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A convex model for non-negative matrix
factorization and dimensionality reduction on

physical space
Ernie Esser, Michael Möller, Stanley Osher, Guillermo Sapiro, Jack Xin

Abstract—A collaborative convex framework for factoring a
data matrix X into a non-negative product AS, with a sparse
coefficient matrix S, is proposed. We restrict the columns of
the dictionary matrix A to coincide with certain columns of the
data matrix X , thereby guaranteeing a physically meaningful
dictionary and dimensionality reduction. We use l1,∞ regular-
ization to select the dictionary from the data and show this
leads to an exact convex relaxation of l0 in the case of distinct
noise free data. We also show how to relax the restriction-to-X
constraint by initializing an alternating minimization approach
with the solution of the convex model, obtaining a dictionary
close to but not necessarily in X . We focus on applications
of the proposed framework to hyperspectral endmember and
abundances identification and also show an application to blind
source separation of NMR data.

Index Terms—Non-negative matrix factorization, dictionary
learning, subset selection, dimensionality reduction, hyperspec-
tral endmember detection, blind source separation

I. INTRODUCTION

D IMENSIONALITY reduction has been widely studied
in the signal processing and computational learning

communities. One of the major drawbacks of virtually all
popular approaches for dimensionality reduction is the lack
of physical meaning in the reduced dimension space. This
significantly reduces the applicability of such methods. In this
work we present a framework for dimensionality reduction,
based on matrix factorization and sparsity theory, that uses the
data itself (or small variations from it) for the low dimensional
representation, thereby guaranteeing the physical fidelity. We
propose a new convex method to factor a non-negative data
matrix X into a product AS, for which S is non-negative and
sparse and the columns of A coincide with columns from the
data matrix X .

The organization of this paper is as follows. In the remainder
of the introduction, we further explain the problem, summarize
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our approach and discuss applications and related work. In
Section II we present our proposed convex model for end-
member (dictionary) computation that uses l1,∞ regularization
to select as endmembers a sparse subset of columns of X ,
such that sparse non-negative linear combinations of them are
capable of representing all other columns. Section III shows
that in the case of distinct noise free data, l1,∞ regularization
is an exact relaxation of the ideal row-0 norm (number of
non-zero rows), and furthermore proves the stability of our
method in the noisy case. Section IV presents numerical results
for both synthetic and real hyperspectral data. In Section V
we present an extension of our convex endmember detection
model that is better able to handle outliers in the data. We
discuss its numerical optimization, compare its performance to
the basic model and also demonstrate its application to a blind
source separation (BSS) problem based on NMR spectroscopy
data.

A. Summary of the problem and geometric interpretation

The underlying general problem of representing X ≈ AS
with A,S ≥ 0 is known as non-negative matrix factorization
(NMF). Variational models for solving NMF problems are
typically non-convex and are solved by estimating A and S
alternatingly. Although variants of alternating minimization
methods for NMF often produce good results in practice, they
are not guaranteed to converge to a global minimum.

The problem can be greatly simplified by assuming a partial
orthogonality condition on the matrix S as is done in [1],
[2]. More precisely, the assumption is that for each row i
of S there exists some column j such that Si,j > 0 and
Sk,j = 0 for k 6= i. Under this assumption, NMF has a
simple geometric interpretation. Not only should the columns
of A appear in the data X up to scaling, but the remaining
data should be expressible as non-negative linear combinations
of these columns. Therefore the problem of finding A is to
find columns in X , preferably as few as possible, that span a
cone containing the rest of the data X . Figure 1 illustrates the
geometry in three dimensions.

The problem we actually want to solve is more difficult
than NMF in a couple respects. One reason is the need to
deal with noisy data. Whereas NMF by itself is a difficult
problem already, the identification of the vectors becomes even
more difficult if the data X contains noise and we need to
find a low dimensional cone that contains most of the data
(see lower right image in Figure 1). Notice that in the noisy
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case, finding vectors such that all data is contained in the
cone they span would lead to a drastic overestimation of the
number of vectors. Arbitrarily small noise at a single data
point could already lead to including this vector into the set
of cone spanning vectors. Thus, the problem is ill-posed and
regularization is needed to handle noise. In addition to small
noise there could also be outliers in the data, namely columns
of X that are not close to being well represented as a non-
negative linear combination of other columns, but that we do
not wish to include in A. Such outliers could arise from bad
sensor measurements, non-physical artifacts or any features
that for some reason we are not interested in including in our
dictionary A. Another complication that requires additional
modeling is that for the applications we consider, the matrix
S should also be sparse, which means we want the data to be
represented as sparse non-negative linear combinations of the
columns of A.

Fig. 1: Geometric interpretation of the endmember detection
problem. First row: two different viewpoints for a data set
in three dimensions, second row: same data set with the
vectors that can express any data point as a non-negative linear
combination in red, third row left: cone spanned by the three
vectors containing all data, third row right: illustration of the
cone with Gaussian noise added to the data, in this case not
all points lie inside the cone anymore

B. Our proposed approach

We obtain the X = AS factorization by formulating the
problem as finding a sparse non-negative T such that X ≈ XT
and as many rows of T as possible are entirely zero. We want
to encourage this so called row sparsity of T in order to select
as few as possible data points as dictionary atoms. We do this

by using l1,∞ regularization. This type of regularization cou-
ples the elements in each row of T and is based on the recent
ideas of collaborative sparsity (see for example [3] and the
references therein). The particular l1,∞ regularization has been
studied by Tropp in [4], however, without considering non-
negativity constraints and also not in the setting of finding a T
such that X ≈ XT for physically meaningful dimensionality
reduction. A strong motivation for using l1,∞ regularization
instead of other row sparsity regularizers like l1,2 is that in
the case of distinct, noise-free data, the l1,∞ model is an exact
relaxation of minimizing the number of non-zero rows in T
such that X = XT . This exact relaxation is independent of
the coherence of the columns of X . Without the non-negativity
constraint, a low coherence is crucial as is shown in [4]. The
general setting X ≈ XT was proposed by Lin et al. in [5] for
low rank approximation with the nuclear norm. However, the
nuclear norm does not lead to row sparsity, and thus there is no
obvious way to extract dictionary atoms from the minimizer.
Both the nuclear norm and l1,∞ approaches are addressing
related but different problems. Our main contribution is to
apply the joint sparsity regularizer l1,∞ to the non-negative
factorization setting X ≈ XT and thereby implicitly select
certain columns of X for the description of all columns of
X . We pose this as a convex optimization problem in T . For
practical reasons, we will need to perform some preliminary
data reduction, explained in Section II, before carrying out the
convex minimization. The main idea, however, is to minimize
over T ≥ 0 the l1,∞ norm of T plus some convex penalty
on X −XT . In the simplest case, we penalize ‖X −XT‖2F .
We also propose an advanced noise model to handle the case
where X contains outliers. Both models also incorporate a
weighted l1 penalty to encourage a sparser T so that from the
few columns of X selected to represent the whole data, only
a few are used per sample.

