An Explicit Primal-Dual Algorithm for Large Non-Differentiable Convex Problems

Ernie Esser (UCI)
Joint work with Xiaoqun Zhang (UCLA) and Tony Chan (HKUST)

4-12-2010
Outline

- A Model Convex Minimization Problem
- A Modification of the Primal Dual Hybrid Gradient (PDHG) Method
- Related Works
- Connection to the Split Inexact Uzawa Method and Convergence
- Application to Convex Problems with Separable Structure
 - Operator Splitting Techniques
 - Constrained Total Variation Deblurring Example
 - Convexified Multiphase Segmentation Example
- Conclusions
A Model Convex Minimization Problem

\[\min_{u \in \mathbb{R}^m} J(Au) + H(u) \quad (P) \]

\(J, H \) closed proper convex

\(H : \mathbb{R}^m \to (-\infty, \infty] \)

\(J : \mathbb{R}^n \to (-\infty, \infty] \)

\(A \in \mathbb{R}^{n \times m} \)

Assume there exists an optimal solution \(u^* \) to \((P) \)
The PDHG Method

\[
\min_u J(Au) + H(u) \quad (P)
\]

\[
J(Au) = J^{\ast\ast}(Au) = \sup_p \langle p, Au \rangle - J^*(p)
\]

Saddle Point Formulation:

\[
\min_u \sup_p -J^*(p) + \langle p, Au \rangle + H(u) \quad (PD)
\]

Interpret PDHG as primal-dual proximal point method:

\[
p^{k+1} = \arg\max_{p \in \mathbb{R}^n} -J^*(p) + \langle p, Au^k \rangle - \frac{1}{2\delta_k} \|p - p^k\|_2^2
\]

\[
u^{k+1} = \arg\min_{u \in \mathbb{R}^m} H(u) + \langle A^T p^{k+1}, u \rangle + \frac{1}{2\alpha_k} \|u - u^k\|_2^2
\]

PDHG Pros and Cons

\[p^{k+1} = \arg \min_{p \in \mathbb{R}^n} J^*(p) - \langle p, Au^k \rangle + \frac{1}{2\delta_k} \| p - p^k \|_2^2 \]

\[u^{k+1} = \arg \min_{u \in \mathbb{R}^m} H(u) + \langle A^T p^{k+1}, u \rangle + \frac{1}{2\alpha_k} \| u - u^k \|_2^2 \]

Pros:
- Simple iterations
- Explicit. PDHG iterations don’t require solving linear systems involving \(A \), just matrix multiplication by \(A \) and \(A^T \)
- Empirically can be very efficient for well chosen \(\alpha_k \) and \(\delta_k \) parameters

Cons:
- General convergence properties unknown
Modified PDHG (PDHGMp)

PDHGMp:

\[
\begin{align*}
 u^{k+1} &= \arg \min_{u \in \mathbb{R}^m} H(u) + \langle A^T (2p^k - p^{k-1}), u \rangle + \frac{1}{2\alpha} \|u - u^k\|_2^2 \\
 p^{k+1} &= \arg \min_{p \in \mathbb{R}^n} J^*(p) - \langle p, Au^{k+1} \rangle + \frac{1}{2\delta} \|p - p^k\|_2^2
\end{align*}
\]

Related Works:

Split Primal Saddle Point Formulation

Introduce the constraint $w = Au$ in (P) and form the Lagrangian

$$L_P(u, w, p) = J(w) + H(u) + \langle p, Au - w \rangle$$

The corresponding saddle point problem is

$$\max_{p \in \mathbb{R}^n} \inf_{u \in \mathbb{R}^m, w \in \mathbb{R}^n} L_P(u, w, p) \quad (SPP)$$

- If (u^*, w^*, p^*) is a saddle point for (SPP), then (u^*, p^*) is a saddle point for (PD).
- Although p was introduced in L_P as a Lagrange multiplier for the constraint $Au = w$, it has the same interpretation as the dual variable p in (PD).
Consider adding \(\frac{1}{2} \langle u - u^k, (\frac{1}{\alpha} - \delta A^T A)(u - u^k) \rangle \) to the first step of the Alternating Direction Method of Multipliers (ADMM) applied to (SPP), with \(0 < \alpha < \frac{1}{\delta \|A\|^2} \).

