⊗W K) = Tr(F k, H i(X0/W ) ⊗W K) = 1.

Again let ordq(#G) = c. For each k ≥ c, by Lemmas 1.1, 1.3, and the above

discussion, we have

#(X0/G)(Fqk) =
1

#G

∑

g∈G

2dimX0∑

i=0

(−1)iTr(gF k, H i(X0/W ) ⊗W K)

≡
1

#G

∑

g∈G

2dimX0∑

i=0

(−1)iTr(F k, H i(X0/W ) ⊗W K) (mod qk−c)

≡

2dimX0∑

i=0

(−1)iTr(F k, H i(X0/W ) ⊗W K) (mod qk−c)

≡ #X0(Fqk) (mod qk−c).
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As in the proof of Theorem 0.1, this implies that

#(X0/G)(Fqk) ≡ #X0(Fqk) (mod qk).

This finishes the proof of Theorem 0.4.
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