C. Applications and related work

Although we concentrate on hyperspectral imaging (HSI)
and briefly discuss an application to blind source separation
(BSS), our method is applicable in numerous areas, from
biology to sensor networks.

For instance, one approach to text mining, that is the
technique of extracting important information from large text
data sets, is to reduce the number of relevant text documents
by clustering them into content dependent categories using
non-negative matrix factorization (see [6] for details). Our
approach could potentially be used to not only cluster the large
amount of documents by a similar factorization, but due to the
dictionary being a part of the data, it would furthermore lead
to a correspondence of every atom in the dictionary to a certain
document. This correspondence might help a human analyzer
judge the importance of each cluster. Therefore the physical
meaning of the dictionary atoms would have an immediate
advantage for the further analysis.

As another example, in [7] non-negative matrix factorization
is applied to spectrograms of many different musical sounds in
order to obtain a spectral basis for musical genre classification.
Again the physical fidelity of our approach could be interesting
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since it would provide a correspondence of each spectral basis
element to a certain musical sound.

From the numerous potential applications, we concentrate
on two to illustrate the proposed framework. We describe next
the challenges in these applications. This early description of
these applications will help to further motivate the work.

1) Introduction to hyperspectral imaging (HSI): HSI sen-
sors record up to several hundred different frequencies in
the visible, near-infrared and infrared spectrum. This precise
spectral information provides some insight on the material at
each pixel in the image. Due to relatively low spatial resolution
and the presence of multiple materials at a single location (e.g.,
tree canopies above ground or water and water sediments),
many pixels in the image contain the mixed spectral signatures
of multiple materials. The task of determining the abundances
(presence quantity) of different materials in each pixel is called
spectral unmixing. This is clearly an ill-posed problem that
requires some assumptions and data models.

Unmixing requires a dictionary with the spectral signatures
of the possible materials (often denoted as endmembers). Since
these dictionaries can be difficult to obtain and might depend
on the conditions under which they were recorded, it is some-
times desirable to automatically extract suitable endmembers
from the image one wants to demix in a process called end-
member detection. Many different techniques for endmember
detection have been proposed including variational [8], [9],
[10] and Bayesian [11], [12], [13] models as well as convex
geometry-based methods [2], [14], [1]. Related although not
yet applied to endmember detection are subset selection meth-
ods like the rank-revealing QR (RRQR) decomposition (e.g.
[15], [16]) and greedy dictionary selection methods [17], [18].
The general principle behind rank-revealing QR for subset se-
lection is to find a column permutation of the data matrix such
that the first few columns are as well conditioned as possible
[16]. In a sense, it looks for the most linearly independent
columns of a matrix.1 However, unlike our approach, QR
methods do not take non-negativity constraints into account.
The greedy dictionary selection methods [17], [18] are based
on greedy approximations of combinatorial optimization prob-
lems for sparse dictionary selection. These methods come with
theoretical guarantees given incoherence assumptions about
the data matrix. Such assumptions do not hold for our data,
but because we have a nonnegativity constraint not assumed
there, we can show our model is theoretically sound without
strong incoherence assumptions on the data, as demonstrated
by the exact convex relaxation discussed in Section III.

Simultaneously detecting endmembers and computing abun-
dances can be stated as factoring the data matrix X ∈ Rm,d
into X ≈ AS, A,S ≥ 0, with both A ∈ Rm,n and S ∈ Rn,d
being unknown. In this notation each column of X is the
spectral signature of one pixel in the image. Hence, m is the
number of spectral bands, d is the total number of pixels, and
each of the n columns of A represents one endmember. The
abundance matrix S contains the amounts of each material in

1Independent of the work here described, Laura Balzano, Rob Nowak
and Waheed Bajwa developed a related matrix factorization technique and
connected and compared it to RRQR. We thank Laura for pointing out their
work [19] and also the possible relationships with RRQR.

A at each pixel in X . The application of NMF to hyperspectral
endmember detection can for instance be found in [8], [9].

Considering that while material mixtures in HSI exist, it
is unlikely that pixels contain a mixture of all or many
of the materials in A, researchers have recently focused on
encouraging sparsity on the abundance matrix S [20], [21].
Motivated by the ideas of dictionary learning for sparse
coding, the works [22], [23] proposed explicitly to look for
endmember matrices that lead to sparse abundance maps. We
follow a similar idea, though our method will be fundamentally
different in two aspects: First, we restrict columns of our
dictionary A to appear somewhere in the data X . This is a
common working hypothesis for moderate ground sampling
distance images and is called pixel purity assumption. It corre-
sponds to the partial orthogonality assumption on S discussed
previously. In the general context of dictionary learning and
non-negative matrix factorization it guarantees the columns
of A to be physically meaningful. As mentioned above, the
lack of physical interpretation has been a critical shortcoming
of standard dimensionality reduction and dictionary learning
techniques, and not yet addressed in these areas of research.
Second, choosing the dictionary columns from the data enables
us to propose a convex model and hence avoid the problem
of saddle points or local minima.

Different areas of applications use different terminology for
mathematically similar things. Throughout this paper we will
use the terminology of hyperspectral unmixing to explain and
motivate our model, although its application is not exclusively
in the field of HSI. For instance, an endmember could be any
abstract column of the dictionary matrix A with a different
physical meaning depending on its context. However, we think
it aids the clarity and understanding of the model to use the
HSI example throughout the explanations. To show that our
model is not limited to the hyperspectral case we also present
results for the problem of blind source separation, which we
will briefly describe in the next subsection.

2) Introduction to blind source separation (BSS): Blind
source separation is the general problem of recovering un-
known source signals from measurements of their mixtures,
where the mixing process is unknown but often assumed to be
linear. Examples include demixing audio signals and nuclear
magnetic resonance (NMR) spectroscopy. Many BSS prob-
lems have the same linear mixing model X = AS that we are
using for hyperspectral endmember detection and unmixing,
often also with a nonnegativity constraint on S [1]. Here the
rows of S represent the source signals, A is the unknown
mixing matrix and the rows of X are the measured signals.
The analogy of the hyperspectral pixel purity assumption can
also be applied to some BSS problems [1]. The interpretation
is that for each source there is some place where among all
the sources only that source is nonzero. Thus up to scaling,
the columns of A should appear somewhere in the columns
of the data matrix X and we can use the same algorithm we
use for endmember detection.
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II. CONVEX ENDMEMBER DETECTION MODEL

