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Parts of a Boomerang

[Hawes,All About Boomerangs]
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Right-Handed vs Left-Handed

Right Left

There is a difference between the two. They are in fact mirrorimages of each
other.

This presentation is geared towards right-handed boomerangs, which turn
counter-clockwise when thrown. Left-handed boomerangs, on the other hand,
turn clockwise.
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Goals for the talk:

• Discuss the lift equation, why a boomerang generates lift and how these
lift forces produce torque on a boomerang

• Explain gyroscopic precession and why torque on a boomerangmakes it
turn

• Estimate the characteristic radius of a boomerang’s flight path
• Explain a boomerang’s tendency to lay over as it flies
• Comment on how to construct a boomerang
• Discuss boomerang throwing and catching techniques
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Aerodynamic Lift

An airfoil produces lift when the combined effects of its orientation (angle of
attack) and its shape cause oncoming air to be deflected downward.

Sketch of Streamlines

[Acheson,Elementary Fluid Dynamics]

Boomerang wing cross section Bevel on lifting arm
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The Lift Equation

Under some simplifying assumptions, the lift produced by a wing is
proportional to the area of the wing, the speed of the wing squared and the
density of air. We will use the following approximaton of lift force on a wing:

FLift =
1

2
ρU2CLA

ρ = density

U = speed

A = area

CL = lift coefficient

Remark: This model puts the complex dependencies that are hard to compute,
like the dependence of lift on boomerang shape, angle of attack, air viscosity,
etc., into a single constantCL.

Why isFLift ∝ ρU2?
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Intuition from Oversimplification

Downwash from a helicopter

Recall Newton’s Second Law: force= rate of change of momentum

where momentum= mass· velocity

mass of air deflected per unit time∝ ρU

change in deflected air’s vertical velocity∝ U

⇒ FLift ∝ ρU2
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A more local viewpoint

Consider air following the top curve
of the airfoil in two dimensions airflow

direction of decreasing pressure

A downward force is required to accelerate the air this way.

(think centripetal forcemv2

r
for a spinning mass on a string)

This force comes from a difference in pressure, which is decreasing in the
direction of the force.

Consequences:
• Expect lower than normal pressure near top of airfoil
• Expect tangential acceleration of oncoming air along top ofairfoil
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Bernoulli’s Equation

PressureP and velocityu are related by Bernoulli’s equation

P +
1

2
ρ|u|2 = c (for some constantc)

Assuming: constant densityρ

zero viscosityµ (inviscid)

incompressible

steady flow (time independent)

irrotational (no vortices)

Comment: If the flow is rotational, the equation still holds but c can be
different on different streamlines.

To compute force on the airfoil, we can integrateP times the inward pointing
normaln along the boundary of the airfoil. Assumingu → αu when
U → αU , we again expect to haveFLift ∝ ρU2.
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Another Viewpoint: Circulation

Under the previous assumptions, the solution to the equations for conservation
of momentum and mass in the domain surrounding the airfoil isnot unique.

It is, however, determined by a quantity called circulation, Γ, that measures
the counterclockwise rotation of air about the airfoil.

Γ =

∫
C

u · ds

Γ is computed by adding up the tangential component of velocity u along the
boundary of the airfoil given by the curveC.
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Viscous Effects Determine Circulation

For an airfoil with a corner at the trailing edge, all solutions to the inviscid
problem have a singularity in the velocity there except for one. Adding even
the tiniest amount of viscosity picks out the solution wherea stagnation point
is at the corner. (Kutta Condition)

Zero Circulation Negative Circulation

[Acheson,Elementary Fluid Dynamics]

Comments:
• Equal transit time argument is false. Negative circulationimplies air

moving even faster above airfoil.
• Need to include effect of viscosity to correctly model dynamics.

Conservation of angular momentum plus decreasing circulation requires
shedding of counterclockwise vortex.

11



Computing Lift and Drag

Assume uniform air speedU at infinity.
FDrag is the force on the airfoil in the direction of the oncoming air, and
FLift is perpendicular to the flow.