Split Inexact Uzawa applied to (SPP):

\[
\begin{align*}
 u^{k+1} &= \arg \min_{u \in \mathbb{R}^m} H(u) + \langle A^T p^k, u \rangle + \frac{1}{2\alpha} \| u - u^k + \delta \alpha A^T (Au^k - w^k) \|^2_2 \\
 w^{k+1} &= \arg \min_{w \in \mathbb{R}^n} J(w) - \langle p^k, w \rangle + \frac{\delta}{2} \| Au^{k+1} - w \|^2_2 \\
 p^{k+1} &= p^k + \delta (Au^{k+1} - w^{k+1})
\end{align*}
\]

Note: In general we could similarly modify both minimization steps in ADMM, but by only modifying the first step we can obtain an interesting PDHG-like interpretation.

Convergence of SIU on (SPP)

Convergence requires

• Fixed parameters $\alpha > 0$, $\delta > 0$
• $\alpha < \frac{1}{\delta \|A\|^2}$

Then if u^* is optimal for (P) and $w^* = Au^*$,

• $\|Au^k - w^k\|_2 \to 0$
• $J(w^k) \to J(w^*)$
• $H(u^k) \to H(u^*)$
• All convergent subsequences of (u^k, w^k, p^k) converge to a saddle point for (SPP)

Equivalence to Modified PDHG (PDHGMP)

Split Inexact Uzawa applied to (SPP):

\[u^{k+1} = \arg \min_{u \in \mathbb{R}^m} H(u) + \langle A^T p^k, u \rangle + \frac{1}{2\alpha} \| u - u^k + \delta \alpha A^T (Au^k - w^k) \|^2 \]

\[w^{k+1} = \arg \min_{w \in \mathbb{R}^n} J(w) - \langle p^k, w \rangle + \frac{\delta}{2} \| Au^{k+1} - w \|^2 \]

\[p^{k+1} = p^k + \delta (Au^{k+1} - w^{k+1}) \]

Replace \(\delta (Au^k - w^k) \) in the \(u^{k+1} \) update with \(p^k - p^{k-1} \). Combine \(p^{k+1} \) and \(w^{k+1} \) to get

\[p^{k+1} = (p^k + \delta Au^{k+1}) - \delta \arg \min_{w} J(w) + \frac{\delta}{2} \| w - \frac{(p^k + \delta Au^{k+1})}{\delta} \|^2 \]

and apply Moreau’s decomposition.

PDHGMP:

\[u^{k+1} = \arg \min_{u \in \mathbb{R}^m} H(u) + \langle A^T (2p^k - p^{k-1}), u \rangle + \frac{1}{2\alpha} \| u - u^k \|^2 \]

\[p^{k+1} = \arg \min_{p \in \mathbb{R}^n} J^*(p) - \langle p, Au^{k+1} \rangle + \frac{1}{2\delta} \| p - p^k \|^2 \]
Modified PDHG Pros and Cons

Pros:
- As simple as PDHG
- Explicit: avoids solving linear systems in ADMM
- Convergence theory for SIU method applies
- Requires no extra variables beyond original primal and dual variables

Cons:
- Stability restriction may require small step size parameters
- Dynamic step size schemes not theoretically justified
Convex Problems with Separable Structure

Many seemingly more complicated problems can be written in the form (P).

Example:

\[
\sum_{i=1}^{N} \phi_i(B_iA_i u + b_i) + H(u)
\]

\[
= \sum_{i=1}^{N} J_i(A_i u) + H(u)
\]

\[
= J(Au) + H(u),
\]

where \(A = \begin{bmatrix} A_1 \\ \vdots \\ A_N \end{bmatrix} \) and \(J_i(z_i) = \phi_i(B_i z_i + b_i) \). Let \(p = \begin{bmatrix} p_1 \\ \vdots \\ p_N \end{bmatrix} \). Then

\[
J^*(p) = \sum_{i=1}^{N} J^*_i(p_i)
\]
Applying PDHGMP to $\min_u \sum_{i=1}^{N} J_i(A_i u) + H(u)$ yields:

$$u^{k+1} = \arg \min_u H(u) + \frac{1}{2\alpha} \left\| u - \left(u^k - \alpha \sum_{i=1}^{N} A_i^T (2p_i^k - p_i^{k-1}) \right) \right\|^2_2$$

$$p_i^{k+1} = \arg \min_{p_i} J_i^*(p_i) + \frac{1}{2\delta} \left\| p_i - (p_i^k + \delta A_i u^{k+1}) \right\|^2_2 \quad i = 1, \ldots, N$$

- Need $0 < \alpha \delta < \frac{1}{\|A\|^2_2}$ for stability
Application to TV Minimization Problems

Discretize $\|u\|_{TV}$ using forward differences and assuming Neumann BC

$$\|u\|_{TV} = \sum_{r=1}^{M_r} \sum_{c=1}^{M_c} \sqrt{(D^+_c u_{r,c})^2 + (D^+_r u_{r,c})^2}$$

Vectorize $M_r \times M_c$ matrix by stacking columns

Define a discrete gradient matrix D and a norm $\| \cdot \|_E$.