A. Convexification of matrix factorization using the pixel
purity assumption

As mentioned above, we are assuming at first that the
endmembers can be found somewhere in the data X . This
assumption will enable us to propose a convex model for
factoring the data X into a product AS, a problem usually
tackled by non-convex optimization techniques. We assume
that there exists an index set I such that the columns Xi of
X are endmembers for i ∈ I . Under the assumption of non-
negative linear mixing of signals, this means that any column
Xj in X can be written as

Xj =
∑
i∈I

XiTi,j , (1)

for coefficients Ti,j ≥ 0. The problem is that the coefficients
Ti,j as well as the index set I are unknown. Hence, we start
by using all columns in X to describe X itself, i.e. we look
for coefficients T ≥ 0 for which

X = XT. (2)

Notice that Equation (2) has many solutions. However, we
know that the desired representation uses as few columns of
X as possible, i.e., only the endmembers. Since not using the
jth column in the above formulation corresponds to having
the entire jth row of T be zero, we can reformulate the
endmember detection problem as finding a solution to (2) such
that as many rows of T as possible are zero. Mathematically,

min
T≥0
‖T‖row-0 such that XT = X, (3)

where ‖T‖row-0 denotes the number of non-zero rows. The
columns of X that correspond to non-zero rows of the mini-
mizer T of (3) are the desired endmembers (which define the
lowest dimensional subspace where the data resides). Since
problem (3) is not convex we relax the above formulation
by replacing ‖T‖row-0 by the convex l1,∞ norm ‖T‖1,∞ =∑
i maxj |Ti,j |. The l1 part of the norm should encourage

sparsity. Combined with the maximum norm we can expect
that the vector of maxima among each row becomes sparse
which means we obtain row sparsity. Notice that we could have
chosen other row-sparsity encouraging regularizers such as
l1,2. However, we will prove in Section III the l1,∞ relaxation
is exact in the case of normalized, non-repeating data, which
makes it clearly preferable.

As mentioned in the previous section, it is important to
take noise into account and therefore the equality (2) is too
restrictive for real data. Hence, we will introduce a parameter
that negotiates between having many zero rows (also called
row sparsity) and good approximation of the data ‖X−XT‖2F
in the Frobenius norm. Furthermore, for T to be a good
solution, not only should most of its rows be zero, but the
nonzero rows should also be sparse, since sparsity of the co-
efficient matrix reflects physically reasonable prior knowledge.
For hyperspectral unmixing the additional sparsity requirement
on T reflects the assumption that most pixels are not mixtures
of all the selected endmembers, but rather just a few. Thus,
we will add an additional weighted l1 term to incorporate

this second type of sparsity (see [24] for a model combining
structured and collaborative sparsity with individual sparsity)
.

B. Data reduction as preprocessing

It is already clear from Equation (2) that the problem is
too large because the unknown matrix T is a d × d matrix,
where d is the number of pixels. Thus, before proceeding
with the proposed convex model, we reduce the size of the
problem by using clustering to choose a subset of candidate
endmembers Y from the columns of X and a submatrix
Xs ∈ Rm×ds of X for the data with ds ≤ d. In other words,
we want to reformulate the problem as Y T ≈ Xs, where
Xs ∈ Rm×ds , Y ∈ Rm×nc , T ∈ Rnc×ds , nc << d and
ds ≤ d. We use Xs = Y in our experiments but could also
include more or even all of the data. We use k-means with
a farthest-first initialization to select Y . Other data reduction
procedures could be used. An angle constraint 〈Yi, Yj〉 < .995
ensures the endmember candidates, namely the columns of
Y , are sufficiently distinct. An acceptable angle constraint
could probably be estimated from assumptions about the noise
and the mixing, based on the principle that slightly perturbed
versions of the same endmember shouldn’t be in Y . However,
we found it much easier to simply treat the angle constraint as
a parameter, and .995 worked well for all the HSI experiments.
An upper bound is placed on the number of allowable clusters
so that the size of the problem is reasonable. We then propose
a convex model for the more manageable problem of finding
a nonnegative T such that Y T ≈ Xs, with T having the
same sparsity properties described above. Note that we have
not convexified the problem by pre-fixing the dictionary Y .
This is done simply to work with manageable dimensions and
datasets. Our convex model will still select the endmembers
as a subset of this reduced dataset Y , namely the columns of
Y that will correspond to non-zero rows of T .

C. The endmember selection model

Our model consists of a data fidelity term and two terms
that encourage the desired sparsity in T . For simplicity, we
consider the data fidelity term

β

2
‖(Y T −Xs)Cw‖2F , (4)

where ‖ · ‖F denotes the Frobenius norm, β is a positive
constant, and Cw ∈ Rds×ds is a diagonal matrix we can use to
weight the columns of (Y T−Xs) so that it reflects the density
of the original data. As mentioned earlier we encourage rows
of T to be zero by penalizing with ζ‖T‖1,∞, which for non-
negative T equals ζ

∑
i maxj(Ti,j), with ζ a positive constant,

so that only a few samples are cooperatively selected as
endmembers. 2 This kind of collaborative/structured sparsity
regularizer has been proposed in several previous works, for
example [4], [25].

2The work mentioned above by Balzano, Nowak and Bajwa uses block
orthogonal matching pursuit and also mentions the possible use of ‖ · ‖2
instead of ‖ · ‖∞.
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To encourage sparsity of the nonnegative T , we use a
weighted l1 norm, 〈RwσCw, T 〉. Here Rw is a diagonal matrix
of row weights. We choose Rw to be the identity in our
experiments, but if for example we wanted to encourage
selection of endmembers towards the outside of the cone
containing the data, we could also choose these weights to be
proportional to 〈Yj , Ȳ 〉, where Ȳ is the average of the columns
of Y . This would encourage the method to prefer endmebers
further away from the average Ȳ . The weighting matrix σ has
the same dimension as T , and the weights are chosen to be

σi,j = ν(1− e
−(1−(Y TXs)i,j)

2

2h2 ), (5)

for constants h and ν. This means that σi,j is small when the
ith column of Y is similar to the jth column of Xs and larger
when they are dissimilar. This choice of weights encourages
sparsity of T without impeding the effectiveness of the other
regularizer. Since the smallest weight in each row occurs at
the most similar data, this helps ensure a large entry in each
nonzero row of T , which makes the row sparsity term more
meaningful. It also still allows elements in a column of T to
be easily shifted between rows corresponding to more similar
endmember candidates, which can result in a reduction of
ζ
∑
i maxj(Ti,j) without significantly affecting the weighted

l1 term. Since the weighted l1 penalty here is really just a
linear term, it can’t be said to directly enforce sparsity, but by
encouraging each column of T to sum to something closer to
one, the weighted l1 penalty prefers data to be represented by
nearby endmember candidates when possible, and this often
results in a sparser matrix T . Overall the proposed convex
model is given by

min
T≥0

ζ
∑
i

max
j

(Ti,j) + 〈RwσCw, T 〉+
β

2
‖(Y T −Xs)Cw‖2F .

