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Abstract. Let K be a field. The étale open topology on the K-points V (K) of a K-variety
V was introduced in [JTWY]. The étale open topology is non-discrete if and only if K is
large. If K is separably, real, p-adically closed then the étale open topology agrees with
the Zariski, order, valuation topology, respectively. We show that existentially definable
sets in perfect large fields behave well with respect to this topology: such sets are finite
unions of étale open subsets of Zariski closed sets. This implies that existentially definable
sets in arbitrary perfect large fields enjoy some of the well-known topological properties of
definable sets in algebraically, real, and p-adically closed fields. We introduce and study
the class of éz fields: K is éz if K is large and every definable set is a finite union of
étale open subsets of Zariski closed sets. This should be seen as a generalized notion of
model completeness for large fields. Algebraically closed, real closed, p-adically closed, and
bounded PAC fields are éz. (In particular pseudofinite fields and infinite algebraic extensions
of finite fields are éz.) We develop the basics of a theory of definable sets in éz fields. This
gives a uniform approach to the theory of definable sets across all characteristic zero local
fields and a new topological theory of definable sets in bounded PAC fields. We also show
that some prominent examples of possibly non-model complete model-theoretically tame
fields (characteristic zero Henselian fields and Frobenius fields) are éz.

Throughout K is a field. Recall that K is large if every K-curve with a smooth K-point
has infinitely many K-points. Largeness was introduced by Florian Pop for Galois-theoretic
purposes and has been studied under several different names. Separably closed fields, real
closed fields, Henselian fields (i.e. fields which admit non-trivial Henselian valuations), quo-
tient fields of Henselian domains1, pseudofinite fields, infinite algebraic extensions of finite
fields, PAC fields, p-closed fields, and fields which satisfy a local-global principle are all large.
Finite fields, number fields, and function fields are not large. In particular local fields are
large and global fields are not.

All known model-theoretically tame infinite fields are large. We say a field is model-
theoretically tame if its first order theory is well-behaved. This is not a precise notion,
but it is an empirical fact that fields of interest typically either interpret the ring of integers
(in this case the theory is totally wild from the logical viewpoint) or there is a good de-
scription of definable sets, the latter usually follows from some form of model completeness.
Model-theoretically tame fields typically enjoy Shelah-style classification-theoretic properties
such as stability, NIP, or simplicity. We introduce and begin to study a precisely defined class
of infinite “éz fields” which we believe largely coincides with the (vaguely-defined) class of
infinite perfect fields with well-behaved first order theory. We show that many known model-
theoretically tame fields are éz. Éz fields are defined in terms of the étale open topology
which we now recall.

1Such fields may not be Henselian, e.g. C[[x, y]] is a Henselian domain whose fraction field is not a
Henselian field.
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Let V be a K-variety. The étale open (EK-) topology on the K-points V (K) of V was
introduced in [JTWY]. The field K is large if and only if the EK-topology on K = A1(K)
is not discrete if and only if the EK-topology on V (K) is non-discrete whenever V (K) is
infinite. The étale open topology over a separably closed, real closed, and non-separably
closed Henselian field agrees with the Zariski, order, and valuation topology, respectively.
The EK-topology agrees with the Zariski topology if and only if K is finite or separably
closed. We define an éz subset of V (K) to be a finite union of definable étale open subsets
of Zariski closed subsets of V (K). By Lemma 4.2 below a definable subset of V (K) which
is a finite union of étale open subsets of Zariski closed sets is éz. Note that an éz subset of
K is a union of a definable étale open set and a finite set.

A subset of Km is quantifier free definable if and only if it is a finite union of Zariski open
subsets of Zariski closed sets. Thus quantifier elimination for algebraically closed fields is
equivalent to the following geometric statement: If K is algebraically closed, f : V → W
is a morphism of K-varieties, and X ⊆ V (K) is a finite union of Zariski open subsets of
Zariski closed subsets, then f(X) is as well. Macintyre [Mac71] showed that an infinite field
with quantifier elimination is algebraically closed, so the geometric statement fails over an
infinite non-algebraically closed field. However, it generalizes to Theorem A.

Theorem A. Suppose that K is large and perfect and f : V → W is a morphism of K-
varieties. If X is an éz subset of V (K) then f(X) is an éz-subset of W (K).

If K is not large then the conclusion of Theorem A trivially holds. If K is large, imperfect,
and of characteristic p, then the conclusion of Theorem A fails as the set of pth powers is
not an éz set, see Section 5. Theorem A immediately implies Theorem B.

Theorem B. Suppose K is large and perfect. Then any existentially definable subset of
any Km is an éz set. In particular any existentially definable subset of K is a union of a
definable étale open subset of K and a finite set.

This prompts us to prove some general facts on éz sets. In particular we see that certain
properties of definable sets in algebraically closed fields generalize to éz sets in large perfect
fields. Note that if K is not large then any subset of V (K) is trivially étale open, so largeness
is the minimal requirement necessary for a theory of éz sets. Given a subset X of V we let
dimX be the dimension of the Zariski closure of X. If X ⊆ Km then dimX is the maximal
number of polynomial functions on X that can be algebraically independent over K.

Theorem C. Suppose that K is large and perfect, V is a smooth irreducible K-variety, and
X, Y are nonempty éz subsets of V (K). Then

(1) There are pairwise disjoint smooth irreducible subvarieties V1, . . . , Vk of V and X1, . . . , Xk

such that each Xi is a definable étale open subset of Vi(K) and X =
⋃k
i=1Xi.

(2) dimX = dimV if and only if X has nonempty EK-interior in V (K),
(3) if X ⊆ Y and dimX = dimY then X has nonempty EK-interior in Y .
(4) There is a smooth subvariety W of V , a nonempty étale open subset O of W (K), and

a dense open subvariety U of V such that O = X ∩ U and dimX \O < dimX.

We say that K is an éz field if K is large and every definable set is an éz set. We view
this as a topological generalization of model completeness in the class of perfect large fields.
We will see that éz fields are perfect and that many of the known model-theoretically tame
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fields are éz. We say that K is model complete if K is model complete in the language of
rings and is model complete by constants if K is model complete after some collection
of constants is added to the language of rings.

Theorem D. Suppose that one of the following holds:

(1) K is large and model complete,
(2) K is large, perfect, and model complete by constants,
(3) K is Henselian of characteristic zero, or
(4) K is a perfect Frobenius field.

Then K is éz.

There are large perfect fields which are not éz, see Section 5 below. Model complete fields
are perfect2, so (1) and (2) are immediate from Theorem B. (3) follows from known results
on Henselian fields, see Section 1.4. (4) is proven in Section 6.