FLift = −ρUΓ

FDrag = 0

• Good approximation of lift on an airfoil when viscosity and angle of
attack are small

• Useless for computing drag because inviscid model doesn’t have any
tangential forces on airfoil

Note: To incorporate tangential shear forces due to viscosity,

F =

∫
C

(P − 2µD) · nds

whereD is the deformation matrix and depends on rates of change of velocity
u. 12



Getting Back to Lift Equation

L

U

FLift

Γ ∝ UL and FLift = −ρUΓ

⇒ FLift ∝ ρU2L

So for a wing with uniform crossection we get back the lift equation:

FLift =
1

2
ρU2CLA

Note: If we measure or simulateFLift we can computeCL.
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Reynolds Number

General characteristics of the flow can often be determined from the unitless
Reynolds numberRe defined by

Re =
ρLU

µ
.

Where ρ = density

L = characteristic length scale

U = typical flow velocity

µ = dynamic viscosity

• SmallRe ⇒ smooth, steady flow
• LargeRe ⇒ turbulent, unsteady flow, and thin boundary layer
• Inviscid approximation can work whenRe is large

Re for boomerang is between104 and105

Re for cruising jumbo jet wing is on the order of107
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2D Navier Stokes Simulation

The Navier Stokes equations for an incompressible fluid withconstant density
ρ, constant viscosityµ, and no forcing terms are

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + µ4u

∇ · u = 0

Simulate flow around2D cross section of boomerang arm using
semi-Lagrangian finite element method.

Boundary Conditions: Parabolic inflow on left side

Neumann boundary condition on right side

Zero velocity (no slip) on top, bottom and airfoil surface

Initial Condition: Zero velocity

Note: Displayed results will be for a zoomed in region surrounding the airfoil
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Triangularization of Domain

[Used distmesh software by Persson and Strang from http://www-math.mit.edu/ persson/mesh/]
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Simulation of |u| for max Uin = 10

Speed|u| from t = 0 to t = .04, FLift andFDrag
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maxUin = 10 , t = 0.04 , Flift = 1.8094 , Fdrag = 0.11486

Re = 27000 , speed and Fnet/100 plotted
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Simulation of P for max Uin = 10

PressureP from t = 0 to t = .04, FLift andFDrag

−100 −50 0 50 100 150 200

maxUin = 10 , t = 0.04 , Flift = 1.8094 , Fdrag = 0.11486

Re = 27000 , pressure and Fnet/100 plotted
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Simulation of |u| for max Uin = 14.14

Speed|u| from t = 0 to t = .04, FLift andFDrag

0 5 10 15 20 25

maxUin = 14.1421 , t = 0.04 , Flift = 2.8515 , Fdrag = 0.19318

Re = 38183.7662 , speed and Fnet/100 plotted
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Simulation of P for max Uin = 14.14

PressureP from t = 0 to t = .04, FLift andFDrag

−100 −50 0 50 100 150 200

maxUin = 14.1421 , t = 0.04 , Flift = 2.8515 , Fdrag = 0.19318

Re = 38183.7662 , pressure and Fnet/100 plotted
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Simulation of |u| for max Uin = 5

Speed|u| from t = 0 to t = .04, FLift andFDrag

0 1 2 3 4 5 6 7 8 9 10

maxUin = 5 , t = 0.04 , Flift = 0.14187 , Fdrag = 0.025632

Re = 13500 , speed and Fnet/10 plotted
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Simulation of P for max Uin = 5

PressureP from t = 0 to t = .04, FLift andFDrag

−20 −10 0 10 20 30 40 50

maxUin = 5 , t = 0.04 , Flift = 0.14187 , Fdrag = 0.025632

Re = 13500 , pressure and Fnet/10 plotted
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Simulation Comments

• Can see starting vortex shed off trailing edge
• Pressure clearly lower above airfoil
• Velocity also larger near top surface of airfoil
• Thin boundary layer visible
• Earlier boundary layer separation forRe = 13500 suggests inviscid

approximation not as good forRe in that range or smaller
• Difficult to make simulation stable and accurate for high Reynolds

number flows
• SimulatedFLift not exactly following theFLift ∝ U2 model, but we’ll

call it close enough
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A Free-Body Diagram

If we assume the drag force is negligible, then the only forces we consider are
the lift force and the force due to gravity.