(6)
For our experiments we normalize the columns of X to have
unit l2 norm so that we discriminate based solely on spectral
signatures and not intensity.

D. Refinement of solution

Since we are using a convex model to detect endmem-
bers, it cannot distinguish between identical or very similar
endmember candidates, which we will discuss from a more
theoretical point of view in Section III. However, the model
works very reliably when the columns of Y are sufficiently
distinct, which they are by construction. A limitation is that
the convex model is unable to choose as endmembers any
data not represented in Y . Nonetheless, as is shown in Section
IV, the results of this approach already compare favorably to
other methods. Even if some endmembers are not in Y , which
could be due either to the data reduction preprocessing or to a
failure of the pixel purity assumption, the underlying problem
of representing the data in terms of the available endmember
candidates is still well posed. The convex model clearly cannot
recover endmembers that are not present in Y , but it should
still recover those that are present and represent the data as
sparse nonnegative linear combinations of a small number of
columns of Y . Moreover, it provides an excellent initialization

for the alternating minimization approach to NMF, which can
be used to further refine the solution if desired. Letting Ã be
the endmembers selected by the convex model, the solution is
refined by alternately minimizing

min
A≥0,S≥0,||Aj−Ãj‖2<aj

1

2
‖AS −X||2F + 〈Rwσ, S〉 (7)

and renormalizing the columns of A after each iteration. Here,
aj is the diameter of the jth cluster containing the data near
Ãj , and ensures that the refined endmembers obtained by this
alternating approach cannot be too different from those already
selected by the convex model, thereby remaining as close as
desired to the physical space.

To recover the full abundance matrix S without refining Ã,
we can solve the convex minimization problem in Equation (7)
for S using the full data matrix X ∈ Rm×d and the original
endmembers Ã ∈ Rm×n selected by the convex model.

E. Numerical optimization

We use the alternating direction method of multipliers
(ADMM) [26], [27] to solve (6) by finding a saddle point
of the augmented Lagrangian

Lδ(Z, T, P ) =g≥0(T ) + ζ
∑
i

max
j

(Ti,j)

+ 〈RwσCw, T 〉+
β

2
‖(Y Z −Xs)Cw‖2F

+ 〈P,Z − T 〉+
δ

2
‖Z − T‖2F ,

where g≥0 is an indicator function for the T ≥ 0 constraint.
In iteration k+1 the algorithm proceeds by minimizing first

Lδ(Z, T
k, P k) with respect to Z to get Zk+1, then minimizing

Lδ(T,Z
k+1, P k) with respect to T to get T k+1, and then

updating the Lagrange multiplier P by P k+1 = P k+δ(Zk+1−
T k+1). Each minimization step is straightforward to compute,
and the algorithm is guaranteed to converge for any δ > 0.

Note that it is faster to precompute and store the inverse
involved in the update for Z, but this can be overly memory
intensive if Y has many columns and Cw 6= I . One could use
a more explicit variant of ADMM such as the method in [28]
to avoid this difficulty if a larger number of columns of Y
is desired. Here we have restricted this number nc to be less
than 150 and ADMM can be reasonably applied.

Also note that the minimization problem for T k+1,

T k+1 = arg min
T
g≥0(T ) + ζ

∑
i

max
j

(Ti,j)

+
δ

2
‖T − Zk+1 − P k

δ
+
RwσCw

δ
‖2F , (8)

decouples into separate problems for each row Ti. The Legen-
dre transformation of g≥0(Ti) + ζ maxj(Ti,j) is the indicator
function for the set Cζ = {Pi ∈ Rds : ‖max(Pi, 0)‖1 ≤ ζ}.
Let T̃ k+1 = Zk+1 + Pk

δ −
RwσCw

δ . Then by the Moreau
decomposition [29], the minimizer T k+1 is given by

T k+1 = T̃ k+1 −ΠC ζ
δ

(T̃ k+1),
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where ΠC ζ
δ

(T̃ k+1) orthogonally projects each row of T̃ k+1

onto C ζ
δ

, which is something that can be computed with
complexity O(ds log(ds)).

The other algorithm parameters we use are δ = 1, ζ = 1,
β = 250, ν = 50, and h = 1 − cos(4π/180). In our
experiments, we also choose Xs = Y . We then define column
weights Cw that weight each column j by the number of
pixels in the jth cluster (the cluster centered at Yj) divided
by the total number of pixels d. To refine the solution of
the convex model, we note that each alternating step in the
minimization of (7) is a convex minimization problem that
can again be straightforwardly minimized using ADMM and
its variants. The update for the abundance S is identical to the
split Bregman algorithm proposed for hyperspectral demixing
in [20], [21], and its connection to ADMM is discussed in
[30].

III. THE CONNECTION BETWEEN ROW-0 AND l1,∞

In this section we will show that the motivation for our
model comes from a close relation between the convex l1,∞
norm and the row-0 norm, which counts the number of non-
zero rows.

A. Distinct noise-free data

Let us assume we have data X which is completely noise
free, normalized, obeys the linear mixing model, and contains
a pure pixel for each material. Under slight abuse of notation
let us call this data after removing points that occur more
than once in the image, X again. As discussed in Section II
the endmember detection problem can now be reformulated
as finding the minimizer T of (3), where the true set of
endmembers can then be recovered as the columns of X that
correspond to non-zero rows of T .

The fact that problem (3) gives a solution to the endmember
selection problem is not surprising, since (3) is a non-convex
problem and related problems (for instance in compressed
sensing) are usually hard to solve. However, due to the non-
negativity constraint we will show that l1,∞ minimization is
an exact relaxation of the above problem.

For any T ≥ 0 with XT = X the entries of T are less than
or equal to one, Ti,j ≤ 1.3 Furthermore, the endmembers can
only be represented by themselves which means that in each
row with index i, i ∈ I , we have a coefficient equal to 1. We
can conclude that the l1,∞ norm of any T ≥ 0 with XT = X
is

‖T‖1,∞ =

d∑
i=1

max
j
Ti,j , (9)

≥
∑
i∈I

max
j
Ti,j = |I|. (10)

However, it is possible to have equality in the above estimate
if and only if Ti,j = 0 for i /∈ I . In this case the rows of the
non-negative l1,∞ minimizer of XT = X are only supported

3This is a simple fact based on the normalization and non-negativity, 1 =

‖Xk‖ = ‖
∑

i Ti,kXi‖
T,X≥0
≥ maxi ‖Ti,kXi‖ = maxi Ti,k

on I , which means it is a minimizer to the row-0 problem (3).
Vice versa, any row-0 minimizer T̂ has exactly one entry equal
to one in any row corresponding to an endmember and zero
rows elsewhere, which means ‖T̂‖1,∞ = |I|, and hence T̂ also
minimizes the l1,∞ norm under the XT = X constraint. We
therefore have shown the following lemma:

Lemma III.1. If we remove repeated columns of X and have
normalized data, the sets of minimizers of

min
T≥0
‖T‖row-0 such that XT = X (11)

and

min
T≥0
‖T‖1,∞ such that XT = X (12)

are the same.