We discuss examples of éz fields below, we first describe our other results on éz fields.
Following van den Dries [vdD89] we say that K is algebraically bounded if for every
definable X ⊆ Km × K there are polynomials f1, . . . , fk ∈ K[x1, . . . , xm, t] such that if
Xa = {b ∈ K : (a, b) ∈ X} is finite (a ∈ Km) then Xa ⊆ {b ∈ K : fi(a, b) = 0} for
some i ∈ {1, . . . , k} such that fi(a, t) is not constant zero. Van den Dries showed that
characteristic zero Henselian fields are algebraically bounded [vdD89]. Jarden showed that
perfect Frobenius fields are algebraically bounded [Jar94]. Junker and Koenigsmann showed
that if K is large and model complete then model-theoretic algebraic closure in K agrees
with field-theoretic algebraic closure [JK10]. This property, together with elimination of ∃∞,
implies algebraic boundedness.

Theorem E. Éz fields are algebraically bounded.

Algebraically bounded fields are geometric (i.e. they eliminate ∃∞ and model-theoretic
algebraic closure satisfies the exchange property) and the resulting notion of dimension agrees
with algebraic dimension. Corollary E follows, see [vdD89] for details.

Corollary E. Suppose that K is éz, X is a definable subset of Km, and f is a definable
function X → Kn. Then

(1) Yd := {a ∈ Kn : dim f−1(a) = d} is definable for all 0 ≤ d ≤ n, and
(2) dimX = max{d+ dimYd : 0 ≤ d ≤ n}.

In particular dim f(X) ≤ dimX.

If Char(K) = p and c ∈ K is not a pth power, then the map K2 → K, (a, b) 7→ ap + cbp is
injective. Hence algebraically bounded fields are perfect.

In Section 9 we apply Theorems C and E to show that definable functions are generically
continuous in éz fields.

Theorem F. Suppose that K is éz and f : Km → Kn is definable. Then f is EK-continuous
on a dense Zariski open subset of Km.

This gives a uniform proof that definable functions in characteristic zero local fields are
generically continuous. Theorem F follows from Proposition 9.3, a more precise result on
definable K-valued functions.

2If K is imperfect then the Frobenius K → K is not an elementary embedding.
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Examples of éz fields. See [EP05] for an account of Henselianity. Examples of character-
istic zero Henselian fields are Qp, algebraic extensions of Qp, and the fields of Laurent series
L((t)) and Puiseux series L〈〈t〉〉 over an arbitrary characteristic zero field L.

Algebraically and real closed fields are model complete by classical work of Tarski. Macintrye
showed that Qp is model complete [Mac76]. Model completeness of finite extensions of Qp

follows from work of Prestel and Roquette [PR84, Theorem 5.1]. Hence every characteristic
zero local field is model complete. Derakhshan and Macintrye [DM16] showed that if (K, v)
is a finitely ramified characteristic zero Henselian valued field with value group Z and model
complete residue field, then K is model complete. In particular L((t1))((t2)) . . . ((tn)) is
model complete when L is algebraically closed of characteristic zero, real closed, or p-adically
closed. As a corollary they show that any infinite algebraic extension of Qp with finite
ramification is model complete.

We now discuss perfect PAC fields which are model complete by constants. See [FJ05,
Chapter 11] for an overview of PAC fields. Let GalK be the absolute Galois group of K.
Recall that K is bounded if K has only finitely many separable extensions of each degree,
equivalently: GalK has only finitely many open subgroups of each degree. In particular if
GalK is topologically finitely generated then K is bounded. Perfect bounded PAC fields are
model complete by constants [Whe79]. Pseudofinite fields and infinite extensions of finite
fields are bounded PAC, in either case boundedness follows from the basic theory of finite
fields and PAC follows from the Hasse-Weil estimates, see [FJ05, 11.2.3, 20.10.1].

We describe another natural family of bounded PAC fields. For each e ≤ ω let Fe be the
free profinite group on e generators. Note that Fe is topologically finitely generated when
e < ω, so K is bounded when GalK = Fe. Suppose that K is finitely generated over its
prime subfield. Equip GalK with the unique Haar probability measure. If σ1, . . . , σn are
chosen from GalK independently and at random then with probability one the fixed field of
σ1, . . . , σn is a perfect PAC field with absolute Galois group Fn, see [FJ05, Theorem 20.5.1].

Bounded pseudo real closed fields are model complete by constants [Mon17, Corollary 3.6].
See [Mon17] and [Pre81] for an overview of pseudo real closed fields. If L is a field and <
is an arbitrary field order on L then the étale open topology over L refines the <-topology,
see [JTWY]. An n-ordered field is a structure (K,<1, . . . , <n) where each <i is a field order
on K. Van den Dries has shown that the theory of n-ordered fields has a model companion
On [vdD]. Models of On are pseudo real closed and the absolute Galois group of a model of On

is a pro-2-group generated by n involutions, hence such a field is bounded. See Prestel [Pre81]
for more information. Suppose (K,<1, . . . , <n) |= On. Then the <i-topologies are distinct
and each <i is definable from the field structure [Mon17, Lemma 3.5]. There is also a similar
theory of pseudo p-adically closed fields, and bounded pseudo p-adically closed fields are
model complete by constants, see [Mon17, Section 6].

We now discuss Frobenius fields. A profinite groupG has the embedding property if whenever
there are finite discrete groups H,H ′ and continuous epimorphisms f : G→ H, g : H ′ → H,
and h : G→ H ′, then there is a continuous epimorphism f ′ : G→ H ′ such that f = g ◦ f ′.
A Frobenius field is a PAC field whose absolute Galois group has the embedding property,
see [FJ05, Chapter 24]. Frobenius fields are model-theoretically tame. Frobenius fields admit
quantifier elimination in a reasonable language (see Fact 6.4 below) and are NSOP1 [Cha19],
the latter is a classification-theoretic property of recent interest. We give two examples.
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The first example is conjectural. Let Qsolv be the maximal solvable extension of Q. It is a
well-known open conjecture that Qsolv is PAC [BSF14, 3.3]. Fried and Haran have shown that
if Qsolv is large then the absolute Galois group of Qsolv has the embedding property [FH20,
Theorem 1.5, Theorem 3.9]. Thus if Qsolv is PAC then Qsolv is Frobenius3.

We now describe an interesting theory of Frobenius fields. Recall that K is ω-free if for any
Galois extension L/K, finite group G, and surjective homomorphism f : G → Gal(L/K)
there is an extension L′/L and an isomorphism g : Gal(L′/K)→ G such that L/K is Galois
and f ◦ g agrees with the restriction Gal(L′/K) → Gal(L/K). If K is countable then K is
ω-free if and only if GalK = Fω [FJ05, 24.8.2]. An ω-free field is Frobenius. Let L be the
expansion of the language of rings by an m-ary relation symbol Rm for each m ≥ 2. We
consider any field to be an L-structure by declaring

Rm(x0, . . . , xm−1)⇐⇒ ∃t(tm + xm−1t
m−1 + . . .+ x2t

2 + x1t+ x0 = 0) for all m ≥ 2.

