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Abstract

We study the high-concentration asymptotics of steady states of a Smoluchowski

equation arising in the modeling of nematic liquid crystalline polymers.

1. Introduction

There are many levels of models describing the rheology of non-Newtonian

complex fluids containing liquid crystalline polymers. Some descriptions combine

macroscopic partial differential equations with microscopic stochastic differential

equations (see [10, 12, 14, 19, 16]).

A simple kinetic model of nematic liquid crystalline polymers – the rigid rod

model – using the Maier-Saupe potential, gives rise to a Smoluchowski equation

for the single-particle distribution function on the unit sphere ([4]). In spite of its

simplicity, this equation exhibits nontrivial nonlinear dynamical features, in con-

trast with classical Fokker-Planck equations for non-interacting particles ([11]). At

high concentrations, the shape of the particles in suspension becomes important.

The complex dynamical properties are then amplified considerably in the presence

of symmetry-breaking shear (see [5–8, 13, 18]).

Our work addresses the transition to order first described by Onsager in his

seminal paper [15] in which he developed a thermodynamic formalism for dilute

colloidal solutions. Onsager calculated the free energy using cluster expansions and

approximations of the forces between rod-like particles. He arrived at an expression

for the free energy in terms of a configuration integral involving the distribution

function ψ of particle orientations and an interparticle potential interaction kernel

β. Onsager wrote the Euler-Lagrange equation for the variation of the configuration

integral retaining the first nontrivial term in the cluster expansion. This nonlinear

integral equation (see (2) below) is the same as (10), (11) solving the time-inde-

pendent Smoluchowski equation (4). Different expressions used for the function β
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defining the interaction potential give rise to different models. The steady states of

the Smoluchowski equation are obtained in the form

ψ = Z−1e−V ,

where Z is a constant used to enforce the normalization∫

S2
ψ(φ) dσ = 1

(dσ is the area element and φ are coordinates on the unit sphere S2 in R3). The

potential

V (φ) = −b

∫

S2
β(φ, φ′)ψ(φ′) dσ (φ′) (1)

is given in terms of ψ . The function β embodies the interaction between the parti-

cles in suspension. The constant intensity b > 0 is expressed as the product b = cυ

where c = N/V is the concentration (number of particles per volume) and υ is

an excluded volume depending on the shape of the particles in the suspension.

Onsager’s paper was concerned with the derivation of the function β and the study

of the limit of high concentration. Taking the logarithm of the representation of the

steady solutions of the Smoluchowski equation we arrive at

log(ψ(φ)) = log(Z−1) + b

∫

S2
β(φ, φ′)ψ(φ′) dσ (φ′). (2)

Equation (2) is precisely the equation studied by Onsager in his seminal paper [15]

(equation (69), page 643). Onsager derived complicated empirical expressions for

β but in the end resorted to a simple expression (equation (81) on page 647) which

is proportional to − sin γ where γ ∈ [0, π ] is the angle between the unit vectors

x(φ), x(φ′). For the Maier-Saupe potential, which will be used in this work, the

function β is

β(φ, φ′) =
(
x(φ) · x(φ′)

)2 −
1

3
= (cos γ )2 −

1

3
. (3)

The important property shared by the Maier-Saupe potential, the explicit example

studied by Onsager, and by his empirically derived expressions, is that −β is an

increasing function of sin γ which has a minimum when the directions are parallel

and a maximum when they are perpendicular ([15], pp. 644 and 646). The results

in Onsager’s paper are based on an explicit ansatz for ψ (formula (80) on page

647) which “decreases rather too rapidly for large angles” but which “was, nev-

ertheless, adopted as the best tractable function” ([15], p. 647). Using this ansatz

Onsager was able to argue that in the limit of b → ∞ there is a transition from the

isotropic uniform distribution to an ordered prolate distribution. His approach was

variational, and, because he had to content himself with the ansatz in formula (80)

of ([15]), the results were explicit, but not rigorously mathematically proved. In

this paper we study the Smoluchowski equation on the unit sphere with the Maier-

Saupe potential. This choice of the potential allows us to investigate rigorously the

asymptotics of the steady-state solutions for large values of the potential intensity,

corresponding to large concentrations. We reduce the problem of finding steady-

state solutions of the Smoluchowski partial differential equation with Maier-Saupe
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potential to the finite-dimensional problem of finding the eigenvalues of a symmet-

ric, traceless matrix. Linear combinations of these eigenvalues are critical points of

a function associated with them. This description is key to the asymptotic analysis.

We find multiple steady solutions which are clustered in three distinct groups. As

the concentration is increased, these steady solutions converge to uniform, pro-

late and oblate states, confirming rigorously the transition discovered by Onsager.

(On physical grounds, the uniform state might be expected to become unstable

and the oblate states to be saddles, but we do not address this issue in this paper.)

