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0. Introduction

One of the basic problems in arithmetic mirror symmetry is to compare the
number of rational points on a mirror pair of Calabi-Yau varieties. At present, no
general algebraic geometric definition is known for a mirror pair. But an important
class of mirror pairs comes from certain quotient construction. In this paper, we
study the congruence relation for the number of rational points on a quotient mirror

pair of varieties over finite fields. Our main result is the following theorem:

Theorem 0.1. Let X, be a smooth projective variety over the finite field F, with ¢
elements of characteristic p. Suppose Xy has a smooth projective lifting X over the
Witt ring W = W (F,) such that the W-modules H" (X, Q% ;) are free. Let GG be a
finite group of W-automorphisms acting on the right of X. Suppose G acts trivially

on H'(X,Ox) for all i. Then for any natural number k, we have the congruence

#Xo(Fpr) = #(Xo/G)(Fyp) (mod ¢),



where #Xo(F ) (resp. #(Xo/G)(F,)) denotes the number of elements of the sets
of Fs-rational points of Xy (resp. Xo/G).

The main application of the above theorem is to Calabi-Yau varieties. This
gives the following theorem announced in [W], which was the main motivation of

the present paper.

Theorem 0.2. Let X be a geometrically connected smooth projective Calabi-Yau
variety of dimension n over the finite field F, with ¢ elements of characteristic p.
Suppose X has a smooth projective lifting X over the Witt ring W = W(F,)
such that the W-modules H"(X, Q%) are free. Let G be a finite group of W-
automorphisms acting on the right of X. Suppose G fixes a non-zero n-form on X.

Then for any natural number k, we have the congruence

#Xo(F ) = #(Xo/G)(Fp) (mod ¢").

Proof. If X is a Calabi-Yau scheme over W of dimension n, then H(X,Ox) =0
for i # 0,n and G acts trivially on them. If the generic fiber of X is geometrically
connected, then G acts trivially on H°(X, Ox). By Serre duality, H"(X, Oy) is dual
to HY(X, Q}/W). Since X is Calabi-Yau, (0% ;. is a trivial invertible sheaf. In order
for G to act trivially on H"(X,Oxw), it suffices for G' to fix a nonzero n-form.

Theorem 0.2 thus follows from Theorem 0.1.
In particular, we have the following corollary:
Corollary 0.3. Let Xy be the smooth (n — 1)-dimensional hypersurface
ot ™ e Az, = 0

in P , where A € Fy. Let

G={(Co,-- GG eFe, T =L ]] ¢ =1}
1=0



Consider the action G' x Xy — X defined by

(CoyevyCn) X [mo i vov i ap] = [Coxot v ().

We have #Xo(F 1) = #(Xo/G)(F ) (mod ¢*) for any natural number k.

It is well known that the above hypersurface is Calabi-Yau. A G-equivariant
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nonzero (n — 1)-form is on the affine space z; =1 of P™.

It is known that for the above hypersurface Xy, Xy/G is a strong singular mir-
ror of Xy if (n + 1)|(¢ — 1). It is conjectured in [W] that for a strong mirror
pair of Calabi-Yau varieties {Xo, X;} over the finite field F,, we have #Xo(F) =
#X\(F ) (mod ¢*) for any integer k. See [W] for a fuller discussion on this and
other arithmetic mirror conjectures. In the situation of Theorem 0.2, if X/G is a
singular mirror of X and if Y is a smooth crepant resolution of X/G, then the pair
(X,Y) forms a strong mirror pair of smooth projective Calabi-Yau varieties. The

congruence mirror conjecture in this case then reduces to showing the congruence

H(X/G)(F ) = #Y (Fye) (mod ).