Note that a field extension L/K induces an L-embedding if and only if L/K is regular. The
L-theory of fields has a model companion. A characteristic zero field is existentially closed
as an L-structure if and only if K is PAC and ω-free [FJ05, 27.2.3]. It follows that any field
has a regular extension which is PAC and ω-free, hence Frobenius.

We know very little about general model complete fields. All known model complete fields
are large. Macintyre has asked if a model complete field is bounded and Koenigsmann has
conjectured that a bounded field is large [JK10, p. 496].

Question. Is every model complete field large?

Equivalently: is every model complete field éz? We describe a related conjecture of Pillay.
Let Kalg be the algebraic closure of K. We say that K has almost quantifier elimination if
any formula φ(x), x = (x1, . . . , xm) is equivalent to a formula ∃yθ(x, y) where y = (y1, . . . , yn),
θ is quantifier free possibly with parameters from K, and Kalg |= ∀x∃≤kyθ(x, y) for some
k. It is easy to see that K has almost quantifier elimination if and only if every definable
subset of Km is of the form f(V (K)) for a quasi-finite morphism V → Am of K-varieties.
Many of the familiar examples of model complete fields have almost quantifier elimination,
this includes pseudofinite fields and field which are algebraically, real, or p-adically closed.
See [Cou, Chapter 2] for more on this notion. The following conjecture is due to Pillay.

Conjecture (Pillay). If K has almost quantifier elimination then K is large.

Equivalently: a field with almost quantifier elimination is éz.

How we prove Theorem A. The proof is a straightforward application of Theorem G
and Noetherian induction.

Theorem G. Suppose that K is perfect and V → W is dominant morphism between irre-
ducible K-varieties. Then there is a dense open subvariety U of V such that U(K)→ W (K)
is EK-open.

3In an earlier version we gave an incorrect justification for conjectural Frobeniusness of Qsolv. Arno Fehm
alerted us to this error and made us aware of the work of Fried and Haran.
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Theorem G is also crucial for the proof of Theorem F.

The characteristic zero case of Theorem G is a consequence of generic smoothness of domi-
nant morphisms in characteristic zero (algebraic Sard’s theorem). Generic smoothness fails
in positive characteristic, in this case we factor V → W as V → V ′ → W where V → V ′

is a universal homeomorphism and the field extension K(V ′)/K(W ) induced by V ′ → W is
separable, hence V ′ → W is generically smooth. This decomposition arises from a decompo-
sition of the function field extension K(V )/K(W ) into a purely inseparable extension and a
separable extension. The key lemma is that if K is perfect then a universal homeomorphism
V → W of K-varieties induces an EK-homeomorphism V (K)→ W (K).

Acknowledgements. We thank Will Johnson and Chieu-Minh Tran for very useful conver-
sations. The term “éz field” is due to Minh and is pronounced “easy”. The proof of Theorem
A owes a debt to Arno Fehm: our original proof of Theorem A made crucial use of ideas
from Fehm’s proof of Fact 5.1 below. Ye was partially supported by GeoMod AAPG2019
(ANR-DFG), Geometric and Combinatorial Configurations in Model Theory.

1. Conventions and background

1.1. Basic conventions. Throughout m,n, i, j, k, r are natural numbers. Given a tuple
a = (a1, . . . , an) we let ak = (ak1, . . . , a

k
n). A “K-variety” is a separated reduced K-scheme

of finite type. By “morphism” without modification we mean a K-variety morphism. Let V
be a K-variety. We let dimV be the usual algebraic dimension of V and if X is an arbitrary
subset of V then we let dimX be the dimension of the Zariski closure of X. A subvariety
of V is an open subvariety of a closed subvariety of V . A subset X of V is constructible if
it is a finite union of subvarieties of V , equivalently if it is a boolean combination of closed
subvarieties of V . We let V (K) be the set of K-points of V , K[V ] be the coordinate ring of
V , and K(V ) be the function field of V when V is irreducible. We let Am be m-dimensional
affine space over K, i.e. Am = SpecK[x1, . . . , xm]. Recall that Am(K) = Km.

Suppose that W is a scheme. A W -scheme is a scheme V equipped with a morphism
V → W . Given W -schemes V → W and V ′ → W a morphism V → V ′ of W -schemes is a
morphism of schemes such that the diagram below commutes.

V V ′

W

Note that W -schemes and W -scheme morphisms form a category. The category of étale
schemes over W is the full subcategory of W -schemes V such that V → W is étale. If W
is a K-variety, and V is an étale W -scheme, then V is again a K-variety.

All facts below are presumably unoriginal. We include proofs for the sake of completeness.

Fact 1.1. Suppose V is K-variety. Then |V | <∞ if and only if dimV = 0.

Proof. Suppose dimV ≥ 1. Note that V contains an open subvariety of the form SpecA
for a finitely generated K-algebra A of dimension dimV . By Noether normalization A is
an irreducible extension of a polynomial ring over K and hence has infinitely many points.
Suppose dimV = 0. It is enough to show that every affine open subset of V has finitely many
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points. Suppose SpecA is an affine open subset of V . Then A is an Artinian K-algebra,
hence finite. In particular SpecA has finitely many points. �

Fact 1.2. Suppose that V,W are K-varieties and X, Y ⊆ V are constructible.

(1) If X is Zariski dense in Y then X contains a dense open subvariety of Y and
dimY \X < dimY .

(2) If X is the Zariski closure of X in V then dimX \X < dimX.

Suppose that f : V → W is a morphism. Then

(3) Z = {a ∈ W : |f−1(a)| <∞} is Zariski open. Moreover, there is n such that |f−1(a)| ≤ n
for all a ∈ Z.

(4) f(X) is a constructible subset of W and dim f(X) ≤ dimX.
(5) If |f−1(a)| <∞ for all a ∈ W then dim f(V ) = dimV ≤ dimW .

We let κ(a) be the residue field of a ∈ W .

Proof. (1) follows by [Sta20, Lemma 005K], (2) is a special case of (1). We describe a proof of
(3). We let Va be the scheme-theoretic fiber of V over a ∈ W . The underlying set of each Va
is f−1(a). By [Gro67, Theorem 13.1.3] Z := {a ∈ W : dimVa = 0} is Zariski open. Note that
each Va is a κ(a)-variety and apply Fact 1.1. We now produce n. After replacing W with X
and V with f−1(X), we may assume that f is quasi-finite. By Zariski’s main theorem there
is a K-variety V ′, an open immersion i : V → V ′, and a finite morphism g : V ′ → W such
that f = g ◦ i. Let n be the degree of g. Then |g−1(a)| ≤ n for all a ∈ W , so |f−1(a)| ≤ n
for all a ∈ W . The first claim of (4) is a special case of Chevalley’s theorem on constructible
sets. We prove the second claim. After replacing V , W with the Zariski closure of X, f(X),
respectively, we suppose that X is Zariski dense in V and f(X) is Zariski dense in W . Then
dimX = V and dim f(X) = dimW . By (1) f(X) contains a dense open subvariety of W .
Thus V → W is dominant so dimW ≤ dimV . For (5), by Zariski’s main theorem, it suffices
to show this when f is a finite morphism. This follows from [Sta20, Lemma 0ECG]. �

Fact 1.3. Suppose that V is a K-variety, X1, . . . , Xk are subsets of V , and X =
⋃k
i=1Xi.