Furthermore, the methods of study allow us to devise asymptotic expansions for

the steady states, expansions that are valid at high but finite concentrations. These

expansions are a first step towards a more comprehensive understanding of the

long-time dynamics of the Smoluchowski equation, and a preparation for the study

of symmetry-breaking perturbations.

2. Smoluchowski equations

Consider a smooth compact connected Riemannian manifold without boundary

(Mn, g) (see [9]) and a real, symmetric smooth function

β : M × M → R,

β(m, p) = β(p, m). We can associate with β a linear operator

ψ �→ V

given by

V (m) = −b

∫

M

β(m, p)ψ(p) dσ(p),

where dσ is the Riemannian volume element. The Smoluchowski equation is, in

local coordinates,

∂tψ =
1

√
g

∂i

(
e−V √

ggij∂j (e
V ψ)

)
. (4)

We use the summation convention. The equation is a nonlinear Fokker-Planck

equation (that is: it is a nonlinear equation, and it looks like a linear Fokker-Planck

equation),

∂tψ = 	gψ + divg(ψ∇V ),

where

	g =
1

√
g

∂i

(√
ggij∂j

)

is the Laplace-Beltrami operator and the last term is

divg(ψ∇V ) =
1

√
g

∂i

(√
ggijψ∂jV

)
.

The Smoluchowski equation preserves mass:
∫

M

ψt dσ = 0.

Smoluchowski equations have an energy functional
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E =
∫

M

(log ψ)ψ dσ +
1

2

∫

M

V ψ dσ

that is a non-increasing function of time when evaluated on solutions. Indeed, tak-

ing the derivative of E(ψ) when the time dependence comes from a smooth positive

solution ψ = ψ(p, t) of the Smoluchowski equation, we obtain

d

dt
E = −

∫

M

|∇g(V + log ψ)|2ψ dσ. (5)

In the expression above,

|∇gf |2 = gij∂if ∂jf.

It can also be observed that log ψ + V is the formal density of the first variation
δE
δψ

:

δE

δψ
χ =

∫

M

(log ψ + V ) χ dσ.

This follows if it is assumed that the variations χ have vanishing integral (because

the integral of ψ can be held constant). The fact that the map ψ → V is linear

and symmetric is also needed for the above calculations. Therefore it is possible to

write, formally,

d

dt
E = −

∫

M

∣∣∣∣∇g

δE

δψ

∣∣∣∣
2

ψ dσ.

Many nonlinear equations share this dissipative structure, for instance lubrication

approximations of Hele-Shaw problems ([2]), porous medium equations ([17]), and

the Keller-Segel chemotaxis equation, ([1]). In fact, the latter is a Smoluchowski

equation with non-smooth β.

It follows from the maximum principle that, if the initial datum f0 is a non-neg-

ative (positive) function, then the solution of the Smoluchowski equation remains

non-negative (positive). The assumption of smoothness of β easily implies

Theorem 2.1. Let f0 be a non-negative, continuous function on M . The solutions

of (4) with initial data ψ(·, 0) = f0 exist for all positive time, are smooth (C∞),

non-negative and normalized:

∫

M

ψ(m, t) dσ (m) =
∫

M

f0(m) dσ(m). (6)

The proof can be done by successive approximations, and will be omitted. The

smoothness of β is crucial: there are simple proofs of finite-time blow-up for

Keller-Segel chemotaxis equations (see [1]).

3. Steady states

We consider steady states of (4). From the decay of the energy functional (5)

we deduce that any positive time-independent solution of (4) must satisfy
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ψ = Z−1e−V (7)

for an appropriate positive constant Z.

From now on we are going to specialize to the problem of interest to us, in

which M = S2 will be the unit sphere in R3. We will use without loss of generality

the normalization
∫

S2
ψ dσ = 1. (8)

We consider local coordinates (φ = (θ, ϕ)). The Maier-Saupe potential is given

by

V (x, t) = −bxixjS
ij , (9)

where xi are Cartesian coordinates in R3, i, j = 1, 2, 3, and b is a positive constant.

The matrix S is determined by

Sij (t) =
∫

S2
xi(φ)xj (φ)ψ(φ, t)σ (dφ) −

1

3
δij (10)

with σ(dφ) = √
gdφ the surface area. Thus, V (x, t) is a homogeneous polyno-

mial of second degree, restricted to the sphere. The coordinates on the two-dimen-

sional unit sphere are φ = (θ, ϕ), x1(θ, ϕ) = sin θ cos ϕ, x2(θ, ϕ) = sin θ sin ϕ,

x3(θ, ϕ) = cos θ . Recall also that

g11 = 1, g22 = (sin θ)−2, gij = 0, i �= j

with ∂θ = ∂1 and ∂ϕ = ∂2 and that
√

g = sin θ .