Notice that while generally there are other regularizations,
like for instance l1,2, which would also encourage row sparsity,
this lemma only holds for l1,∞. For XT = X , the l1,∞
norm counts the number of rows and is not influenced by
any value that corresponds to a mixed pixel. This property is
unique for l1,∞ regularization with a non-negativity constraint
and therefore makes it the preferable choice in the proposed
framework.

B. Noise in the data

Of course the assumptions above are much too restrictive
for real data. Therefore, let us look at the case of noisy data
of the form Xδ = X+N , where X is the true, noise-free data
with no repetition of endmembers as in the previous section,
and N is noise bounded in the Frobenius norm by ‖N‖F ≤ δ.
We now consider the model

Jα(T ) = ‖XT −X‖2F + α‖T‖1,∞ such that T ≥ 0. (13)

The following lemma shows that for the right, noise-dependent
choice of regularization parameter α, we converge to the
correct solution as the noise decreases.

Lemma III.2. Let T̂ be a non-negative ‖ · ‖1,∞-minimum
norm solution of XT = X , Xδ = X +N be noisy data with
‖N‖F ≤ δ and T δα denote a minimizer of energy functional
(13) with regularization parameter α and replacing X by Xδ .
If α is chosen such that

α→ 0,
δ2

α
→ 0 as δ → 0 (14)

then there exists a convergent subsequence T δnαn and the limit
of each convergent subsequence is a ‖ · ‖1,∞-minimum norm
solution of XT = X .

For the sake of clarity we moved the proof of this lemma
to the appendix. Lemma III.2 shows that our regularization is
stable, since for decreasing noise and appropriate choice of the
parameter α we converge to a non-negative ‖ · ‖1,∞-minimum
norm solution of XT = X which - as we know from the
first part - gives the true solution to the endmember detection
problem when the columns of X are distinct. While identical
points are easy to identify and eliminate in the noise free
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data, determining which points belong to the same endmember
in the noisy data can be very difficult. This is the reason
for our first data reduction step. Lemma III.2 tells us that
for our method to be closely related to the row-0 approach
we have to avoid having several noisy versions of the same
endmember in X . We therefore impose an angle constraint
as described in Section II-B while clustering the data, which
basically corresponds to an upper bound on the noise and states
up to which angle signals might correspond to the same point.

IV. NUMERICAL RESULTS FOR HSI

In this section we present numerical results on endmem-
ber detection for supervised and real hyperspectral data and
compare our results to existing detection algorithms. Since the
goal of the paper is to present a general new convex framework
for matrix factorization which is applicable to multiple areas,
the hyperspectral numerical results are intended mainly as a
proof of concept. It is therefore encouraging that our method
is competitive with some of the established methods it is
compared to in the examples below.

A. Application to blind hyperspectral unmxing

1) Supervised endmember detection: For comparison pur-
poses we extracted nine endmembers from the standard Indian
pines dataset (publicly available at https://engineering.purdue.
edu/biehl/MultiSpec/hyperspectral.html) by averaging over the
corresponding signals in the ground truth region. Then we
created 50 data points for each endmember, 30 data points for
each combination of two different endmembers, 10 data points
for each combination of three different endmembers, and addi-
tionally 30 data points as mixtures of all endmembers. Finally,
we add Gaussian noise with zero mean and standard deviation
0.006, make sure our data is positive, and normalize it. We
evaluate our method in a comparison to N-findr [2], vertex
component analysis (VCA) [14], [31] with code from [32],
an NMF method using the alternating minimization scheme
of our refinement step with random initial conditions, and
the QR algorithm. For the latter we simply used MATLAB’s
QR algorithm to calculate a permutation matrix Π such that
XΠ = QR with decreasing diagonal values in R and chose the
first nine columns of XΠ as endmembers. Many other methods
could also be applied here, including the additional variational,
Bayesian and greedy dictionary selection methods referenced
in the introduction. However, comparisons to the simple, well
established N-findr, VCA, QR and alternating minimization
algorithms suffice to demonstrate that our proposed method
works. Since the success of non-convex methods depends on
the initial conditions or on random projections, we run 15
tests with the same general settings and record the average,
maximum and minimum angle by which the reconstructed
endmember vectors deviate from the true ones, see Table I.
Our method, unlike the others in Table I, does not require
the number of endmembers to be specified in advance. For
the tests we adjusted the parameters of our method to obtain
9 endmembers. Figure 2 shows the original endmembers as
well as an example reconstructions by each method with the
corresponding angle of deviation.

We can see that our method gives the best average
performance. Due to a high noise level, methods that rely
on finding the cone with maximal volume or finding most
linearly independent vectors, will select outliers as the
endmembers and do not yield robust results. Looking at
the minimal and maximal α we see the effect predicted.
The non-convex methods like alternating minimization
and VCA can outperform our method on some examples
giving angles as low as 1.76. However, due to the non-
convexity they can sometimes find results which are far
off the true solution with deviation angles of 6.95 or even
8.17 degrees. A big benefit of our convex framework is
that we consistently produce good results. The difference
between the best and the worst reconstruction angle
deviation for our method is 0.15 degrees with and 0.17
without the refinement, which underlines its high stability.

Method Evaluation on 15 test runs
Avg. α Min. α Max. α

Ours refined 3.37 3.30 3.42
Ours without refinement 3.93 3.84 4.01

VCA 4.76 1.78 6.95
N-findr 10.19 7.12 13.79

QR 9.87 4.71 12.74
Alt. Min. 4.50 1.76 8.17

TABLE I: Deviation angle from true endmembers

The computational complexity of our method is highly
dependent on the amount of data reduction. There is a
trade-off here since more data reduction speeds up the
computation but limits the number of endmember candidates.
For instance, in the above experiment our algorithm (including
the clustering with 10 k-means iterations and the refinement
step) takes about 100 seconds. This run-time comes from
the clustering selecting 250 endmember candidates due to a
rather large noise level, which can make many similar signals
look much more distinct than they really are. Reducing the
noise level by a factor of 1/2, the clustering only selects
between 90 and 100 endmember candidates, leading to a
much faster run-time of about 13 seconds. In comparison, the
alternating minimization approach needs about 45 seconds in
the case of strong noise and about 29 seconds in the case
of moderate noise. In our approach, the upper bound on the
number of columns of Y can be adjusted according to how
much of an issue computational resources are.