Then dimX = max{dimX1, . . . , dimXk}.

We let X be the Zariski closure of X in V . Note that dimY = dimY holds for any Y ⊆ V .

Proof. We have X =
⋃k
i=1Xi, so we may suppose each Xi is Zariski closed. The fact now

follows from the definition of the dimension of a Noetherian space. �

Fact 1.4. Suppose that K is perfect, V is a K-variety, and V1, . . . , Vk are closed subvarieties
of V such that V =

⋃k
i=1 Vi. Then there are pairwise disjoint smooth irreducible subvarieties

W1, . . . ,W` of V such that V =
⋃`
i=1Wi and each Wj is either contained in or disjoint from

every Vi.

Proof. For each I ⊆ {1, . . . , k} we let VI =
(⋂

i∈I Vi
)
\
(⋃

i/∈I Vi
)
. Note that each VI is a

subvariety of V , the VI are pairwise disjoint, and V =
⋃
I⊆{1,...,k} VI . It suffices to fix I such

that VI is nonempty and show that VI is a union of a finite collection of pairwise disjoint
smooth irreducible subvarieties. Thus we may suppose that k = 1 and V1 = V .

We now apply induction on dimV . If dimV = 0 then V is finite and we let W1, . . . ,W`

be the irreducible components of V . Suppose dimV ≥ 1. The irreducible components of
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a smooth variety are pairwise disjoint, so it is enough to produce pairwise disjoint smooth
subvarieties W1, . . . ,W` of V such that V =

⋃`
i=1Wi. Let W1 be the smooth locus of V .

As K is perfect W1 agrees with the regular locus of V [Poo17, Proposition 3.5.22], which is
open by [Mat80, (29.E) Remark 1]. The generic point of any irreducible component of V is
regular, so dimV \W1 < dimV . By induction there are pairwise disjoint smooth subvarieties

W2, . . . ,W` of V \W1 such that V \W1 =
⋃`
i=2Wi. �

Finally, we leave the easy proof of Fact 1.5 to the reader.

Fact 1.5. Suppose that V is a K-variety, W is a subvariety of V , and W is the Zariski
closure of W in V . Then W \W is a closed subvariety of V .

Fact 1.6 is certainly well-known, but we do not know a reference.

Fact 1.6. Suppose that K is not algebraically closed and V is a closed subvariety of Am.
Then there is f ∈ K[x1, . . . , xm] such that V (K) = {a ∈ Km : f(a) = 0}.

Given f ∈ K[x1, . . . , xm] we let Z(f) be {a ∈ Km : f(a) = 0}.

Proof. As K[x1, ..., xm] is Noetherian there are g1, . . . , gn ∈ K[x1, . . . , xm] such that V =
SpecK[x1, . . . , xm]/(g1, ..., gn). Then V (K) =

⋂n
i=1 Z(gi). Therefore it is enough to fix

g, h ∈ K[x1, . . . , xm] and produce f ∈ K[x1, . . . , xm] such that Z(f) = Z(g) ∩ Z(h). Let
p ∈ K[t] be an irreducible polynomial of degree ≥ 2 and q(t, t′) be the homogenization of
p(t). If q(a, b) = 0 for some a, b ∈ K, then a = 0 = b. Take f = q(g, h). �

1.2. The relative Frobenius. We recall backgroud on the relative Frobenius. Our reference
is SGA 5 [Gro77, Expose XV]. We suppose that Char(K) = p > 0 and V → W is a
dominant morphism of irreducible K-varieties. We first prove an elementary field-
theoretic lemma to be applied to the function field of V .

Lemma 1.7. Suppose that K is perfect, K(s1, . . . , sm, t1, . . . , tn) is a finitely generated ex-
tension of K, and s = (s1, . . . , sm), t = (t1, . . . , tn). Then K(s, tp

r
)/K(s) is separable when

r ≥ 1 is sufficiently large.

Proof. Let K(s) ⊆ L0 ⊆ L1 ⊆ K(s, t) be field extensions such that L0/K(s) is purely tran-
scendental, K(s, t)/L0 is algebraic, L1/L0 is separable, and K(s, t)/L1 is purely inseparable.

Then for each i ∈ {1, . . . , n} there is ri such that tp
ri

i ∈ L1. Let r = max{r1, . . . , rn}. Then

tp
r

i ∈ L1 for all i, so K(s, tp
r
) is contained in L1. Thus K(s, tp

r
)/K(s) is separable. �

For a K-variety X, we let FrX : X → X be the absolute Frobenius morphism. This morphism
is the identity on the underlying topological space of X and raises every section to the pth
power. If X = SpecA is affine then FrX is dual to the Frobenius A → A. The absolute
Frobenius is a K-variety morphism if and only if K is the field with p elements. We let
V (p) → W be the pullback of V → W via FrW . Let π : V (p) → V be the projection, so the
following diagram is a pullback square.

V (p) π //

��

V

��
W

FrW // W
8



We let FrV/W : V → V (p) be the relative Frobenius of V over W . This is the morphism
induced by the universal property of the pullback square above. In particular the diagram
below commutes.

V (p)

π

!!
V

FrV/W
==

FrV

// V

The relative Frobenius is a morphism of W -schemes, so V → W factors as

V
FrV/W−−−−→ V (p) → W.

Fact 1.8 is [Sta20, Lemma 0CCB].

Fact 1.8. FrV/W is a homeomorphism V → V (p).

Given a W -scheme Y → W and a W -scheme morphism f : Y → V we let f (p) : Y (p) → V (p)

be the morphism given by base-changing along FrW .

We explain the situation in the affine case. Suppose that W = SpecA and V = SpecB for
K-algebras A,B. Then V (p) = SpecB⊗AA where the map A → A is the Frobenius and
FrV/W : V → V (p) is dual to the map B⊗AA→ B given by b⊗ a 7→ bpa.

We also require the r-fold iterates of the relative Frobenius. For all r ≥ 1 we define V (pr+1)

to be (V (pr))(p) and let Fr
(r)
V/W : V → V (pr) be given by

Fr
(r+1)
V/W = FrV (pr)/W ◦Fr

(r)
V/W .

Then Fr
(r)
V/W is the rth iterate of the relative Frobenius. Furthermore V → W factors as

V
Fr

(r)
V/W−−−−→ V (pr) → W

for each r ≥ 1. By Fact 1.8 and induction each Fr
(r)
V/W is dominant so K(V )/K(W ) de-

composes into K(V )/K(V (pr)) and K(V (pr))/K(W ) for all r ≥ 1. Fact 1.9 follows by the
comments on the affine case above and induction.