In view of (7), (9) it follows that the steady states can be represented by

ψ(φ) = Z−1e−V = Z−1ebSij xi (φ)xj (φ). (11)

The matrix S is real, symmetric and traceless. This follows from the definition

S =
∫

S2

(x ⊗ x)ψdσ −
1

3
I.

The eigenvalues of S must lie between −1/3 and 2/3. Indeed, for any unit vector

ξ , we have from (10),

Sξ · ξ =
∫

S2
(ξ · x(φ))2 ψ(φ)dσ(φ) −

1

3
; (12)

and because 0 ≦ (ξ · x(φ))2 ≦ 1 and the normalization (8) we deduce that the

integral in the expression above has a value between 0 and 1.

The uniform distribution is the special solution for which the matrix S vanishes,

Z is the area of S2 and ψ = Z−1:

ψ0 =
1

4π
, S0 = 0.



370 P. Constantin, I. G. Kevrekidis & E. S. Titi

In order to parametrize all steady solutions we consider (see [3]) the real-valued

map

(S, b) �→ Z(S, b) (13)

defined for any real, symmetric, traceless matrix S and any positive b by the formula

Z(S, b) =
∫

S2
ebSij xi (φ)xj (φ) dσ(φ). (14)

We also consider the function

ψS,b(φ) = (Z(S, b))−1eb(Sij xi (φ)xj (φ)) (15)

associated with any real, traceless, symmetric S and b > 0. Finally, for any real,

traceless symmetric S and b > 0, define

(
Ŝ(S, b)

)ij =
∫

S2
xi(φ)xj (φ)ψS,b(φ) dσ(φ). (16)

Obviously Ŝ is a function of S and b. Actually, it is possibe to check that Z(S, b)

depends only on the conjugacy class OSO−1, O ∈ O(3). More specifically, if

S1 = OSO−1 then the rotation invariance of the measure on the unit sphere implies

that Z(S, b) = Z(S1, b) and therefore ψS,b(φ) = ψS1,b(T φ) where T φ is the angle

translation associated with the rotation O, Ox(φ) = x(T φ). The rotation invariance

implies then that Ŝ(S1, b) = O
(
Ŝ(S, b)

)
O−1. Clearly, by construction,

∫

S2
ψS,b(φ) dσ(φ) = 1. (17)

In view of the considerations above we have

Theorem 3.1. The positive, normalized steady solutions of (4) are in one-to-one

correspondence with the solutions of the implicit trancendental matrix equation

Ŝ(S, b) = S +
1

3
I, (18)

where Ŝ(S, b) is associated with S and b by the formalism (14)–(16) above.

Because of rotation invariance, without loss of generality, we may restrict our

attention to diagonal matrices

Sij = λiδij (19)

with λ1, λ2, λ3 real eigenvalues that obey

λ1 + λ2 + λ3 = 0 (20)

and belong to the interval [− 1
3
, 2

3
]. The search for steady solutions then reduces

to a search for the eigenvalues λ1, λ2, λ3. It turns out that the eigenvalues solve

a coupled system of equations that describe the critical points of a functional. In
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order to present the calculations it is convenient to change variables, from (λ1, λ2)

to (v1, v2) defined by

v1 =
1

2
(λ1 + λ2), v2 =

1

2
(λ1 − λ2). (21)

We will also use the vector notation v = (v1, v2), and for convenience some cal-

culations will be performed in the scaled variables u = (u1, u2) = bv:

u1 =
b

2
(λ1 + λ2), u2 =

b

2
(λ1 − λ2). (22)

We consider the convex compact

K = [−1, 1] × [0, 2π ] = {(p, t); −1 ≦ p ≦ 1, 0 ≦ t ≦ 2π} (23)

and we consider the pair of functions

y1(p) = 1 − 3p2 (24)

and

y2(p, t) = (1 − p2) cos t (25)

defined for (p, t) ∈ K . We write

y = y(p, t) = (y1(p), y2(p, t)).

These functions and this compact are used to describe the transcendental equations

obeyed by the eigenvalues of the matrices S corresponding to solutions of (18),

steady states of (4) with Maier-Saupe potential.

Theorem 3.2. Consider, for any u = (u1, u2), the function

Z2(u) =
∫

K

eu·y(p,t) dp dt (26)

and associate with it the function

F(u) = log(Z2(u)) −
1

b

(
3u2

1 + u2
2

)
. (27)

Then the solutions of (18) coincide (via (19), (20), (22)) with the critical points

u = (u1, u2) ∈ [− b
3
, 2b

3
] × [0, b

2
] of F .

The critical point equations

∇uF = 0 (28)

can be written as

[y1](u) =
6u1

b
, [y2](u) =

2u2

b
, (29)

where

[F ] (u) = (Z2(u))−1

∫

K

F(p, t)eu·y(p,t) dp dt. (30)
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(i) If 0 < b < 1/2, the function F is strictly concave and has a unique critical

point at u = 0. The corresponding unique steady state of (4) is the uniform

state ψ0.