2) Results on real hyperspectral data: To show how our
method performs on real hyperspectral data we use the urban
image (publicly available at www.tec.army.mil/hypercube).
Figure 3 shows the RGB image of the urban scene, the spectral
signatures of the endmembers our method extracted, and the
abundance maps of each endmember, i.e., each row of T
written back into an image.

The abundance maps are used in HSI to analyze the dis-
tribution of materials in the scene. First of all our method
managed to select six endmembers from the image, which
is a very reasonable dimension reduction for hyperspectral
image analysis. We can see that the abundance maps basically
segment the image into clusters of different material categories
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Fig. 2: Comparison of endmember recostruction methods

such as concrete, house roofs, soil or dirt, grass, and two
different types of vegetation, which all seem to be reasonable
when visually comparing our results to the RGB image. The
spectral signatures our method selected are relatively distinct,
but do not look noisy. Furthermore, the abundance maps seem
to be sparse which was a goal of our method and reflects the
physically reasonable assumption that only very few materials
should be present at each pixel.

As a next step we compare our results to the ones obtained
by N-findr, VCA, QR and alternating minimization. Unfortu-
nately, we have no ground truth for the urban image, which
is why we will look at the non-negative least squares (NNLS)
unmixing results based on the endmembers Am each method
found. Notice that geometrically NNLS gives the projection
of the data onto the cone spanned by the endmembers. If
Sm denotes the NNLS solution of each method, the error
‖AmSm − X‖2F gives some insight on how much data is
contained in the cone and therefore, how well the endmembers
describe the data. However, as discussed earlier, due to noise
we might not be interested in detecting the pixels furthest
outside to be endmembers, although they might describe the
data better. Thus, we will also report the sparsity of each
cone projection Sm. Since any outside point will be projected
onto a face or an edge of the cone, the sparsity will give
some insight into whether the endmember vectors are well
located. The more the endmembers are towards the inside of
a point cluster, the more points we expect to be projected
onto an edge of the cone rather than a face. Thus, a high
sparsity relates to a reasonable position of an endmember.
Table II shows the relative number of non-zero coefficients,
i.e., ‖Sm‖0 divided by the the total number of entries in
Sm, as well as the projection error for N-findr, QR, VCA,
alternating minimization and our method. Figure 4 shows the

corresponding endmember signals each method found.

Ours N-findr VCA QR Alt. Min.
‖AmSm −X‖2 533.9 4185.8 2516.5 1857.6 454.3
‖Sm‖0/(d · n) 0.40 0.60 0.47 0.60 0.41

TABLE II: Comparison of different endmember detection
methods in terms of error and sparsity of the data projection
onto the cone spanned by the endmembers on the urban image.
The corresponding endmember signatures are shown in Figure
4.

We can see from the projection error that the sparse al-
ternating minimization approach and our method found much
better representation for the data than N-findr, VCA and QR,
with the alternating minimization performing slightly better
than our approach. Furthermore, the sparsity of the projection
is also higher which indicates more reasonable choices for
the endmembers. Looking at the spectral signatures in Figure
4 we can speculate why this is the case. QR as well as
N-findr chose very distinct signatures, which are probably
far outliers in the dataset. Some of the VCA endmembers
look even more extreme and take negative values, which
is clearly unphysical and does not allow these endmembers
to be interpreted as any material. On the other hand the
endmembers of the alternating minimization approach and of
our method are very similar and look comparably smooth.
The average angle of deviation between our method and the
alternating minimization approach is only 3.4 degrees, which
lets us conclude that they basically converged to the same
answer, which is encouraging considering the fact that these
endmembers describe the rest of the data more than three times
more accurately than the endmembers found by other methods.
Furthermore, any signal our method selected differs at most by
0.036 degrees from an actual point in the data and is therefore
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Fig. 3: Results on the urban hyperpectral image. First row, left: RGB image to compare the fraction planes to. First row, middle
left: spectral signatures of the endmembers our method found. First row middle right, right and second row: abundance maps
of the six endmembers.

physically meaningful.

V. AN EXTENDED MODEL

We also propose an extended version of the model that
takes into account the normalization of the data in order to
better distinguish between noise and outliers. We show this
slightly more complicated functional can still be efficiently
solved using convex optimization.

A. Error model
We continue to work with the reduced set of endmember

candidates Y and a subset of the data Xs, which in practice
we take to be Y . Instead of penalizing ‖(Y T −Xs)Cw‖2F , we
impose the linear constraint Y T−Xs = V−Xs diag(e), where
T ,V and e are the unknowns. T has the same interpretation
as before, V ∈ Rm×ds models the noise, and e ∈ Rds models
the sparse outliers. Since the columns of Xs are normalized to
have unit l2 norm, we would also like most of the columns of
Y T to be approximately normalized. In modeling the noise V ,
we therefore restrict it from having large components in the
direction of Xs. To approximate this with a convex constraint
V ∈ D, we restrict each column Vj to lie in a hockey puck
shaped disk Dj . Decompose Vj = V ⊥j + V

‖
j , where V

‖
j

is the orthogonal projection of Vj onto the line spanned by
Xj and V ⊥j is the radial component of Vj perpendicular to
V
‖
j . Then given 0 ≤ rj < 1, we restrict ‖V ⊥j ‖2 ≤ rj and√
1− r2j − 1 ≤ V

‖
j ≤ 0. The orthogonal projection onto this

set is straightforward to compute since it is a box constraint
in cylindrical coordinates. This constraint set for Vj is shown
in Figure 5 in the case when ej = 0.

We also allow for a few columns of the data to be outliers.
These are columns of X that we don’t expect to be well

Fig. 5: Region of possible values for Xj + Vj

represented as a small error plus a sparse nonnegative linear
combination of other data, but that we also don’t want to
consider as endmembers. Given some γ ≥ 0, this sparse error
is modeled as −Xs diag e with e restricted to the convex
set E = {e : e ≥ 0 and

∑
j(Cwe)j ≤ γ}. Since E is

the nonnegative region of a weighted l1 ball, the orthogonal
projection onto E can be computed with O(ds log(ds)) com-
plexity. Here, since the weights wj sum to one by definition,
γ can be roughly interpreted as the fraction of data we expect
to be outliers. For non-outlier data Xj , we want ej ≈ 0
and for outlier data we want ej ≈ 1. In the latter outlier
case, regularization on the matrix T should encourage the
corresponding column Tj to be close to zero, so ‖Y Tj‖2 is
encouraged to be small rather than close to one.