Another application of the theorem is to geometrically connected varieties with
the property H(X,Ox) = 0 for all i # 0. Again in this case, G acts trivially on
H'(X,Ox) for all i. Let K be the algebraic closure of the fraction field of W =
W (F,). By [E], if the l-adic cohomology group H'(X ®w K, Q;) satisfies the coniveau
1 condition for each i # 0, that is, if any cohomology class in H*(X ®@w K, Q)
vanishes in H*(U, Q;) when restricted to some nonempty open U C X ®y K, then
we have H'(X,0x) = 0 for all i # 0. The converse is true if we assume the
generalized Hodge conjecture. It turns out that in this case, we can prove a theorem

stronger than Theorem 0.1. We don’t need to assume X, can be lifted to W.

Theorem 0.4. Let X be a smooth geometrically connected projective variety over
the finite field F,. Suppose H*(Xp, Ox,) = 0 for all ¢ # 0. Then for any natural
number k, we have

#Xo(F ) =1 (mod ¢").
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Let GG be a finite group of F,-automorphisms acting on the right of X,. We have
#(Xo/G)(Fpr) = #Xo(Fpe) =1 (mod ¢").

The liftable condition in Theorem 0.1 cannot be dropped in general. However,
if the order of GG is prime to p, then the liftable condition can be dropped. This is
given in the following general result of Berthelot-Bloch-Esnault, proved using their
theory of Witt vector cohomology for singular varieties. In contrast, our method is

based on crystalline cohomology and the Mazur-Ogus theorem.

Theorem 0.5 ([BBE]) Let X, be a proper scheme over F,, and G a finite group
acting on X so that each orbit is contained in an affine open subset of X,. Suppose
that the order of GG is prime to the characteristic p and suppose that G acts trivially

on H'(Xy, Ox,) for all i. Then for any natural number &, we have the congruence

#Xo(F ) = #(Xo/G)(F ) (mod ¢*).
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1. Proof of the Theorems

First we introduce some notations. For any smooth proper scheme X, over F,
let H'(X,/W) be the crystalline cohomology group of Xjy. It is a finitely generated
module over the Witt ring W = W(F,). Denote by F' : X, — Xj the Frobenius
correspondence, that is, it is the identity map on the underlying topological space

of Xy, and it maps a section of Oy, to its ¢-th power.



Let k be a field and let Z be a scheme over k. Denote by |Z| the set of Zariski
closed points in Z. For any z € |Z|, define deg(z) = [k(2) : k|, where k(z) is the
residue field at z. Let f : Z — Z be a k-endomorphism with isolated fixed points.
Set

71 ={z € |Z||f(2) = z and f induces identity on k(z)},

and define
A(f) = deg(2).

Let ' be a field extending x and let [ : Z ®, k' — Z ®, k' be the base change of
f- Then we have A(f) = A(f").

Lemma 1.1. Let X, be a smooth projective variety over the finite field Fy, let g :
Xo — Xy be an F ~automorphism of finite order, and let X' = FraclV be the fraction
field of W = W(F,). Then Tr(F*, H{(Xo/W)@w K) and Tr(gF*, H (Xo/W)@w K)
are algebraic integers for any positive integer k and any ¢, and

2dim X,
AFF) = > (1)'Tx(F*, H'(Xo/W) @w K),
MgFY) = Y (1) TelgPs ' (Xo/W) 0 K).

1=0

Proof. Let [ be a prime number distinct from p. By Deligne’s theorem ([D] 3.3.9),
Tr(F* H'(X, ®r, F,;, Q) are algebraic integers. By the comparison theorem of
Katz-Messing ([KM]), we have

Te(F*, H' (Xo/W) @w K) = Tr(F*, H (X ®%, Fq, Q).

So Tr(F*, H{(Xo/W) @w K) are algebraic integers. The formula for A(F¥) fol-
lows from the Lefschetz fixed point formula in crystalline cohomology theory ([B]
Théoreme VII 3.1.9).