Fact 1.9. If V and W are affine then V (pr) is affine for all r ≥ 1.

We now make some further remarks on the affine case. As V → W is dominant the dual
K-algebra morphism K[W ] → K[V ] is injective, so we consider K[W ] to be a subring of
K[V ]. Let s = (s1, . . . , sm) and t = (t1, . . . , tn) be such that K[W ] = K[s] and K[V ] =
K[s, t]. Let K[s, y] be the polynomial ring over K[s] in the variables y = (y1, . . . , ym). Let
ρ : K[s, y] → K[s, t] be the K[s]-algebra morphism given by ρ(yi) = ti for each i, I be the
kernel of ρ, and identify K[s, t] with K[s, y]/I.

Given j = (j1, . . . , jn) ∈ Nn we let yj = (yj11 , . . . , y
jn
n ). For any f ∈ K[s, y] we have

f = f1y
j1 + . . . + fky

jk for some f1, . . . , fk ∈ K[s], and j1, . . . , jk ∈ Nn. We then let
f (p) = fp1 y

j1 + . . .+ fpky
jk and let I(p) be the ideal generated by f (p), f ranging over I. Then

V (p) = SpecK[s, y]/I(p).
9
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Let τ : K[s, y] → K[s, t] be the K[s]-algebra morphism given by τ(a) = a for all a ∈ K[s]
and τ(yi) = tpi for each i. Then I(p) is the kernal of τ . Therefore τ factors as

K[s, y]→ K[s, y]/I(p)
σ−→ K[s, t]

for some injective K[s]-algebra morphism σ. The relative Frobenius FrV/W is dual to σ. The

image of τ is K[s, tp], so σ gives a K[s]-algebra isomorphism K[V (p)] → K[s, tp]. Fact 1.10
follows by induction.

Fact 1.10. As above let V and W be affine and s = (s1, . . . , sm), t = (s1, . . . , tn) be such
that K[W ] = K[s] and K[V ] = K[s, t]. For each r ≥ 1 there is a K[s]-algebra isomorphism
K[V (pr)]→ K[s, tp

r
] and a K(s)-algebra isomorphism K(V (pr))→ K(s, tp

r
) for each r ≥ 1.

Lemma 1.11. K(V (pr))/K(W ) is separable when r ≥ 1 is sufficiently large.

Proof. The case when V and W are affine follows from Fact 1.10 and Lemma 1.7. We
now reduce to the case when V and W are affine. Suppose that U is a dense affine open
subvariety of W and O is a dense affine open subvariety of V contained in the pre-image of
U . We have K(U) = K(W ), K(O) = K(V ), and we identify the extension K(V )/K(W )
with K(O)/K(U). Let h : O → V be the inclusion. Then h(p) : O(p) ↪→ V (p) is an open
immersion as open immersions are closed under base change. By induction there is an open
immersion O(pr) → V (pr) for each r ≥ 1. We consider O(pr) to be an open subvariety of
V (pr) and identify K(V (pr)) with K(O(pr)). By Fact 1.9 each O(pr) is affine. The morphism
O → W factors as

O
Fr

(r)
O/W−−−−→ O(pr) → W.

Thus by Fact 1.8 the image of O(pr) → W is contained in U . Therefore the extension
K(V )/K(V (pr)), K(V (pr))/K(W ) can be identified with K(O)/K(O(pr)), K(O(pr))/K(U),
respectively. After replacing V with O and W with U we can suppose that both V and W
are affine K-varieties. �

1.3. The étale-open topology. Let V be a K-variety. An étale image in V (K) is the
image of X(K) → V (K) for some étale morphism X → V of K-varieties. It is shown in
[JTWY] that étale images in V (K) form a basis for a topology on V (K) refining the Zariski
topology which we refer to as the étale open topology. Fact 1.12 is proven in [JTWY].

Fact 1.12. The following are equivalent:

(1) K is large,
(2) the étale open topology on K = A1(K) is not discrete,
(3) the étale open topology on V (K) is non-discrete when V (K) is infinite.

Fact 1.13 is also proven in [JTWY].

Fact 1.13. Suppose that V → W is a morphism between K-varieties. Equip V (K) and
W (K) with their étale open topologies and let V (K)→ W (K) be the induced map. Then:

(1) V (K)→ W (K) is continuous,
(2) if V → W is a (scheme-theoretic) closed immersion then V (K)→ W (K) is a

(topological) closed embedding,
(3) if V → W is a (scheme-theoretic) open immersion then V (K)→ W (K) is a

(topological) open embedding,
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(4) if V → W is étale then V (K)→ W (K) is open,
(5) the projection V (K)×W (K)→ V (K) is open when V (K)×W (K) = (V ×W )(K)

is also equipped with the étale open topology,
(6) the étale open topology on V (K)×W (K) refines the product of the étale open topolo-

gies on V (K) and W (K).

We define an éz subset of V (K) to be a finite union of étale open subsets of Zariski closed
subsets of V (K). For this definition to make sense we need to define the étale open topology
on a Zariski closed subset of V (K). If Z ⊆ V (K) is Zariski closed then there is a closed
subvariety W of V such that Z = W (K), so we define the étale open topology on Z to agree
with the étale open topology W (K). Proposition 1.14 ensures that this does not depend
on choice of W . Proposition 1.14 follows immediately from the second and third items of
Fact 1.13 and will be used implicitly below at many points.

Proposition 1.14. Suppose that W is a subvariety of V . Then the étale open topology on
W (K) agrees with the subspace topology on W (K) induced by the étale open topology on
V (K). If W ′ is another subvariety of V with W ′(K) = W (K) then the étale open topology
on W (K) agrees with the étale open topology on W ′(K).

Pop has shown that if K is large and V is a smooth irreducible K-variety with V (K) 6= ∅
then V (K) is Zariski dense in V [Pop96]. Fact 1.15 generalizes this, it is [PW, Lemma 2.6].

Fact 1.15. Suppose that K is large and V is a smooth irreducible K-variety. Then any
nonempty étale open subset of V (K) is Zariski dense in V .

Finally 1.16 is also proven in [JTWY].

Fact 1.16. If K is separably closed then the étale open topology on V (K) agrees with the
Zariski topology. If K is not separably closed then the étale open topology on V (K) is
Hausdorff when V is quasi-projective. If K is real closed then the étale open topology on
V (K) agrees with the order topology and if K is Henselian and not separably closed then the
étale open topology on V (K) agrees with the valuation topology.

Implicit in the last statement are the well-known facts that a real closed field admits a unique
field order and any two non-trivial Henselian valuations on a field induce the same topology.