Letting $J = \| \cdot \|_E$ and $A = D$,

$$J(Au) = \|Du\|_E = \|u\|_{TV}$$
Define a directed grid-shaped graph with \(m = M_r M_c \) nodes corresponding to matrix elements \((r, c)\).

3 × 3 example:

For each edge \(\eta \) with endpoint indices \((i, j), i < j\), define:

\[
D_{\eta,k} = \begin{cases}
-1 & \text{for } k = i, \\
1 & \text{for } k = j, \\
0 & \text{for } k \neq i, j.
\end{cases}
\]

\[
E_{\eta,k} = \begin{cases}
1 & \text{if } D_{\eta,k} = -1, \\
0 & \text{otherwise}.
\end{cases}
\]

Can use \(E \) to define norm \(\| \cdot \|_E \) on \(\mathbb{R}^e \) by

\[
\|w\|_E = \left\| \sqrt{E^T(w^2)} \right\|_1 = \sum_{i=1}^{m} \left(\sqrt{E^T(w^2)} \right)_i = \sum_{i=1}^{m} \|w_i\|_2
\]

where \(w_i \) is the vector of edge values for directed edges coming out of node \(i \).

For TV regularization, \(J(Au) = \|Du\|_E = \|u\|_{TV} \)
Handling Convex Constraints

For PDHGMp to work well, we want simple, explicit solutions to the minimization subproblems.

Convex constraint $u \in T$ can be handled by adding convex indicator function

$$g_T(u) = \begin{cases}
0 & \text{if } u \in T \\
\infty & \text{otherwise.}
\end{cases}$$

This leads to a simple update when the orthogonal projection

$$\Pi_T(z) = \arg \min_u g_T(u) + \|u - z\|^2$$

is easy to compute. For example,

$$T = \{z : \|z - f\|_2 \leq \epsilon\} \Rightarrow \Pi_T(z) = f + \frac{z - f}{\max\left(\frac{\|z - f\|}{\epsilon}, 1\right)}$$
Constrained TV Deblurring Example

\[
\min_{\|Ku-f\|_2 \leq \epsilon} \|u\|_{TV}
\]

can be rewritten as

\[
\min_u \|Du\|_E + g_T(Ku),
\]

where \(g_T\) is the indicator function for \(T = \{z : \|z - f\|_2 \leq \epsilon\}\).

In order to treat both \(D\) and \(K\) explicitly, let

\[
H(u) = 0 \quad \text{and} \quad J(Au) = J_1(Du) + J_2(Ku),
\]

where \(A = \begin{bmatrix} D \\ K \end{bmatrix}\).

Write the dual variable as \(p = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}\) and apply PDHGMP.
PDHGMp for Constrained TV Deblurring

\[
u^{k+1} = u^k - \alpha_k \left(D^T (2p_1^k - p_1^{k-1}) + K^T (2p_2^k - p_2^{k-1})\right)
\]

\[
p_1^{k+1} = \Pi_X (p_1^k + \delta_k Du^{k+1})
\]

\[
p_2^{k+1} = p_2^k + \delta_k K u^{k+1} - \delta_k \Pi_T \left(\frac{p_2^k}{\delta_k} + Ku^{k+1}\right),
\]

where

\[
X = \{p : \|p\|_{E^*} \leq 1\}
\]

\[
\Pi_X (p) = \frac{p}{E \max \left(\sqrt{E^T (p^2)}, 1\right)}
\]

and where \(\Pi_T\) is again defined by

\[
\Pi_T (z) = f + \frac{z - f}{\max \left(\frac{\|z-f\|_2}{\epsilon}, 1\right)}.
\]
Deblurring Numerical Result