(ii) If b ≧ 8, then u = 0 is an isolated critical point. Consequently, no bifurcations

from the uniform state ψ0 can occur in (4) for b ≧ 8.

(iii) If 0 ≦ b < 4, then on any line u1 = const there is at most one critical point.

If b ≧ 4, then the number of critical points on each line u1 = const does not

exceed 2
[

b
4

]
.

Proof. A simple computation using the definition (16) for diagonal matrices (19)

shows that

Ŝij (S, b) = 0 for i �= j.

The equations (18) reduce then to

∫

S2
x2
i (φ)ψS,b(φ) dσ(φ) = λi +

1

3

for i = 1, 2, 3. Because of the normalization (17), there are only two independent

equations. The equations are

λ1 +
1

3
= Z−1

∫ 2π

0

∫ π

0

cos2 ϕ sin3 θebλ·X(θ,ϕ) dθ dϕ (31)

and

λ2 +
1

3
= Z−1

∫ 2π

0

∫ π

0

sin2 ϕ sin3 θebλ·X(θ,ϕ) dθ dϕ (32)

together with

Z(bλ) =
∫ 2π

0

∫ π

0

ebλ·X(θ,ϕ) sin θ dθ dϕ, (33)

where

λ = (λ1, λ2), X(θ, ϕ) = (X1(θ, ϕ), X2(θ, ϕ)) ,

λ · X(θ, ϕ) = λ1X1(θ, ϕ) + λ2X2(θ, ϕ)

and

X1(θ, ϕ) = cos2 ϕ sin2 θ − cos2 θ (34)

and

X2(θ, ϕ) = sin2 ϕ sin2 θ − cos2 θ. (35)

Notice that

X1 + X2 = 1 − 3 cos2 θ
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can be used to express

cos2 ϕ sin2 θ = X1 +
1

3
(1 − X1 − X2)

and

sin2 ϕ sin2 θ = X2 +
1

3
(1 − X1 − X2) .

We use the notation

[F ] (bλ) = Z−1

∫ 2π

0

∫ π

0

F(X(θ, ϕ))ebλ·X(θ,ϕ) sin θ dθ dϕ. (36)

Then, the system (31), (32) can be written as

λ1 =
2

3
[X1] −

1

3
[X2] (37)

and

λ2 =
2

3
[X2] −

1

3
[X1]. (38)

Inverting this linear system, we have

[X1] = 2λ1 + λ2 (39)

and

[X2] = λ1 + 2λ2. (40)

Then we consider

Z2(u) =
∫ 2π

0

∫ π

0

eu·Y (θ,ϕ) sin θ dθ dϕ (41)

with Y (θ, ϕ) = (Y1(θ, ϕ), Y2(θ, ϕ)) defined by

Y1(θ, ϕ) = sin2 θ − 2 cos2 θ (42)

and

Y2(θ, ϕ) = sin2 θ cos(2ϕ) (43)

and with u = (u1, u2) ∈ [− b
3
, 2b

3
] × [0, b

2
]. The variables Y are related to X of

(34), (35) via Y1 = X1 +X2, Y2 = X1 −X2 The system (39), (40) which represents

the steady solutions of (4), can be seen to be in one-to-one correspondence with

the critical points of the function F(u) defined in (27) via (41)–(43). Indeed, the

critical points satisfy the implicit equations

[Y1] =
6

b
u1 (44)
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and

[Y2] =
2

b
u2 (45)

where

[F ](u) = (Z2(u))−1

∫ 2π

0

∫ π

0

F(θ, ϕ)eu·Y (θ,ϕ) sin θ dθ dϕ. (46)

The equations (44), (45) are equivalent to (39), (40). When we use the variables

p = cos θ and t = 2φ, the functions Y1 and Y2 become the functions y1, y2 of

(24), (25), the expected value (46) is the same as (30), and the equations (44) and

(45) are the same as (29). When the parameters (u1, u2) are chosen to satisfy the

implicit equations (29), then

[F ](u) =
∫

S2
F(φ)ψS,b(φ) dσ(φ) (47)

does represent the expected value of the function F at the corresponding steady

state ψS,b.