1.4. Characteristic zero Henselian fields. We suppose that K is a characteristic zero
Henselian field and show that K is éz. First recall that Henselian fields are large [Pop, 1.A.3].
If K is algebraically closed then quantifier elimination and Proposition 4.4 below show that
every definable subset of Km is éz. Suppose that K is not algebraically closed. By Fact 1.16
the étale open topology on each Km agrees with the valuation topology. Van den Dries has
shown that every definable subset of Km is a finite union of valuation open subsets of Zariski
closed sets [vdD89], his proof makes crucial use of quantifier eliminations due to Delon.

2. Universal homeomorphisms and Galois actions

We prove some results on universal homeomorphisms between K-varieties. We also discuss
the action of the automorphism group of K. In this section, and this section only, we work
with scheme morphisms between K-varieties which are not K-variety morphisms. A mor-
phism V → W of schemes is a universal homeomorphism if for every W -scheme X, the
morphism V ×W X → X produced from V → W by base change is a homeomorphism,
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see [Gro65, §2.4.2]. It is clear from this definition that the collection of universal homeo-
morphisms is closed under compositions and base change. In characteristic zero a universal
homeomorphism is an isomorphism. See [Sta20, Lemma 04DF, Theorem 04DZ] for Fact 2.1.
As above we let κ(a) be the residue field of point a on a scheme.

Fact 2.1. Let V,W be schemes and f : V → W be a universal homeomorphism. Then:

(1) f is integral, universally injective, and universally surjective.
(2) If f(a) = b then the induced field extension κ(a)/κ(b) is purely inseparable.
(3) The functor X 7→ XV = X×W V is an equivalence of categories between the category

of étale schemes over W and the category of étale schemes over V .

Lemma 2.2 is well-known, we include a proof for the sake of completeness.

Lemma 2.2. Suppose that K is perfect, V and W are K-varieties, and f : V → W is a
morphism of K-varieties that is a universal homeomorphism. Then the induced map V (K)→
W (K) is a bijection.

Proof. Note that f is bijective as f is a homeomorphism. Therefore V (K) → W (K) is
injective. We show that V (K) → W (K) is surjective. Fix b ∈ W (K). As f is surjective
there is a ∈ V such that f(a) = b. Let κ(a)/κ(b) be the induced field extension and note
that κ(b) = K. By Fact 2.1.1 f is integral, hence κ(a)/K is algebraic. By Fact 2.1.2 κ(a)/K
is purely inseparable, so κ(a) = K as K is perfect. Therefore a ∈ V (K). �

Proposition 2.3. Suppose that K is perfect, V and W are K-varieties, and f : V → W
is a K-variety morphism and a universal homeomorphism. Then the map V (K) → W (K)
induced by f is an EK-homeomorphism.

Proof. By Lemma 2.2 V (K) → W (K) is a bijection. By Fact 1.13.1 V (K) → W (K) is
EK-continuous. We show that V (K) → W (K) is EK-open. Let X be a K-variety and
g : X → V be étale. It is enough to show that f(g(X(K)) is étale open. By Fact 2.1.3 there
is an étale morphism h : Y → W such that g : X → V is the base change of h along f .
Taking K-points, we have the following pullback square.

X(K)
fh //

g

��

Y (K)

h
��

V (K)
f // W (K)

Note that both f and fh are bijections. Hence f(g(X(K)) = h(Y (K)), which is étale
open. �

Next we look at Galois actions. Let σ : K → K be an automorphism, we also use σ to
denote the map σ : Kn → Kn (c1, ..., cn) 7→ (σ(c1), ..., σ(cn)). We have the following:

Proposition 2.4. σ : Kn → Kn as defined above is a homeomorphism with respect to EK.

Proof. The map σ : Kn → Kn can be seen as the induced by the dual of the following
isomorphism of rings (abusing notation, it is still denoted by σ):

σ : K[x1, ..., xn]→ K[x1, ..., xn] : xi 7→ xi c 7→ σ(c) for c ∈ K
12



We use σ∗ to denote the induced scheme morphism An → An. Note that σ∗ is invertible.
It therefore suffices to show that σ : Kn → Kn is EK-open. Let e : U → An

K be an étale
morphism of K-varieties. We have eσ : Uσ → An

K such that the following is a pullback
diagram:

Uσ U

An
K An

K

eσ e

σ∗

Note that σ∗(eσ(Uσ(K)) = e(U(K)) by construction. This finishes the proof. �

Corollary 2.5. Suppose that φ : K → K is an automorphism. Then φ is an EK-homeomorphism.
In particular if K is perfect and Char(K) = p > 0 then the Frobenius map K → K given by
a 7→ ap is an EK-homeomorphism.

It should also be noted that both Proposition 2.4 and Corollary 2.5 are more or less obvious
as the étale open topology is defined in an automorphism-invariant manner.

Corollary 2.6. Suppose that K is not separably closed and φ : K → K is an automor-
phism of K. Then the fixed field of φ is an EK-closed subset of K. If A is a collection of
automorphisms of K then the fixed field of A is an EK-closed subset of K.

The second claim of Corollary 2.6 follows directly from the first. The first follows from
Corollary 2.5, Fact 1.16, and the elementary fact that if T is a Hausdorff topological space
and f : T → T is continuous then the set of fixed points of f is closed. Corollary 2.6 fails
when K is separably closed, as any infinite proper subfield of K is dense and co-dense in the
Zariski topology on K.

Suppose that L/K is a field extension and V is a K-variety. Since one can naturally identify
V (L) with VL(L), we wish to equip the set V (L) of L-points of V with the EL-topology. And
for an intermediate field, we identify V (F ) ⊆ V (L) via the canonical embedding. A slight
technical issue arises as VL might be a non-reduced L-scheme, and hence not an L-variety,
when L/K is inseparable. In [JTWY] we handled this issue by working with the slightly
broader class of separated finite type L-schemes. However, at present we only need the case
when L/K is separable, and in this case VL is an L-variety [Sta20, 030U].

Corollary 2.7 follows by relativizing the proof of Proposition 2.4 to σ ∈ Aut(L/K).

Corollary 2.7.

(1) Suppose that L is a field. If φ : L→ L is an automorphism with fixed field K and V
is a K-variety, then the map V (L)→ V (L) induced by φ is an EL-homeomorphism.

(2) If G is a subgroup of the automorphism group of L with fixed field K and V is a
K-variety, then the action of G on V (L) is an action by EL-homeomorphisms.

Corollary 2.8. Suppose that L/K is a Galois field extension, L is not separably closed, and
V is a K-variety. If K ⊆ F ⊆ L is a subfield then V (F ) is an EL-closed subset of V (L).