K convolution operator for normalized Gaussian blur with Std. dev. 3

h clean image

$f = Kh + \eta$

η zero mean Gaussian noise Std. dev. 1

$\epsilon = 256$

$\alpha = .2, \delta = .55$

Original, blurry/noisy and image recovered from 300 PDHGMp iterations
Other Examples of When PDHGMp is Efficient

- \(J(z) = \|z\|_2 \Rightarrow J^*(p) = g_{\{p: \|p\|_2 \leq 1\}} \)
- \(J(z) = \frac{1}{2\alpha} \|z\|_2^2 \Rightarrow J^*(p) = \frac{\alpha}{2} \|p\|_2^2 \)
- \(J(z) = \|z\|_1 \Rightarrow J^*(p) = g_{\{p: \|p\|_\infty \leq 1\}} \)
- \(J(z) = \|z\|_E \Rightarrow J^*(p) = g_{\{p: \|p\|_{E^*} \leq 1\}} \)
- \(J(z) = \|z\|_\infty \Rightarrow J^*(p) = g_{\{p: \|p\|_1 \leq 1\}} \)
- \(J(z) = \max(z) \Rightarrow J^*(p) = g_{\{p: p \geq 0 \text{ and } \|p\|_1 = 1\}} \)

Note: Although there’s no simple formula for projecting a vector onto the \(l_1 \) unit ball (or its positive face) in \(\mathbb{R}^n \), this can be computed with \(O(n \log n) \) complexity.
Multiphase Segmentation Example

Many other problems deal with same normalization constraint $c \in C$.

Example: Convex relaxation of multiphase segmentation

Goal: Segment a given image, $h \in \mathbb{R}^M$, into W regions where the intensities in the w^{th} region are close to given intensities $z_w \in \mathbb{R}$ and the lengths of the boundaries between regions are not too long.

$$g_C(c) + \sum_{w=1}^{W} \left(\|c_w\|_{TV} + \frac{\lambda}{2} \langle c_w, (h - z_w)^2 \rangle \right)$$

$$C = \{c = (c_1, \ldots, c_W) : c_w \in \mathbb{R}^M, \sum_{w=1}^{W} c_w = 1, c_w \geq 0 \}$$

This is a convex approximation of the related nonconvex functional which additionally requires the labels, c, to only take on the values zero and one.

Similar Numerical Approach

Apply PDHGMp:

\[
H(c) = g_C(c) + \frac{\lambda}{2} \left\langle c, \sum_{w=1}^{W} \mathcal{X}_w^T (h - z_w)^2 \right\rangle
\]

\[
J(Ac) = \sum_{w=1}^{W} J_w(D\mathcal{X}_w c),
\]

where \(A = \begin{bmatrix} D\mathcal{X}_1 & \vdots & D\mathcal{X}_W \end{bmatrix} \), \(\mathcal{X}_w c = c_w \) and

\[
J_w(D\mathcal{X}_w c) = \|D\mathcal{X}_w c\|_E = \|Dc_w\|_E = \|c_w\|_{TV}.
\]

PDHGMp iterations:

\[
c^{k+1} = \Pi_C \left(c^k - \alpha \sum_{w=1}^{W} \mathcal{X}_w^T (D^T (2p_w^k - p_w^{k-1}) + \frac{\lambda}{2} (h - z_w)^2) \right)
\]

\[
p_w^{k+1} = \Pi_X \left(p_w^k + \delta D\mathcal{X}_w c^{k+1} \right) \quad \text{for } w = 1, \ldots, W.
\]
Segmentation Numerical Result

\[\lambda = 0.0025 \quad z = \begin{bmatrix} 75 & 105 & 142 & 178 & 180 \end{bmatrix} \]

\[\alpha = \delta = \frac{0.995}{\sqrt{40}} \]

Threshold \(c \) when each \(\| c_{w}^{k+1} - c_{w}^{k} \|_{\infty} < 0.01 \) (150 iterations)

Segmentation of Brain Image Into 5 Regions

Modifications: We can also add \(\mu_w \) parameters to regularize differently the lengths of the boundaries of each region and alternately update the averages \(z \) when they are not known beforehand.
Conclusions About Modified PDHG

• Simple, explicit iterations
• Convergence theory for SIU method applies
• Requires few assumptions: essentially just convexity of J and H
• Widely applicable for many convex models with separable structure
• Empirically efficient for many interesting large scale convex optimization problems
• Dynamic step size schemes can help but aren’t theoretically justified