In order to prove (i) we compute the Hessian of F . The Hessian H(u) =(
∂2F

∂ui∂uj

)
is given by

H(u) =
(

[ξ2] − 6
b

[ξη]
[ξη] [η2] − 2

b

)
, (48)

where

ξ = Y1 − [Y1], (49)

and

η = Y2 − [Y2]. (50)

Using the same notation, but changing variables to p, t , the Hessian of F(u) defined

in (27), H(u) =
(

∂2F

∂ui∂uj

)
is given by

H(u) =
(

[ξ2
1 ] − 6

b
[ξ1ξ2]

[ξ1ξ2] [ξ2
2 ] − 2

b

)
, (51)

where

ξ1 = y1 − [y1], (52)

and

ξ2 = y2 − [y2]. (53)
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The concavity for small b follows from

H(u) :: a ⊗ a = −
2

b
(3a2

1 + a2
2) − (a · [y])2

+a2
1[y2

1 ] + a2
2[y2

2 ] + 2a1a2[y1y2]. (54)

Using the fact that the functions y1, y2 have ranges included in the interval

[−2, 1], and respectively [−1, 1], and neglecting the non-positive (but unknown)

contribution −(a · [y])2, we arrive at an explicit sufficient condition b < 1
2

for the

concavity. This concludes the proof of (i).

The proof of (ii) also uses the Hessian, but it requires a more careful analysis.

Let us write

F(u) = F2(u) −
1

b
(3u2

1 + u2
2), with F2(u) = log(Z2(u)) (55)

and

H2(u) =
∂2F2(u)

∂ui∂uj

. (56)

Then we have, for arbitrary a = (a1, a2),

H2(u) :: a ⊗ a =
[
(a · ξ)2

]
. (57)

This shows that F2 is convex. In order to find explicit bounds, we start by writing

(a · ξ)2 = (a · y)2 + (a · [y])2 − 2(a · y)(a · [y]). (58)

We take a probability measure dπ on K = [−1, 1] × [0, 2π ] and define

〈F 〉 =
∫ 1

−1

∫ 2π

0

F(p, t) dπ. (59)

Integrating (58) with respect to dπ we obtain

〈(a · ξ)2〉 = (a · ([y] − 〈y〉))2 + 〈(a · (y − 〈y〉))2〉. (60)

If we use normalized Lebesgue measure dπ = 1
4π

dtdp, we note that

< yi >=
1

4π

∫ 1

−1

(∫ 2π

0

yi(p, t)dt

)
dp = 0

for i = 1, 2. Because of this and (60) we deduce

1

4π

∫ 1

−1

(∫ 2π

0

(a · ξ)2dt

)
dp =

1

4π

∫ 1

−1

(∫ 2π

0

(a · y)2dt

)
dp + (a · [y])2

=
4

5
a2

1 +
1

3
a2

2 + (a · [y])2. (61)
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Now it is easy to see, using the facts −2 ≦ y1 ≦ 1 and −1 ≦ y2 ≦ 1 that

e−4|u1|−2|u2| 1

4π

∫ 1

−1

(∫ 2π

0

F(p, t)dt

)
dp ≦ [F ](u) (62)

holds for any non-negative function F , and in particular for F = (a ·ξ)2. We deduce

the strict convexity inequality

H2(u) :: a ⊗ a ≧ e−(4|u1|+2|u2|)
(

4

5
a2

1 +
1

3
a2

2

)
. (63)

Consequently

H(u) :: a ⊗ a ≧ c|a|2 (64)

with c > 0 if

b ≧ 8e4|u1|+2|u2|. (65)

In particular, for b ≧ 8 the state u = 0 is an isolated critical point. This concludes

the proof of (ii).

The proof of (iii) requires computing more explicitly Z2(u).

Z2(u) =
∫ 1

−1

eu1(1−3p2)

(∫ 2π

0

eu2(1−p2) cos tdt

)
dp. (66)

The object in large parentheses (encountered in the two-dimensional study ([3]) is

Z1(r) =
∫ 2π

0

er cos tdt. (67)

This has an explicit expression

Z1(r) = 2π

∞∑

k=0

r2k2−2k 1

(k!)2
.

Substituting in the expression above we deduce

Z2(u) = 2π

∞∑

k=0

C2k(u1)u
2k
2 2−2k 1

(k!)2
, (68)

where

C2k(u1) =
∫ 1

−1

(1 − p2)2keu1(1−3p2) dp. (69)

Now we observe that (45) is equivalent to

∂Z2

∂u2
−

2u2

b
Z2 = 0.
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The expression for this is

∂Z2

∂u2
−

2u2

b
Z2

= −
8π

b

∞∑

k=1

k

[
kC2(k−1)(u1) −

b

4
C2k(u1)

] (u2

2

)2k−1 1

(k!)2
. (70)

(This situation is very similar to the two-dimensional situation, except that in that

case the coefficients C2k(u1) were identically equal to 1.) We observe that

0 ≦ C2k(u1) ≦ C2(k−1)(u1)

holds. If b ≧ 4, we write

∂Z2

∂u2
−

2u2

b
Z2 = P(u) − Q(u), (71)

where

P(u) = −
8π

b

[
b
4

]