We will reduce the statements about gF* to the corresponding statements for

F*. Suppose ¢ : Xo — X has finite order m. Let X; = X, X gpecF, OpecF g, and
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let ¢ € Gal(F,m/F,) be the Frobenius substitution. For any ¢ € Gal(F,~/F,), we

have o = ¢* for some integer k uniquely determined modulo m. Define
fo 1 X1 — Xy
to be the isomorphism of schemes
fo=(dx, x 0%) 0 (g_k X idspechm) 0 Xo Xgpecr, SpecFgm — Xo Xgpecr, SpecF m.

Note that f, is independent of the choice of k since g has order m. Since g% x

idspeCqu is an F m-morphism of X, the following diagram commutes:

X, Lox
l l
SpecF, n =  SpecF m.

Moreover we have
f’TfO’ - fO’T

for any 0,7 € Gal(F,~/F,). By the theory of galois descent, ([S] Chapter V, No.
20, or Corollarie 7.7 in [SGA 1] Exposé VIII), there exists a scheme X over SpecF,

such that we have an Fjm-isomorphism
X1 = X() Xgpecr, SpecF m

and the following diagrams commute:

xi BoXx

~| =

’ idXO/ Xo* ,
XO X SpecF, Spechm — XO X SpecF, SpeCqu .

For any scheme Z of characteristic p, let Fy : Z — Z be the Frobenius corre-
spondence, that is, F7 is identity on the underlying topological space and the mor-
phism of sheaves Fé : Oy — Fz.0z maps each section to its ¢g-th power. On

X1 = Xo Xspecr, SpecF gm, we have

FXl = (idXo X 90*) o (FX() X idSpechm) = fap o (g X idSpechm) o (FXO X idSpechm)

= fcp o (gFXo X idSpechm)-



Through the isomorphism X; = X Xgpecr, SpecFgm, Fy, is identified with (id x; X
©*) o (Fx; X idspeck,m ). Moreover, the commutative diagram above shows that f,
is identified with idx; X ¢*. So the morphism gFx, X idspecr,m On Xo Xp, Fgm is

identified with the morphism F X, X idspecF,m ON X0 Xspecr, Fgm. So we have
Tr (gFXO x idp, ., H' (Xo XF, qu/W(qu)> QW (Fym) Frac(W(qu))>

= Tr (FXé X idp, ., H' (X6 XF, qu/W(qu)> QW (Fm) Frac(W(qu)))
By the base change theorem in crystalline cohomology theory ([B] Corollaire V
3.5.7), we have
Tr(gFx,, H(Xo/W) @w K)
= Tr (gFXO X idp, ., H' (XO XF, qu/W(qu)> QW (Fym) FraC(W(qu))),
Tr(Fy,, H (X)/W) @w K)
= Tr (FX() X idp, ., H' (X(’) XF, qu/W(qu)> QW (Fm) Frac(W(qu))>.
So we have
Tr(gFx,, H(Xo/W) @w K) = Tr(Fx;, H(X{/W) @w K).

In particular, Tr(gFx,, H (Xo/W) @w K) are algebraic integers for all i. Moreover,

we have

A(gFX0> = A(QFXO X idSpechm)
(FXOI X idSpeCqu)

= A(F%,)
2dim X

= Y (=1)Te(Fx;, H'(X{/W) @w K)
=0
2dim X A

— Z (—=1)'Tr(gFx,, H(Xo/W) @w K).

1=0

I
=

This proves the statements for ¢gF. To prove the statements for gF*, we use the

base change from F, to F .



Lemma 1.2. Under the condition of Theorem 0.1, we have
Te(gF*, B (Xo/W) @w K) = Te(F*, H'(Xo/W) @ K) (mod ¢*)
for all i.

