1. State the definition of a limit point for a set $A \subseteq \mathbb{R}^n$.

A point $b \in \mathbb{R}^n$ is called a limit point of A if there exists a sequence $\{a^{(k)}\}_{k=1}^{\infty}$ which converges to b and all of whose terms lie in A.

2. Define the closure of a set $A \subseteq \mathbb{R}^n$.

The closure of A is the set of all limit points of A.

3. Let $A = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \neq x_2\}$. (i) Sketch A. (ii) What is the closure of A? You need not prove your answer. (iii) Prove that $(0,0)$ is a limit point of A.

(i) The picture should be the plane with the line $y = x$ deleted.
(ii) \mathbb{R}^2
(iii) The sequence $\{(0, 1/k)\}_{k=1}^{\infty}$ is contained in A (since $1/k$ is never 0) and converges to $(0,0)$.