Keeping the l1,∞ regularization, the nonnegativity constraint
and the weighted l1 penalty from Equation (6), the overall
extended model is given by
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Fig. 4: Spectral signatures of endmembers extracted by different methods. Top row: results of our method and the alternating
minimization approach. Bottom row: endmembers found by N-findr, QR and VCA

min
T≥0,Vj∈Dj ,e∈E

ζ
∑
i

max
j

(Ti,j) + 〈RwσCw, T 〉 (15)

such that Y T −Xs = V −Xs diag(e).

The structure of this model is similar to the robust PCA model
proposed in [33] even though it has a different noise model
and uses l1,∞ regularization instead of the nuclear norm.

B. Numerical optimization

Since the convex functional for the extended model (15) is
slightly more complicated, it is convenient to use a variant
of ADMM that allows the functional to be split into more
than two parts. The method proposed by He, Tao and Yuan
in [34] is appropriate for this application. Again introduce a
new variable Z and the constraint Z = T . Also let P1 and
P2 be Lagrange multipliers for the constraints Z − T = 0
and Y Z − V − Xs + Xs diag(e) = 0 respectively. Then the
augmented Lagrangian is given by

Lδ(Z, T, V, e, P1, P2) =g≥0(T ) + gD(V ) + gE(e)

+ ζ
∑
i

max
j

(Ti,j) + 〈RwσCw, T 〉

+ 〈P1, Z − T 〉
+ 〈P2, Y Z − V −Xs +Xs diag(e)〉

+
δ

2
‖Z − T‖2F

+
δ

2
‖Y Z − V −Xs +Xs diag(e)‖2F ,

where gD and gE are indicator functions for the V ∈ D and
e ∈ E constraints.

Using the ADMM-like method in [34], a saddle point of
the augmented Lagrangian can be found by iteratively solving
the following subproblems with parameters δ > 0 and µ > 2,

Zk+1 = arg min
Z

∥∥∥∥[ IY
]
Z −

[
T k

V k −Xs diag(ek) +Xs

]
+

1

δ

[
P k1
P k2

]∥∥∥∥2
F

T k+1 = arg min
T
g≥0(T ) + ζ

∑
i

max
j

(Ti,j)

+
δµ

2

∥∥∥∥T − T k − 1

µ
(Zk − T k)− P1

δµ
+
RwσCw
δµ

∥∥∥∥2
F

V k+1 = arg min
V

gD(V ) +
δµ

2

∥∥V − V k
− 1

µ
(Y Zk+1 − V k +Xs diag(ek)−Xs)−

P k2
δµ

∥∥∥∥2
F

ek+1 = arg min
e
gE(e) +

δµ

2

ds∑
j=1

(
ej − ekj +

1

δµ

m∑
i=1

(Xs)i,j(P
k
2 + δ(Y Zk+1 − V k +Xs diag(ek)−Xs))i,j

)2
P k+1
1 = P k1 + δ(Zk+1 − T k+1)

P k+1
2 = P k2 + δ(Y Zk+1 − V k+1 −Xs +Xs diag(ek+1))

Each of these subproblems can be efficiently solved. There
are closed formulas for the Zk+1 and V k+1 updates, and the
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ek+1 and T k+1 updates both involve orthogonal projections
that can be efficiently computed.

C. Effect of extended model

A helpful example for visualizing the effect of the extended
model (15) is to apply it to an RGB image. Even though
the low dimensionality makes this significantly different from
hyperspectral data, it’s possible to view a scatter plot of the
colors and how modifying the model parameters affects the
selection of endmembers. The NMR data in Section V-E is
four dimensional, so low dimensional data is not inherently
unreasonable.

For the following RGB experiments, we use the same
parameters as described in Section II-E and use the same k-
means with farthest first initialization strategy to reduce the
size of the initial matrix Y . We do not however perform the
alternating minimization refinement step. Due to the different
algorithm used to solve the extended model, there is an
additional numerical parameter µ, which for this application
must be greater than two according to [34]. We set µ equal to
2.01. There are also model parameters rj and γ for modeling
the noise and outliers. To model the small scale noise V ,
we set rj = η + mj , where η is fixed at .07 and mj is
the maximum distance from data in cluster j to the cluster
center Yj . To model the sparse error e, we use several different
values of γ, which should roughly correspond to the fraction
of data we are allowed to ignore as outliers. We will also use
different values of ν, setting ν = 50 to encourage a sparser
abundance matrix and setting ν = 0 to remove the weighted
l1 penalty from the model. Figure 6 shows the data, which is a
color image of multicolored folders, the selected endmembers
(black dots) from four different experiments, and the sparse
abundance matrix T for one of the experiments.

Note that in the ν = 0 experiment, sparsity of T is not
encouraged, so the dense gray cluster in the center of the cone,
which corresponds to the floor in the image, is not selected
as an endmember. Additionally, the selected endmembers are
towards the very outside of the cone of data. In all the
other experiments where ν = 50 the floor is selected as an
endmember even though it is in the center of the cone of data.
This results in a much sparser matrix T . Moreover, the selected
endmembers tend to be in the center of the clusters of colors
that we see in the scatter plot of the folder data. Finally we
note that as we increase the parameter γ, fewer endmembers
are selected and some of the smaller outlying color clusters
are ignored.

D. Comparison between the base and the outlier model

To illustrate the difference between the outlier and the base
model we use the same dataset as for the supervised endmem-
ber detection experiment and first repeat the experiment from
Section IV-A1 with 30 data points for each endmember, 20
data points for each combination of two different endmem-
bers, 10 data points for each combination of three different
endmembers, and additionally 30 data points as mixtures of
all endmembers. We add Gaussian noise with zero mean and
standard deviation 0.005, run the outlier model with ζ = 1,

η = 0.08, γ = 0.01, ν = 40 and run the basic model with
ζ = 1.3, ν = 40, β = 250. Figure 7 shows the results for both
methods with their average angle of deviation from the true
endmembers.

We can see that both models give good results close to
the ground truth. Due to the Gaussian noise we added, the
best possible choice of columns of X deviates by an average
angle of 3.29 degrees from the true endmembers. With the
refinement step, both methods could achieve an average angle
below this value. The main remaining deviation is mainly due
to the methods selecting an almost straight line rather then the
corresponding true endmember. The similar results show that
the extended model can be made to perform like the basic one.
The extended model has the advantage, though, of being able
to ignore a specified fraction of outliers.

As a second experiment we simulate outliers in the data.
First we again create a mixed pixel data set with nine end-
members as above, but without adding Gaussian noise. Next,
we create a spike signal and add the spike itself as well as
about 3% data that is mixed with the spike signal. This shall
simulate a small fraction of the data being outliers. Again,
we run the basic as well as the outlier model on this dataset
and obtain the results shown in Figure 8. The upper left image
shows the true nine endmembers plus the spike signal we used
to create the outliers with. As we can see in the image on the
upper right, which shows the result of the basic model, the
algorithm selected the spike as an endmember. This is very
reasonable because although only 3% of the data contains parts
of the spike, it is a strong outlier and hence expensive for the
fidelity term in the Frobenius norm to exclude. The shown ten
detected endmembers deviate only by 3.6 degrees from the
nine true endmembers and the spike.