Assume the boomerang travels in a circular path and let the vertical
component of the lift force balance gravity. Then we are leftwith a net force
that is parallel to the ground and can be thought of as a centripetal force.
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A Top View of Boomerang Flight

Ω = rate of precession in
radians/sec

Fnet = centripetal force

R = radius of the
boomerang’s flight path

So why does the boomerang turn?
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Some Rotational Dynamics

The torque about a pointc is defined by

τ = r × F

whereF is the force andr is the vector fromc to the point where the force is
applied. Torque is a vector and can be thought of in terms of its magnitude
and a direction. It’s magnitude is defined by

|τ | = |r||F| sin θ

whereθ is the angle between the vectorsr andF.
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Right Hand Rule

The direction of the torque is perpendicular to bothr andF. This direction is
determined by the right hand rule:

Point the fingers of the right hand in the direction ofr and curl them in the
direction ofF. Then the thumb will point in the direction of the torqueτ .

torque points into page

cr

F

[Bedford and Fowler,Engineering Mechanics]
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Moment of Inertia

We also have the moment of inertia,I, which describes how difficult it is to
rotate a body about some axis. A boomerang, which rotates about it’s center
of mass, will retain its spin better if it has a high moment of inertia.

r
m

A particle of massm rotating about an axis
at a distance ofr, has moment of inertia

I = mr2 .

A cylinder of massm and radiusr spinning
about its axis of symmetry has the follow-
ing moment of inertia:

I =
1

2
mr2
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Angular Velocity

The angular velocity,ω, describes the rotation of a body about an axis.ω

points in the direction of the spin axis and its magnitude is the rate of rotation
in radians per second.

For a particle, the relationship between the angular velocity and the linear
velocity is given by

v = ω × r .

w

r

v

w points out of screen
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Angular Momentum
The angular momentum,J, is the rotational analogue to linear momentum.
Angular momentum is conserved in the absence of external torque, analogous
to how momentum is conserved in the absence of external forces. For a
particle, angular momentum is given by

J = r × p

wherep is the linear momentum of the particle andr is it’s location with
respect to some choice of origin.

For an object that is symmetrical
about its axis of rotation, the fol-
lowing formula for angular momen-
tum applies:

J = Iω

p points into screen

x

y

z

r

J

This formula also applies to planar
bodies, such as a boomerang, rotat-
ing about a perpendicular axis. We
take the center of mass to be the ori-
gin and letI refer to the moment of
inertia about the perpendicular axis
through the center of mass. 30



Principal Axes

For any rigid body, we can always find three perpendicular axes such that
when the object is spinning about one of those axis, its angular momentum is
in the same direction as its angular velocity.
(This is the spectral theorem applied to the symmetric inertia matrix.)

• For a boomerang in thex-y plane, thez-axis is a principle axis.
• Its moment of inertiaIz about that axis is larger than about any other axis

y

mx

y

x

Iz = m(x2 + y2) = Iy + Ix
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Relating torque and angular momentum

τ =
dJ

dt

In words, torque is the rate of change of the angular momentum. This
relationship betweenτ andJ follows from Newton’s second Law,f = dp

dt
,

which says force is the rate of change of linear momentum.

To simplify, consider a system of massesmi in a reference frame whose
origin coincides with the center of mass and which is not moving relative to
the center of mass.

J =
∑

i ri × pi

dJ
dt

=
∑

i vi × pi + ri × fi

=
∑

i ri × fi

= τ
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Gyroscopic Precession

The equationτ = dJ
dt

says that when a torque is applied to a rotating object
such as a boomerang, the angular momentum vector will changeso that it
points more in the direction of the torque.

DEMO

The rate of precessionΩ is re-
lated to torque and angular mo-
mentum by

τ = Ω× J .

boomerang

points out of screen

J
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Why is there torque on a boomerang?

The boomerang is moving with linear velocityV and spinning with angular
velocityw.

This means the top of the boomerang is moving faster than the bottom. Since
lift is proportional to the velocity squared, the top part generates more lift than
the bottom part. This results in a net torque!
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Which way does the boomerang turn?

If we draw the boomerang in thex-y plane traveling in the negative
x-direction with the angular momentum vector pointing in thez-direction, we
see that the torque points in the positivex-direction.