∑

k=1

k

[
kC2(k−1)(u1) −

b

4
C2k(u1)

] (u2

2

)2k−1 1

(k!)2
(72)

and

Q(u) =
8π

b

∞∑

k=1+
[

b
4

]
k

[
kC2(k−1)(u1) −

b

4
C2k(u1)

] (u2

2

)2k−1 1

(k!)2
. (73)

We observe therefore that

(
∂

∂u2

)m (
∂Z2

∂u2
−

2u2

b
Z2

)
< 0 (74)

holds for m ≧ 2
[

b
4

]
, which implies by Rolle’s theorem that there are at most 2

[
b
4

]

distinct critical points on each line u1 = const. This concludes the proof of (iii) and

of the theorem. ⊓⊔

We will study now the asymptotics at large b, for fixed λ1, λ2, λ3. We recall

that

u1 = bv1, u2 = bv2. (75)

We study thus the asymptotics as b → ∞, for fixed v = (v1, v2) ∈ [− 1
3
, 2

3
]×[0, 1

2
].

The system (29) determining the steady solutions of (4) with eigenvalues (21) is

[y1](bv) = 6v1, [y2](bv) = 2v2. (76)
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Theorem 3.3. The steady solutions of (4), given by (11) can be parametrized by

the intensity b > 0 and by the numbers v1 ∈ [− 1
3
, 2

3
],and v2 ∈ [0, 1

2
] associated

with the eigenvalues λ1, λ2, λ3 of the real, traceless, symmetric matrix S by the

formulae

v1 =
1

2
(λ1 + λ2) , v2 =

1

2
(λ1 − λ2) .

If v = (v1, v2) is fixed and b is sufficiently large, then the following cases are

present. If v belongs to a compact subset of the region R1 = {v = (v1, v2); − 1
3

≦

v1 ≦ 2
3
, 0 < v2 ≦ 1

2
, 3v1 + v2 > 0}, then for large enough b, all steady solutions

in this region approach v = ( 1
6
, 1

2
) as b → ∞ and consequently their eigenvalues

converge to

λ1 =
2

3
, λ2 = −

1

3
, λ3 = −

1

3
.

The expected value of a function f (x),

[f ] =
∫

S2
f (x(φ))ψS,b(φ) dσ(φ),

in the asymptotic steady state in this region is given by (77):

lim
b→∞

[f ] = f (e1),

where e1 = (1, 0, 0) ∈ S2. If (v1, v2) belongs to a compact subset of the region

R2 ∪R3 ∪R4 where R2 = {v = (v1, v2); − 1
3

≦ v1 ≦ 2
3
, 0 < v2 ≦ 1

2
, 3v1 +v2 <

0}, R3 = {v = (v1, v2); − 1
3

≦ v1 ≦ 2
3
, 0 < v2 ≦ 1

2
, 3v1 + v2 = 0} and

R4 = {v = (v1, 0); − 1
3

≦ v1 < 0}, then, for sufficiently large b, all steady solu-

tions in this region approach v = (− 1
3
, 0) as b → ∞, and consequently their

eigenvalues converge to

λ1 = −
1

3
, λ2 = −

1

3
, λ3 =

2

3
.

The expected value of a function f in the asymptotic steady state in this region is

given by (85):

lim
b→∞

[f ] = f (e3),

where e3 = (0, 0, 1) ∈ S2.

If v belongs to a compact subset of R5 = {v = (v1, 0); 0 < v1 ≦ 2
3
}, then

for sufficiently large b, all steady solutions in this region approach v = ( 1
6
, 0) as

b → ∞, and consequently their eigenvalues converge to

λ1 =
1

6
, λ2 =

1

6
, λ3 = −

1

3
.

The expected value of a function f in the asymptotic steady state in this region is

given by (83):

lim
b→∞

[f ] =
1

2π

∫ 2π

0

f (cos ϕ, sin ϕ, 0) dϕ.
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Proof. In order to study the asymptotics for large b and fixed v we have to divide

the v plane into five different regions.

Case I. If 3v1 + v2 > 0, v2 > 0, then for any F ∈ C1, 2π periodic function of t ,

we have

lim
b→∞

[F ](bv) = F(0, 0). (77)

Indeed, if 3v1 + v2 > 0, v2 > 0, we multiply by e−b(v1+v2) both the numerator and

the denominator of the ratio

[F ](bv) =
∫ 1
−1

∫ 2π

0 F(p, t)ebv·y dt dp
∫ 1
−1

∫ 2π

0 ebv·y dt dp
.

Thus,

[F ](bv) =
∫ 1
−1

∫ 2π

0 F(p, t)ebv·(y−(1,1)) dt dp
∫ 1
−1

∫ 2π

0 ebv·(y−(1,1)) dt dp
.