Proof. The case when V is quasi-projective follows from Corollary 2.7, the second claim
of Fact 1.16, and the fact that the fixed points of a continuous self-map of a Hausdorff
topological space form a closed set. We treat the case when V is an arbitrary K-variety. Let
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U1, . . . , Uk be K-affine open subvarieties of V that cover V . Note that the action of Gal(L/K)
on V (L) preserves each Ui(L). Fix a subfield K ⊆ F ⊆ L. The quasi-projective case shows
that Ui(F ) is an EL-closed subset of Ui(L) for each i. Note that Ui(L) ∩ V (F ) = Ui(F ) for
each i. It follows that V (F ) is closed. �

We now recall Fact 2.9, proven in Fehm [Feh10].

Fact 2.9. Suppose that L is large, K is a proper subfield of L, and V is a positive dimensional
irreducible K-variety with a smooth K-point. Then |V (L) \ V (K)| = |L|.

Recall that large fields are closed under algebraic extensions. Suppose that K is large, L/K
is Galois, L is not separably closed, and V is a positive-dimensional irreducible K-variety
with a smooth K-point. Corollary 2.8 shows that F 7→ V (F ) gives a morphism from the
lattice of intermediate subfields of L/K to the lattice of EL-closed subsets of V (L). Fact 2.9
shows that this morphism is injective. For example if the maximal abelian extension Qab of
Q is large as conjectured then we can take K = Qab and L = Qsolv.

3. Proof of Theorem G

3.1. The characteristic zero case. This case follows from Proposition 3.1 and an algebraic
analogue of Sard’s theorem.

Proposition 3.1. Suppose that f : V → W is a smooth morphism of K-varieties. Then
V (K)→ W (K) is EK-open.

Fact 3.2 is [BLR90, §2.2 Proposition 11].

Fact 3.2. Suppose that f : V → W is a smooth morphism of K-varieties, p ∈ V , and the
relative dimension of f at p is n ≥ 1. Then there is an open subvariety U of V containing p
such that the restriction of f to U factors as π ◦ g for an étale morphism g : U → W × An

and the projection π : W × An → W .

We now prove Proposition 3.1.

Proof. Fix p ∈ V (K). We show that V (K) → W (K) is open at p. Let n be the relative
dimension of f at p. Suppose n = 0. Then f is étale at p, so f is étale on an open subvariety
U of V containing p. By Fact 1.13.4 the restriction of f to U(K) is EK-open. Suppose that
n ≥ 1. Let U , g : U → W × An, and π : W × An → W be as in Fact 3.2. By Fact 1.13.4
U(K) → W (K) × Kn is EK-open and by Fact 1.13.5 W (K) × Kn → W (K) is EK-open.
Hence the restriction of f to U(K) is EK-open. �

Fact 3.3 is an algebraic analogue of Sard’s theorem. See [MO15, Corollary 5.4.2] for a proof.
The statement in [MO15] only covers the case when W is regular, but the proof goes through
in the more general case.

Fact 3.3. Suppose that V → W is a dominant morphism of irreducible K-varieties.
The following are equivalent:

(1) the extension K(V )/K(W ) of function fields associated to V → W is separable,
(2) there is a dense open subvariety U of V such that U → W is smooth.

If Char(K) = 0 then there is a dense open subvariety U of V such that U → W is smooth.
14



Proposition 3.4 follows by Proposition 3.1 and Fact 3.3. This gives the characteristic zero
case of Theorem G.

Proposition 3.4. Suppose that V → W is a dominant morphism of irreducible K-varieties.
If the field extension K(V )/K(W ) associated to V → W is separable then there is a dense
open subvariety U of V such that U(K)→ W (K) is EK-open. In particular if Char(K) = 0
then there is a dense open subvariety U of V such that U(K)→ W (K) is EK-open.

3.2. The positive characteristic case. We treat the positive characteristic case of Theo-
rem G. We use the notation of Section 1.2. Fact 3.5 is [Sta20, Lemma 0CCB].

Fact 3.5. Suppose that Char(K) = p > 0 and V → W is a morphism of K-varieties. Then

Fr
(r)
V/W : V → V (pr) is a universal homeomorphism for every r ≥ 1.

Corollary 3.6 follows from Fact 3.5 and Proposition 2.3.

Corollary 3.6. Suppose that K is perfect, Char(K) = p > 0, V → W is a dominant
morphism of irreducible K-varieties, and r ≥ 1. Then the map V (K) → V (pr)(K) induced

by Fr
(r)
V/W is an EK-homeomorphism.

We now prove the positive characteristic case of Theorem G. Suppose that K is per-
fect, Char(K) = p > 0, and V → W is a dominant morphism of K-varieties. Ap-
plying Lemma 1.11 we fix r ≥ 1 such that K(V (pr))/K(W ) is separable. By Proposi-
tion 3.4 there is a dense open subvariety U ′ of V (pr) such that U ′(K) → W (K) is EK-

open. Let U = (Fr
(r)
V/W )−1(U ′). By Fact 1.8 U is a dense open subvariety of V . We factor

U(K)→ W (K) as
U(K)→ U ′(K)→ W (K).

By Corollary 3.6 U(K) → U ′(K) is an EK-homeomorphism. Thus U(K) → W (K) is EK-
open.

We now drop the assumption that Char(K) 6= 0.

Corollary 3.7. Suppose that K is perfect and f : V → W is a dominant morphism of
irreducible K-varieties with dimV = dimW . Then there is a dense open subvariety U of W
such that f−1(U)(K)→ U(K) is EK-open.

Proof. By Theorem G there is a dense open subvariety U ′ of V such that U ′(K) → W (K)
is EK-open. We have dimV \ U ′ < dimV . By Fact 1.2.4 we have

dim f(V ′ \ U) ≤ dimV ′ \ U < dimW.

Thus there is a dense open subvariety U of W which is disjoint from f(V \U ′). Then f−1(U)
is contained in U ′, hence f−1(U)(K)→ U(K) is EK-open. �

4. Proofs of Theorems A and B

4.1. Éz sets. Suppose that V is a K-variety. A basic éz set is a definable étale open subset
of a Zariski closed subset of V (K). An éz set is a finite union of basic éz sets. We first
establish some facts about éz sets and in particular show that the collection of éz sets is
closed under various operations. Note that any basic éz subset of V (K) is of the form O∩Y
where O is an étale open subset of V (K), Y is a Zariski closed subset of V (K), and O ∩ Y
is definable. We do not know if we can take O to be definable.
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Lemma 4.1. Suppose that K is perfect, V is a K-variety, and X is an éz subset of
V (K). Then there are pairwise disjoint smooth irreducible subvarieties V1, . . . , Vk of V and

X1, . . . , Xk such that each Xi is a definable étale open subset of Vi(K) and X =
⋃k
i=1Xi.

Proof. Let W1, . . . ,W` be closed subvarieties of V and Y1, . . . , Y` be such that each Yi is a
definable étale open subset of Wi(K) and X =

⋃`
i=1 Yi. After possibly replacing V with⋃`

i=1Wi we suppose that the Wi cover V . Applying Fact 1.4 we obtain pairwise disjoint

smooth irreducible subvarieties V1, . . . , Vk of V such that V =
⋃k
i=1 Vi and each Vi is either

contained in or disjoint from every Wj. For each i ∈ {1, . . . , k} let Xi =
⋃`
j=1(Vi(K) ∩ Yj).

