Extra Questions for Exam Review - Answers

1. \[\begin{array}{|c|c|c|c|c|c|} \hline P & Q & R & P \land \lnot Q & R \lor \lnot P & (P \land \lnot Q) \implies (R \lor \lnot P) \\ \hline T & T & T & F & T & T \\ T & T & F & F & F & T \\ T & F & T & T & T & T \\ T & F & F & T & F & F \\ F & T & T & F & T & T \\ F & T & F & F & T & T \\ F & F & T & F & T & T \\ F & F & F & F & T & T \\ \hline \end{array} \]

2. No. \(A = \{2a + 1 : a \in \mathbb{Z}\} \) is the set of all odd integers. \(B = \{a : 2a + 1 \in \mathbb{Z}\} = \{\frac{1}{2}(m - 1) : m \in \mathbb{Z}\} \) is the set of integers and half-integers.

3. (a) \(\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset, \{4\}, \{10\}, \{4,10\}\} \).

 (b) Yes.

 (c) It is true. Here is a proof.
 \[
 X \in \mathcal{P}(A \cap B) \iff X \subseteq A \cap B \iff X \subseteq A \text{ and } X \subseteq B \\
 \iff X \in \mathcal{P}(A) \text{ and } X \in \mathcal{P}(B) \\
 \iff X \in \mathcal{P}(A) \cap \mathcal{P}(B).
 \]

4. \[
\left((A^c \cup B) \cap (A^c \cup C^c)\right)^c = (A^c \cup B)^c \cup (A^c \cup C^c)^c \\
= ((A^c)^c \cap B^c) \cup ((A^c)^c \cap (C^c)^c) \\
= (A \cap B^c) \cup (A \cap C) \\
= A \cap (B^c \cup C) \\
= A \cap (B \cup C)^c \\
\]

 (de Morgan)

 (de Morgan ×2)

 (distributive law)

 (de Morgan)

5. The statement is true.
 \[
 x \in (A \cup B) \setminus (A \cap B) \iff x \in A \cup B \text{ and } x \in (A \cap B)^c = A^c \cup B^c \\
 \iff (x \in A \text{ or } x \in B) \text{ and } (x \notin A \text{ or } x \notin B).
 \]

 We therefore need one of the two statements in each set of parantheses to be true. But we can’t have \(x \in A \) and \(x \notin A \), so we conclude
 \[
 x \in (A \cup B) \setminus (A \cap B) \iff (x \in A \text{ and } x \notin B) \text{ or } (x \notin A \text{ and } x \in B) \\
 \iff x \in (A \setminus B) \cup (B \setminus A).
 \]

6. (a) For all integers \(x \), there exist integers \(y \) and \(r \) such that \(x = y + r \) and \(r \) is between 1 and 4.

 (b) Given \(x \in \mathbb{Z} \), let \(r = 1 \) and \(y = x - 1 \). Then \(r, y \) are integers satisfying the claim.

 (c) \(\exists x \in \mathbb{Z}, \text{ such that } \forall y, r \in \mathbb{Z} \text{ we have } (x \neq y + r) \lor (r \leq 0) \lor (r \geq 5). \)
7. (a) Let \(x, y \in W \). Then \(\exists m, n \in \mathbb{Z} \) such that \(x = m^2, y = n^2 \). But then
\[
xy = m^2n^2 = (mn)^2 \in W.
\]

(b) \(W \) is closed under addition if \(\forall x, y \in W \) we have \(x + y \in W \). This is false. For example \(1 = 1^2 \) and \(4 = 2^2 \) are both in \(W \), yet \(1 + 4 = 5 \not\in W \) as it is not a perfect square.

8. (a) The positive divisors of 6 are 1, 2, 3 and 6: we have \(6 = 1 + 2 + 3 \).

The positive divisors of 28 are 1, 2, 4, 7, 14 and 28: we have \(28 = 1 + 2 + 4 + 7 + 14 \).

(b) Let \(2^n - 1 = p \) be prime. Clearly \(p = 3 \), from \(n = 2 \), is the smallest such prime. It follows that \(p \) is odd. The positive divisors of \(2^{n-1} (2^n - 1) = 2^{n-1} p \) are then
\[
1, 2, 2^2, 2^3, \ldots, 2^{n-2}, 2^{n-1}, p, 2p, 2^2 p, \ldots, 2^{n-2} p, 2^{n-1} p.
\]
The sum of all of these except the last is then
\[
\sum_{k=0}^{n-1} 2^k + \sum_{k=0}^{n-2} 2^k p = \frac{1 - 2^n}{1 - 2} + \frac{(1 - 2^{n-1}) p}{1 - 2} = 2^n - 1 + \frac{1 - 2^{n-1}}{1 - 2} p
\]
\[
= 2^n - 1 + (2^{n-1} - 1)(2^n - 1) = 2^n - 1,
\]
as required.

9. (a) Base case \((n = 4) \): \(4! = 24 > 16 = 2^4 \) is true.

Induction step: Assume that, for some \(n \in \mathbb{N}_{\geq 4} \), we have \(n! > 2^n \). Then
\[
(n + 1)! = (n + 1)n! > (n + 1) \cdot 2^n > 5 \cdot 2^n > 2 \cdot 2^n = 2^{n+1}.
\]
By induction, we have \(n! > 2^n, \forall n \in \mathbb{N}_{\geq 4} \).