But

v · (y − (1, 1)) = −3p2v1 − v2(1 − (1 − p2) cos t)

−((3v1 + v2)p
2 + v2(1 − p2)(1 − cos t))

which is strictly negative, except when p = 0 and cos t = 1. For ε > 0, the contri-

butions coming from regions |p| ≧ ε or |1−cos t | ≧ ε are uniformly exponentially

small. Choosing δ so that t ∈ [δ, 2π − δ] implies |1 − cos t | ≧ ε, we have thus

[F ](bv) =
∫ ε

−ε

∫ δ

−δ
F(p, t)e−b((3v1+v2)p

2+v2(1−p2)(1−cos t)) dt dp + O(e−cεb)
∫ ε

−ε

∫ δ

−δ
e−b((3v1+v2)p2+v2(1−p2)(1−cos t)) dt dp + O(e−cεb)

.

Now we change variables in both integrals, x =
√

b(3v1 + v2)p, s =
√

bv2t and

obtain

∫ ε

−ε

∫ δ

−δ

F(p, t)e−b((3v1+v2)p
2+v2(1−p2)(1−cos t)) dt dp =

A

b
F(0, 0) + O

(
1

b
3
2

)

with A the same constant in both the numerator and the denominator (A does

depend on v2 and 3v1 + v2). We pass to the limit b → ∞ and obtain (77). This

calculation implies the asymptotic solution of (76):

v1 =
1

6
, v2 =

1

2
(78)

if 3v1 + v2 > 0, v2 > 0. The asymptotic solution belongs to the region.
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Case II. If v2 > 0 but 3v1 + v2 < 0, then we multiply both numerator and denom-

inator by e2bv1 . We have to study thus the limit of the ratio of the integral

∫ 1

−1

(∫ 2π

0

F(p, t)eb(1−p2)(3v1+v2 cos t)dt

)
dp

and the same integral with F replaced by 1. Now fix ε > 0. The contributions

∫ 1−ε

−1+ε

(∫ 2π

0

F(p, t)eb(1−p2)(3v1+v2 cos t)dt

)
dp

in both numerator and denominator are exponentially small, 0(e−cεb) with c uni-

form for (v1, v2) ∈ [− 1
3
, 2

3
]× [0, 1

2
]. In the region where 1 −p ∈ [0, ε] we change

variables x = Ab(1 − p) with A > 0, A = −2(3v1 + v2). The expressions there

become

1

Ab

∫ 2π

0

∫ Abε

0

F(1 −
x

Ab
, t)e−(1+ 4v2(1−cos t)

A
)x(1− x

2Ab
) dx dt.

Using a similar change of variables for p near −1 we obtain

[F ] (bv1, bv2) =

∫ 2π

0
(F (1,t)+F(−1,t))dt

1+ 4v2
A

(1−cos t)
+ O( 1

b
)

∫ 2π

0
2dt

1+ 4v2
A

(1−cos t)
+ O( 1

b
)

and therefore, if 3v1 + v2 < 0 and v2 > 0 we get the nontrivial limit

lim
b→∞

[F ](bv1, bv2) =

∫ 2π

0
(F (1,t)+F(−1,t))dt

1+ 4v2
A

(1−cos t)
∫ 2π

0
2dt

1+ 4v2
A

(1−cos t)

(79)

with A = 2 |3v1 + v2|. Substituting F = y1 = 1 − 3p2 we obtain −2; substituting

F = y2 = (1 − p2) cos t we obtain zero. So, the asymptotic solution of (76) is

v1 = −
1

3
, v2 = 0 (80)

if 3v1 + v2 < 0 and v2 > 0. In this case the asymptotic solution does not belong to

the region, but to its boundary.

Case III. If 3v1 + v2 = 0 but v2 > 0 then, after multiplying both numerator and

denominator by e2bv1 , we arrive at the ratio of integrals of the form

∫ 1

−1

∫ 2π

0

F(p, t)e−b(1−p2)(1−cos t) dt dp.

The integrals are dominated by the behavior at (p, cos t) = (±1, 1), and we deduce

the asymptotics

lim
b→∞

[F ](bv) =
1

2
(F (−1, 0) + F(1, 0)). (81)
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Substituting F = y1 and F = y2 we deduce that

v1 = −
1

3
, v2 = 0 (82)

is the asymptotic solution of (76) if the parameters v obey 3v1 + v2 = 0, v2 > 0.

We note that the asymptotic solution does not belong to the region, and not even to

its boundary.

Case IV. If v2 = 0 and v1 > 0, then the exponent is bv1(1 − 3p2), which, after

amplification by e−bv1 leads to ratios of integrals

∫ 1

−1

∫ 2π

0

F(p, t)e−3bv1p
2

dp dt.

The limit in this case is

lim
b→∞

[F ](bv) =
1

2π

∫ 2π

0

F(0, t) dt (83)

and substituting we obtain the asymptotic solution of (76):

v1 =
1

6
, v2 = 0 (84)

in the case v1 > 0, v2 = 0. The asymptotic solution belongs to the region.