Apply the equationτ = dJ
dt

.
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Characteristic Radius of Flight

It can be showna that the magnitude of torque on a boomerang is roughly
proportional to the product of its linear and angular velocities.

τ ∝ vω

Recalling the relationship between torque and the rate of precession, we have

|τ | = |Ω× Iω| = cvω

for some constantc.
Cancelingω impliesΩ = c̃v for some constant̃c. And since we also know
Ω = v

R
, whereR is the radius of the boomerang’s flight, we see we can solve

for R and that is it independent ofω andv.

R =
1

c̃

Note: If we can computeτ we can computeR.

a
[Felix Hess, The Aerodynamics of Boomerangs]

36



Compute torque for Roomerang

The Plan:

Use the lift equation to compute the lift
force and torque produced by a four-
bladed windmill-shaped boomerang. Then
estimate the characteristic radius of the
boomerang.

Assumptions:

D
a

• Symmetrical windmill-shaped
boomerang

• Constant layover angleφ
• Boomerang travels in level circle

• Lift equationFLift = 1

2
ρU2CLA

applies
• Lift coefficient CL constant along

wings of boomerang
37



Making Use of Symmetry

Here we are concerned with the torque about thex-axis, which is the torque
that causes the main precession of the boomerang.

We will simultaneously consider the contribution to torqueabout thex-axis
from each of the4 arms.

wrw + vcos

rsin rcos

x

y

a

v
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Adding up the torque

Let j = 1, 2, 3, 4 index the four arms of the boomerang.

∑
j τj(r, θ)dA =

∑
j

1

2
ρCLvj(r, θ)

2yjdA

= 1

2
ρCLdA[r cos θ(v cos θ + rω)2 + r sin θ(v sin θ + rω)2

−r sin θ(v sin θ − rω)2 − r cos θ(v cos θ − rω)2]

= 2ρCLr2ωvdA

By symmetry,τ does not depend onθ.

Now integrating in polar coordinates gives the total torque

τ = 2DρCLωv
∫ a

0
r3dr

= D
2
ρCLa4ωv

Thusτ is proportional toωv.
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Solving for R

Recall thatΩ = v
R

andτ = Ω × J.

SinceJ = Iω and the layover angle is assumed to beφ, we get

Ω =
τ

Iω cosφ
.

Next plug in our formula for torque, τ =
D

2
ρCLa4ωv .

v

R
=

DρCLa4ωv

2Iω cos(φ)
⇒ R =

2I cosφ

DρCLa4

We can get a more specific estimate for the windmill boomerangby

substitutingI = 1

2
ma2, D = π

8
andcosφ =

√

3

2
. Then

R =
4
√

3m

πa2ρCL

.
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Implications of the equation for R

R =
2I cosφ

DρCLa4

• Under our assumptions,R is independent ofv andw. Thus the range of
a boomerang doesn’t depend on how it is thrown.R is instead a property
of the boomerang itself.

• A larger moment of inertia implies a bigger radius.
• Lower air density results in a larger radius.
• More wing area gives the boomerang a smaller flight radius.
• A larger lift coefficient also causes reduced range.
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An Interesting Inverse Problem

The lift coefficient is extremely difficult to explicitly compute. Fortunately,
our equation forR gives us an easy way to determineCL experimentally.

1. Solve equation forCL. CL = 4
√

3m
πa2ρR

2. Measure air density. ρ ≈ 1.2 kg
m3

3. Find mass of Roomerang. m ≈ .005kg

4. Estimate wing angleD and wing radiusa. D ≈ π
8

anda ≈ .14m

5. Throw boomerang and measureR. R ≈ 1m

6. Plug everything in. CL ≈ .45

This gives us a rough approximation for the lift coefficient of the Roomerang.
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Extension to Classical Boomerang Shape

Without special symmetry, the lift force and torque produced by the
boomerang depend on the angle of rotation. Felix Hess’s liftdiagram below
illustrates the non-symmetric lift force for the lifting arm as it sweeps out a
circle. (The darker color corresponds to more lift.)