(b) \(\forall n \in \mathbb{N} \),
\[
\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}.
\]
Base case \((n = 1) \): \(\frac{1}{1} = \frac{1}{3+1} \) is true.

Induction step: Assume that, for some \(n \in \mathbb{N} \), we have \(\frac{1}{1 \cdot 3} + \cdots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \).

Then
\[
\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \cdots + \frac{1}{(2n-1)(2n+1)} + \frac{1}{(2n+1)(2n+3)} = \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)}
\]
\[
= \frac{n(2n+3) + 1}{(2n+1)(2n+3)} = \frac{2n^2 + 3n + 1}{(2n+1)(2n+3)} = \frac{(2n+1)(n+1)}{(2n+1)(2n+3)} = \frac{n+1}{2n+3}.
\]
By induction, we have the result \(\forall n \in \mathbb{N} \).

10. (a) If \(\frac{p}{q} \) satisfies the equation, then
\[
\frac{p^2}{q^2} + \frac{ap}{q} + b = 0 \implies p^2 + apq + bq^2 = 0.
\]
The second and third terms are divisible by \(q \), and so \(p^2 \) is divisible by \(q \). But \(\text{gcd}(p, q) = 1 \), so \(q \) must be 1.
(b) Suppose that $x^2 - 2 = 0$ has a rational solution. By part (a), this solution must be an integer. But $x^2 = 2$ is clearly false for $x = 0, \pm 1$ (x^2 too small), and $|x| \geq 2$ (x^2 too large), so there are no integer solutions. It follows that the only solutions to $x^2 - 2 = 0$ (namely $\pm \sqrt{2}$) are irrational.

(c) If $x^2 - n = 0$ has a rational solution, then it is an integer. But then $n = x^2$ is the square of an integer. Thus \sqrt{n} is irrational unless n is a perfect square.

(d) Suppose that $x^2 - x - 1 = 0$ has a rational root n. Then n is an integer satisfying
\[1 = n^2 - n = n(n - 1). \]

We certainly cannot have $n = 0$, but then we must have $\frac{1}{n} = n - 1$. Thus $\frac{1}{n}$ is an integer, which can only happen if $n \pm 1$. In both cases $\frac{1}{n} \neq n - 1$. Thus all roots of $x^2 - x - 1 = 0$ are irrational.

11. (a) Just compute: for example $(f_1 \circ f_2)(x) = 1 - \frac{1}{1-x} = 1 - (1-x) = x = f_0(x)$.\
\[\begin{array}{c|ccc} \circ & f_0 & f_1 & f_2 \\
\hline
f_0 & f_0 & f_1 & f_2 \\
f_1 & f_0 & f_1 & f_2 \\
f_2 & f_0 & f_1 & f_2 \\
\end{array} \]

(b) For $\mathbb{Z}_3 = \{0,1,2\}$ with $+$ mod 3, we have
\[+ \begin{array}{ccc} 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{array} \]

(c) It is clear that $\mu : \mathbb{Z}_3 \to \{f_0, f_1, f_2\} : n \mapsto f_n$ is a bijective function. Under this identification, the tables in (a) and (b) are identical: but these tables completely describe the operations \circ and $+$, whence $\mu(a+b) = \mu(a) \circ \mu(b)$ for all $a, b \in \mathbb{Z}_3$. The two ‘sets with operation’ therefore behave identically after the relabeling afforded by μ.

12. (a) Suppose that $f(x) = f(y)$. Then x and y are have the same binary expansion and are thus equal. Hence f is injective.\footnote{We only need the choice of terminating expansion to be sure that f is well-defined. Note that f is not surjective: choosing the terminating representation of $x = \frac{1}{2}$ means that $f(\frac{1}{2}) = \{1\}$. However $\frac{1}{2} = \sum_{n=2}^{\infty} \frac{1}{3^n}$ which means that the set $X = \{2,3,4,5,\ldots\}$ is not in the image of f.}

(b) C is precisely the set of numbers in $[0,1]$ possessing a ternary expansion consisting only of 0’s and 2’s. Thus $g(X) \in C$ for all $X \subseteq \mathbb{N}$. The uniqueness of the ternary representation of an element of C means that g is injective. Moreover, g is surjective since
\[x = g(\{ n \in \mathbb{N} : b_n = 2 \text{ in the ternary expansion of } x \}). \]

(c) Since $C \subseteq [0,1]$, we can combine parts (a) and (b) to conclude that
\[|\mathcal{P}(\mathbb{N})| = |C| \leq |[0,1]| = \epsilon \leq |\mathcal{P}(\mathbb{N})| . \]

CSB allows us conclude that these cardinalities are equal: $|\mathcal{P}(\mathbb{N})| = |C| = \epsilon$.\footnote{We only need the choice of terminating expansion to be sure that f is well-defined. Note that f is not surjective: choosing the terminating representation of $x = \frac{1}{2}$ means that $f(\frac{1}{2}) = \{1\}$. However $\frac{1}{2} = \sum_{n=2}^{\infty} \frac{1}{3^n}$ which means that the set $X = \{2,3,4,5,\ldots\}$ is not in the image of f.}