Proof. Let H' = H'(X,/W). Recall that H can be identified with the de Rham
cohomology of the lifting X of X, to W = W(F,). (Confer [B] Théoreme V 2.3.2).
On H*, we have the Hodge filtration

H =F'H >SF'H > --.

and this filtration is G stable. By a result of Mazur (the property (8.2) on page 65
of [M]), we have
F(F'H") C qH".
We have
Hi/F'H = FOH/F'H = H(X,0x).
Choose a basis {ey, ..., e,} of FLH® and extend it to a basis {e1, . .., €5, €511, -+, Csrt}

of H'. Since F*(F*H®) C ¢*H', the matrix of F* on H' with respect to the above

A B
C D !

where A is an s x s matrix, B is an s X t matrix, C is a t X s matrix, and D is a

t X t matrix. Since G acts trivially on H'/F'H' =~ H'(X,Ox) and G preserves the

basis is of the form

Hodge filtration, the matrix of ¢ € G on H* with respect to the above basis is of the

(2 7)

where P is an s x s matrix, O is the s X t zero matrix, () is a t X s matrix, and [ is

form

the t x t identity matrix. So the matrix of gF”* is
A ¢"B P O\ (¢AP+¢"BQ ¢"'B
cC D o 1)~ cpr+po D )

Tr(gF*, H) = Tr(¢" AP + ¢"BQ) + Tr(D).

We have
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On the other hand, we have
Tr(F*, HY) = Tr(¢* A) + Tr(D).
So we have
Tr(gF*, HY) = Tr(F*, H') (mod ¢*).

This finishes the proof of Lemma 1.2.

Lemma 1.3. Let X, be a quasi-projective scheme over F, let G be a finite group

acting on the right of Xy. Then for any natural number k, we have

4(X0/G)(F ) = # S A(gFY).

geG

Proof. This result is well known. We include a proof here for completeness. Let
Yo = Xo/G, and let | Xo| (resp. |Yp|) be the set of Zariski closed point in X (resp.
Yy). For any x € | Xy|, define the decomposition subgroup at = by

Ga(x) = {g € Glgx = x}
and the inertia subgroup at x by
Gi(x) = {g € Ga(x)|g induces identity on the residue field k(x) at x}.

Let y be the image of x in Y. By Proposition 1.1 in Exposé V of [SGA 1], we have
an isomorphism
Ga(z)/Gi(x) = Gal(k(z)/k(y)),

and for any y € |Yy|, there are exactly #Zﬁx) Zariski closed points in Xy above y

and each of these closed points has degree deg(y) ig‘j((;”)) We have

AYo(Fp) = > deg(y)

y€|Yol, deg(y)|k

_ 1 #G  #G4(x) o
e yelyO%%(y)k #Ga(r) #Gi(v) #Gi(x)deg(y)
1

Y€[Yol, deg(y)|k z€|Xo|, z—y
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Let y € |Yy| be a Zariski closed point with deg(y)|k, let x € | Xy| be a point above y,
and let ¢, € Gal(k(z)/k(y)) be the Frobenius substitution. Suppose g € G4(x) and
gl — (bdcg(y) under the canonical homomorphism G4(x) — Gal(k(x)/k(y)). Then
gF*(x) = x and gF* induces identity on k(z). Conversely, if x is a Zariski closed
point in Xy such that ng( ) = x and gF* induces identity on k(z), then g € G4(x),
deg(y)|k, and g~! +— qbdeg(y), where y is the image of z in Y;. On the other hand,
there are exactly #G;(z) elements g in G4(x) such that g=! — gb{}eg% . So we finally
get

LYy(Fpe) = # > > deg(a)#Gi(w)

y€|Yol, deg(y)|k z€|Xo|, z—y

= —ZA (gF™).

geG

This proves Lemma 1.3.

Now we are ready to prove Theorem 0.1. By Lemmas 1.3 and 1.1, we have

#(Xo/G)(Fgr) = A(gF")
0 Z G g;
2dim X

= #GZ Z ) Tr(gF", H (Xo/W) @w K).

geG =0

By Lemmas 1.1 and 1.2, Tr(gF*, H (Xo/W) @w K) and Tr(F*, H(Xo/W) Qw K)

are algebraic integers, and
Tr(gF", H(Xo/W) @w K) = Te(F*, H(Xo /W) @w K) (mod ¢").