The second row of Figure 8 shows the nine true endmembers
on the left and the result of the outlier model on the right. As
we can see the outlier model was able to handle the small
fraction of signals containing the spike and only selected the
nine true endmembers. The average angle of deviation in this
case is 2.7 degrees and we can confirm that the model behaves
like we expected it to.

E. Application to blind source separation of NMR data

To illustrate how our model can be applied to BSS problems,
we use it to recover the four NMR source spectra from ([1]
Fig. 4) from four noise free mixtures. The four sources are
shown in Figure 9. Let S0 ∈ R4×5000 be the sources and let
the mixtures X0 be generated by X0 = A0S0 with

A0 =


.3162 .6576 .3288 .5000
.3162 .3288 .6576 .5000
.6325 .1644 .1644 .5000
.6325 .6576 .6576 .5000

 .
We will use the outlier model to recover the mixing matrix

A from X0. Unlike the hyperspectral examples, some columns
of X0 here can be nearly zero if all sources are simultaneously
zero at the same spectral index. We can see from Figure
9 that this is indeed the case. Since our algorithm uses
normalized data, we first remove columns of X0 whose norm
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original image ν = 0, γ = 0 ν = 50, γ = .005

T for ν = 50, γ = .005 ν = 50, γ = .01 ν = 50, γ = .1

Fig. 6: Results of the extended model applied to RGB image. Upper left: RGB image we apply the blind unmixing algorithm
to. Upper middle: 3d plot of the data points in the image in their corresponding color. Shown as black dots are the endmembers
detected without allowing outliers (γ = 0) and without encouraging particular sparsity on the coefficients (ν = 0). Upper right:
With allowing some outliers the method removed an endmember in the one of the outside clusters, but included the middle
cluster due to the encouraged sparsity. Lower left: Endmember coefficients for the parameter choice ν = 50, γ = 0.005, where
the brightness corresponds to the coefficient value. We can see that the coefficient matrix is sparse. Lower middle: Increasing
the allowed outliers the red cluster endmember is removed. Increasing the outliers even further leads to decreasing the number
of endmembers to 4.

Fig. 7: Comparison between the basic and the outlier method on Indian pines data with Gaussian noise

is below some threshold, which we take to be .01 maxj ‖Xj‖.
We then normalize the remaining columns to get X . This
simple approach suffices for this example, but in general the
parameters rj for the V ∈ D constraint could also be modified
to account for columns of X0 that have significantly different
norms.

A minor difficulty in applying our method to this BSS
problem is that we know A should have four columns but
there is no way to constrain the algorithm to produce a
dictionary with exactly four elements. We therefore adjust
parameters until the dimension of the result is correct. This is

straightforward to do and could be automated. For example, to
choose a smaller dictionary, we can reduce ν and/or increase γ.

The parameters used here are identical to those used in the
RGB experiments of Section V-C except γ = .01 and ν = 5.
Also, for the data reduction step, the angle constraint was
increased to 〈Yi, Yj〉 < .998. The computed mixing matrix
after permutation is

A =


.3267 .6524 .3327 .4933
.3180 .3300 .6544 .5110
.6228 .1757 .1658 .4836
.6358 .6593 .6585 .5114

 .
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Fig. 8: Comparison between the basic and the outlier method on Indian pines data with outliers

Note that the columns of A are normalized because the
algorithm selects dictionary elements from a normalized ver-
sion of the data X . Since for this simple problem, A is
invertible, it is straightforward to recover the sources by
S = max(0, A−1X0). More generally, we can recover S by
minimizing the convex functional in Equation (7) with respect
to S using the un-normalized data matrix X0 and the computed
endmembers A.

VI. FUTURE RESEARCH

We have presented a convex method for factoring a data
matrix X into a product AS with S ≥ 0 under the constraint
that the columns of A appear somewhere in the data X . This
type of factorization ensures the physical meaning of the dic-
tionary A, and we have successfully applied it to hyperspectral
endmember detection and blind source separation in NMR.
For non-repeating noise free data, the l1,∞ regularization was
proven to be an exact relaxation of the row-0 norm. We further
proposed an extended model that can better handle outliers.
Possible future application areas include computational biol-
ogy, sensor networks, and in general dimensionality reduction
and compact representation applications where the physical
interpretation of the reduced space is critical. It will also be
interesting to try and extend our convex model to the class
of problems discussed in [35] for which the pixel purity or
non-overlapping assumption is approximately but not exactly
satisfied.
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APPENDIX

PROOF OF LEMMA III.2
Proof: Since T δα is a minimizer of Jα we can conclude

‖T δα‖1,∞ ≤ 1

α
Jα(T δα)

≤ 1

α
Jα(T̂ )

= ‖T̂‖1,∞ +
1

α
‖(X +N)T̂ − (X +N)‖2F

= ‖T̂‖1,∞ +
1

α
‖ (XT̂ −X)︸ ︷︷ ︸

=0

+(NT̂ −N)‖2F

≤ ‖T̂‖1,∞ +
1

α
‖N‖2F ‖T̂ − Id‖2F

= ‖T̂‖1,∞ +
δ2

α
‖T̂ − Id‖2F . (16)

Since δ2

α → 0, T δα is bounded in the ‖ · ‖1,∞ norm and
therefore has a convergent subsequence. Let T δnαn denote such
a convergent subsequence and let T̄ be its limit. Because
T δnαn ≥ 0 we also have T̄ ≥ 0. We can now use the above
estimate for showing

‖T̄‖1,∞ = lim
n
‖T δnαn‖1,∞

≤ lim
n

[
‖T̂‖1,∞ +

δ2n
αn
‖T̂ − Id‖2F

]
= ‖T̂‖1,∞. (17)
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Fig. 9: Four NMR source spectra from [1] Fig. 4

Furthermore, we have

‖XT̄ −X‖2F = lim
n
‖XδnT δnαn −X

δn‖2F
≤ lim

n
Jαn(T δnαn)

≤ lim
n
Jαn(T̂ )

≤ lim
n
‖Xδn T̂ −Xδn‖2F + αn‖T̂‖1,∞

≤ lim
n
δ2n‖T̂ − Id‖2F + αn‖T̂‖1,∞

= 0. (18)

Now, by the above estimate (18) we know that XT̄ = X .
Furthermore, by the estimate (17) and taking into account that
T̂ was a non-negative ‖ · ‖1,∞-minimum norm solution of
XT = X , we have shown that the limit of our convergent
subsequence is also a non-negative ‖ · ‖1,∞-minimum norm
solution of XT = X .
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