[Felix Hess,The Aerodynamics of Boomerangs]

The situation can be simplified by using time averages of liftand torque to
approximate the previous calculations.
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What Makes a Boomerang Lay Over?

v
rw + vcos

x

y

a

rcos
rsin

w

A torque about they-axis causes the boomerang to precess about thex-axis.
Thus a positive torque in they-direction will cause the boomerang to lay over.
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The Drafting Effect

The leading arms of boomerangs disturb the air so that the trailing arms
generate less lift than they normally would. There is a resulting torque in the
positivey-direction. The drafting effect is the most significant source of this
torque because it affects even radially symmetric boomerangs.
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Adjusted Torque Computation

Without this drafting effect, our Roomerang generates no torque in the
y-direction. Analogous to our earlier computation

∑
j τj(r, θ)dA = −∑

j
1

2
ρCLvj(r, θ)

2xjdA

= 1

2
ρCLdA[r sin θ(v cos θ + rω)2−r cos θ(v sin θ + rω)2

+r cos θ(v sin θ − rω)2−r sin θ(v cos θ − rω)2]

= 0 .

With less lift on the trailing arms, the two red terms actually have less effect.
This results in a positive torque in they-direction.
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Eccentricity Torque

Eccentricity torque is only an issue with non-radially symmetric boomerangs,
and is caused when there is unequal lift on arms with nonzero eccentricity.
The eccentricity refers to the perpendicular distance between an arm and the
center of mass.

If the lifting arm generates more lift than the dingle arm, the resulting torque
in they-direction causes the boomerang to lay over faster.
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Boomerang Construction and Tuning

Tools and Supplies:
Warp-resistant plywood, coping saw (or band
saw!), drill sander, wood file, knife, sandpaper,
and patience.

Woodworking
Irreversibility:

Err on the side of removing less wood for the
first test flight, because it’s easy to take wood
off but challenging to put it back on.

Adjusting Weight
Distribution:

• Adding mass to the ends of arms
increases the moment of inertia resulting
in longer range and better wind
resistance.

• Adding mass to center improves wind
resistance and stability.

• A lot of very fine tuning can be accom-
plished by adding small weights to vari-
ous parts of a boomerang.
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Adjusting Lift Properties

• We can alter the shape of the bevels and airfoils to increase or decrease
the lift generated.

• More lift on the lifting arm yields a faster layover.
• More lift on the dingle arm results in less layover and a flatter, more

circular flight.
• Larger bevels increase lift and torque, causing the boomerang to make a

tighter turn.
• Too much lift can cause too tight of an orbit.
• Streamlining is important and can sometimes save a boomerang that

prematurely runs out of spin.
• Conversely, a rougher surface isn’t necessarily bad and canoccasionally

improve flight characteristics.
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Warping Effects

A warped boomerang is not necessarily a broken boomerang.

• A warped boomerang that is concave up will have reduced range, but a
concave down boomerang might not fly at all.

• The arms of a boomerang can be twisted to give them a positive or
negative angle of attack.

• More fine tuning can also be accomplished by turning the tips of the
arms up or down.

• A warping caution: I’ve found that intentionally warping a boomerang is
often only a temporary change, and the results can be inconsistent.
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General Throwing Tips

Two Throwing Grips:

The Throwing Angle

[Aboriginal Steve’s boomerang

page]
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Throwing and Troubleshooting

• The contoured side of the boomerang needs to be facing you.
• Throw boomerang directly ahead or slightly upward with moderate

power and spin.
• Use a layover angle of about30 degrees or less.Do not throw sidearm.
• In windy conditions, throw about45 degrees to the right of the oncoming

wind (to the left for left-handers using a left-handed boomerang).

Troubleshooting the Throw

Lands too far in front Aim lower or throw harder

Lands too far behind Aim higher or throw softer

Lands to the left If wind, aim more to the right

Lands to the right If wind, aim more into it

Flies too high and lands in front Use less layover

Hits ground too soon Aim higher or throw harder

Just doesn’t quite make it back Try more layover, power and/or spin
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A Word on Catching and Safety

A Good Catch

[Hawes,All About Boomerangs]

Throw in a large open area devoid of potential boomerang victims (people,
windows, anything expensive) as well as boomerang predators (power lines,
trees, pit bulls). Only one boomerang at a time should be in the air so that no
one’s attention is dangerously divided.
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DO NOT GET DISTRACTED!

Always keep your eyes on a thrown boomerang. It has a tendencyto come
back. Either catch it, dodge it or protect yourself!
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