Case V. Finally, if v2 = 0 and v1 < 0, we amplify by e2bv1 and deduce

lim
b→∞

[F ](bv) =
1

4π

∫ 2π

0

(F (1, t) + F(−1, t)) dt. (85)

Substituting F = y1 and F = y2 we obtain the asymptotic solution of (76):

v1 = −
1

3
, v2 = 0 (86)

if v1 < 0 and v2 = 0. The asymptotic solution belongs to the region. This concludes

the proof of the theorem. ⊓⊔

Remarks. In each of the regions R1, R2, R3, R4, R5 above, the limit

lim
b→∞

[F ](bv) =
∫

F(p, t) dµ

exists and is given by a probability measure dµ. It is easily seen that these limits

are attained uniformly on compacts L, (v ∈ L) in each region. The probability

measures dµ depend on the region but are the same for all v in the region and are

concentrated on the boundary of the parameter set K , and
∫

F(p, t)dµ are given by

the right-hand sides of (77), (79), (81), (83), (85). Correspondingly, in each com-

pact 1
6
[y1](bv) and 1

2
[y2](bv) converge to the stated constant values when b → ∞.

For instance, if v ∈ L a compact subset of R1, then 1
6
[y1](bv) converges to 1

6
and

1
2
[y2](bv) converges to 1

2
when b → ∞. If the compact L does not contain the
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point ( 1
6
, 1

2
), then there are no solutions of the simultaneous equations (76) for b

sufficiently large (how large depends on L). Note that there are only three qualita-

tively different behaviors: all eigenvalues equal to zero, two eigenvalues equal to

− 1
3

with the third eigenvalue equaling 2
3

in this case, and two eigenvalues equal to
1
6

with the third eigenvalue equaling − 1
3

. For the case of eigenvalues (− 1
3
, − 1

3
, 2

3
)

the corresponding asymptotic steady state is a delta function concentrated at a fixed

direction on the unit sphere, the prolate nematic state. For the case of eigenvalues

( 1
6
, 1

6
, − 1

3
), the asymptotic steady state is uniform measure concentrated on the

equator, the oblate nematic state. The fact that the uniform state is the unique

steady state for low concentrations can be strengthened to a dynamical-stability

statement. At large concentrations this uniform state is isolated, and other states are

present: this suggests that the uniform state is nonlinearly dynamically unstable.

We have not proved this fact in this paper.

We can get a more precise description by expanding the asymptotic analysis.

For instance, if v ∈ L ⊂ R1 with L compact, then we can verify that

1

6
[y1] =

1

6
−

3C1

6(3v1 + v2)b
+ O2,1(v, b), (87)

where the constant C1 is independent of v, b, and

C1 =
∫ ∞
−∞ x2e−x2

dx
∫ ∞
−∞ e−x2

.

The error term O2,1(v, b) is small: there exists an absolute constant Ŵ2 > 0 such

that

∣∣O2,1(v, b)
∣∣ ≦ Ŵ2b

−2 (88)

holds for all v ∈ L. For [y2] we obtain

1

2
[y2] =

1

2
−

C1

2(3v1 + v2)b
−

C2

2v2b
+ O2,2(v, b) (89)

with the same constant C1 and with C2 independent of v and b. The remainder

obeys

∣∣O2,2(v, b)
∣∣ ≦ Ŵ2b

−2 (90)

for all v ∈ L. These relations are obtained using the Taylor expansions of the func-

tions y1 = 1 − 3p2 and y2 = 1 − p2 − (1 − cos t) + p2(1 − cos t) near p = 0,

t = 0. Consequently, the asymptotic equations in R1 are

v1 =
1

6
−

3C1

6(3v1 + v2)b

and

v2 =
1

2
−

C1

2(3v1 + v2)b
−

C2

2v2b
.
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It is possible to expand to higher order in these equations, resulting in higher-

order algebraic equations and smaller remainders, uniformly on compacts in R1.

The same can be done in any of the other regions, with similar kinds of asymptotic

developments.

4. Conclusions

We have obtained asymptotic developments for the steady solutions ψ of the

Smoluchowski equation (4). The steady solutions are parametrized by the intensity

b of the interaction potential and by two real parameters describing the eigenvalues

of a real, traceless symmetric 3 × 3 matrix S (equations (14) and (15)). When

the intensity b is small enough, then the uniform solution ψ = 1
4π

, (S = 0) is the

unique steady solution. At high intensities several steady solutions coexist. For very

large b the eigenvalues of the matrices S are close to one of the three possibilities:

(0, 0, 0) (corresponding to the uniform state), (− 1
3
, − 1

3
, 2

3
) (corresponding to a

state ψ concentrated on a single direction e ∈ S2) and ( 1
6
, 1

6
, − 1

3
) (corresponding

to a state concentrated uniformly on a geodesic (big circle)).
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