From now on, we work over the integral closure of p-adic integers. Let ord,(#G) = c,

a non-negative rational number. For each k& > ¢, we have

2dim X

#(Xo/G)(Fy) = #GZ > (FU)'Tr(gF*, HY (Xo/W) @w K)

geG =0

(=1)'Te(F*, H(Xo /W) @w K) (mod ¢"~°)

1

3/~
(]

™
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=Y )T, B/ W) @ K) (mod )

1=0

= #Xo(F,) (mod ¢" ).

Let Z(Xo,T) and Z(X,,T) be the zeta-functions of X, and X/G, respectively.

They are rational functions. Recall that we have

i1ogZ(X0,T) = Z#XO ) THL

dT
d = k-1
Jrlog Z(Xo/G.T) = ;#MO/G)(FMT :
Take a factorization
Z(Xo,T) i ,
_— = 1—ao;T)™™, a; #£0
poorenoinl| Sl Ak

where the «;’s are distinct and the n;’s are non-zero integers. Taking logarithmic

derivative on both sides, we get

S (#X0(F ) — #(Xo/G) By TH! = 7 %

k=1 i=1

Using the congruence

#(Xo/G)(F ) = #Xo(F ) (mod ¢"°)

for all £ > ¢, one deduces that the above power series is p-adic analytic in the open
disk ord,(7") > —1. This implies that each «; satisfies ord,(c;) > 1, that is, each «;
is divisible by ¢q. We conclude that

#Xo(F ) — #(Xo/G)(F ana =0 (mod ¢").

=1

This finishes the proof of Theorem 0.1.

Let’s prove Theorem 0.4. By Ogus’ generalization of Mazur’s theorem ([BO] The-
orem 8.39), the Newton polygon of the Frobenius correspondence F on H'(Xo /W)@y
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K lies on or above the Hodge polygon of X,. For any i # 0, we have H*(Xy, Ox,) =
0. So the slope of each line segment on the Newton polygon is at least 1, that is, all
the eigenvalues of F* on H'(X,/W) ®@w K are divisible by ¢* (as p-adic integers).
So we have

Tr(F*, H (X0 /W) @w K) = 0 (mod ¢*)
for all ¢ # 0. Since X is geometrically connected, we have

Te(F* HY(Xo/W) @w K) = 1.

So by Lemma 1.1, we have
2dim X

#Xo(Fg) = Y (—D)'Te(F* H (Xo/W) @w K)
=0
= 1 (mod ¢*).
Now let G be a finite group acting on the right of Xy. For any ¢ € G, since g
has finite order, the action of g on H'(X,/W) @w K is diagonalizable and all its
eigenvalues are roots of unity. Combining with the fact that F' commutes with g,

we see that all the eigenvalues of gF'* on H(X,/W) ®w K are also divisible by ¢*

for any i # 0. So we have
Tr(gF*, H (Xo/W) @w K) = Tr(F*, HY(Xo/W) @w K) = 0 (mod ¢")
for all # # 0. Since X is geometrically connected, we have
Tr(gF*, H(Xo/W) @w K) = Tr(F*, H(Xo/W) @w K) = 1.

Again let ord,(#G) = c¢. For each k > ¢, by Lemmas 1.1, 1.3, and the above

discussion, we have
2dim X

#(Xo/G)(Fy) = #GZ > (=)' Tr(gF*, H (Xo/W) @w K)
geG =0
2dim X

= #G Z Z YTr(F*, H (X /W) @w K) (mod ¢*~)

geG i=0
2dim X
= Z (—1)'Te(F*, H (Xo/W) @w K) (mod ¢"°)
i=0

#X0(F ) (mod ¢*).
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As in the proof of Theorem 0.1, this implies that

#(Xo/G)(Fp) = #Xo(F ) (mod ¢~).

This finishes the proof of Theorem 0.4.
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