Note that if Vi is contained in Wj then Vi(K) ∩ Yj is an étale open subset of Vi(K), hence
each Xi is an étale open subset of Vi(K). Finally note that each Xi is definable. �

Lemma 4.2. Let V be a K-variety and X be a subset of V (K). Then the following are
equivalent:

(1) X is éz,
(2) X is definable and a finite union of EK-open subsets of Zariski closed subsets of V (K).

Proof. It is clear that (1) implies (2). Suppose (2). Following the proof of Lemma 4.1 we
obtain pairwise disjoint subvarieties V1, . . . , Vk and X1, . . . , Xk such that each Xi is an étale
open subset of Vi(K) and X =

⋃k
i=1Xi. (Note that the Vi may not be smooth as K may

not be perfect.) By pairwise disjointness we have Xi = Vi(K) ∩X for each i. Thus each Xi

is definable. �

Proposition 4.3. Suppose that V,W, V1, . . . , Vk are K-varieties and V → W is a morphism.

(1) A finite union or finite intersection of éz subsets of V (K) is an éz subset.
(2) If X ⊆ W (K) is an éz set then the preimage of X under the map V (K) → W (K)

induced by V → W is an éz set.
(3) If X is an éz subset of Km+n and a ∈ Km then Xa = {b ∈ Kn : (a, b) ∈ X} is an éz

subset of Kn,
(4) If Xi is an éz subset of Vi(K) for each i ∈ {1, . . . , k} then X1 × . . .×Xk is an éz subset

of V1(K)× . . .× Vk(K) = (V1 × . . .× Vk)(K).

Proof. (1) Closure under finite unions is clear from the definitions. For the second claim
it suffices to suppose that X1, X2 are éz sets and show that X1 ∩ X2 is an éz set. Given
i ∈ {1, 2} we suppose that X i

1, . . . , X
i
k are basic éz sets such that Xi =

⋃k
j=1X

i
j. Then

X1 ∩X2 =
⋃
i,j∈{1,...,k}X

1
i ∩X2

j . Thus we may suppose that X1 and X2 are basic éz sets. It

suffices to show that X1∩X2 is an étale open subset of a Zariski closed set. Given i ∈ {1, 2}
we let Yi be a Zariski closed subset of V (K) and Oi be an étale open subset of V (K) such
that Xi = Yi ∩Oi. Then X1 ∩X2 = (Y1 ∩Y2)∩ (O1 ∩O2). Note that Y1 ∩Y2 is Zariski closed
and O1 ∩O2 is étale open.

(2) Let f be the induced map V (K)→ W (K). By (1) we may suppose that X is a basic éz
subset of W (K). Suppose that Y is a Zariski closed subset of W (K) and O is an étale open
subset of W (K) such that X = Y ∩O. Then f−1(X) = f−1(Y )∩ f−1(O). Note that f−1(Y )
is Zariski closed and f−1(O) is étale open.

(3) Let g : An → Am+n be the morphism given by x 7→ (a, x). Then Xa is the preimage of
X under the map Kn → Km+n induced by g. Apply (2).
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(4) For each i ∈ {1, . . . , n} we let πi be the projection V1(K)× . . .× Vn(K)→ Vi(K). Then

X1 × . . .×Xn = π−11 (X1) ∩ . . . ∩ π−1n (Xn).

Apply (1) and (2). �

Proposition 4.4. Every quantifier free definable subset of Kn is éz.

Proof. Fix f ∈ K[x1, . . . , xn]. Then {a ∈ Kn : f(a) = 0} is Zariski closed, hence éz.
Furthermore {a ∈ Kn : f(a) 6= 0} is Zariski open, hence éz. Apply Proposition 4.3. �

We now prove Theorem A.

Proof. By Lemma 4.2 it suffices to show that f(X) is a a finite union of étale open subsets
of Zariski closed subsets of W (K). Suppose that K is perfect, f : V → W is a morphism
of K-varieties, and X is an éz subset of V (K). We show that f(X) is an éz subset of

W (K). We have X =
⋃k
i=1Xi for basic éz sets X1, . . . , Xk. Then f(X) =

⋃k
i=1 f(Xi). By

Proposition 4.3.1 we may suppose that X is a basic éz subset of V (K). Let V ′ be a closed
subvariety of V such that X is an étale open subset of V ′(K). After replacing V with V ′

and f with the restriction V ′ → W we suppose that X is an étale open subset of V (K).

We apply induction on dimV . If dimV = 0 then by Fact 1.1 V is finite, hence X is finite,
so X is Zariski closed. Suppose dimV ≥ 1. Let V1, . . . , Vk be the irreducible components
of V . It suffices to show that each f(Vi(K) ∩ X) is an éz set. By Proposition 1.14 each
Vi(K)∩X is an étale open subset of Vi(K). Therefore we may suppose that V is irreducible.
Let W ′ be the Zariski closure of f(V ) in W , so V → W ′ is dominating. This implies
that W ′ is irreducible. By Theorem G there is a dense open subvariety U of V such that
U(K) → W ′(K) is EK-open. Hence f(U(K) ∩ X) is an étale open subset of W (K). Let
V ′ := V \ U . Then f(X) = f(U(K) ∩ X) ∪ f(V ′(K) ∩ X). As U is dense in V we have
dimV ′ < dimV , so by induction f(V ′(K) ∩X) is a éz set. �

Finally, we prove Theorem B. Suppose that K is perfect and X is an existentially definable
subset of Km. Let x = (x1, . . . , xm) and y = (y1, . . . , yn). Then there is a quantifier-free
formula φ(x, y) with parameters from K such that for any a ∈ Km we have a ∈ X if
and only if K |= ∃yφ(a, y). Let Y be the set of (a, b) ∈ Km+n such that K |= φ(a, b)
and π : Km+n → Km be the coordinate projection. Then π(Y ) = X. Then Y is éz by
Proposition 4.4 and π(Y ) is éz by Theorem A.

5. Sharpness and applications to large fields

Fact 5.1 is a theorem of Fehm [Feh10]. It was later generalized in [Ans19].

Fact 5.1. Suppose that K is perfect and large. Then K does not existentially define an
infinite proper subfield of K.

We describe a topological proof of Fact 5.1. Suppose K is perfect and L is an existentially
definable infinite proper subfield of K. By Theorem B L has EK-interior. By Proposition 5.2
below the étale open topology on K is discrete. By Fact 1.12 K is not large.

Given X ⊆ K we let XX−1 = {a/b : a ∈ X, b ∈ X \ {0}}.
Proposition 5.2. Suppose that τ is an affine invariant topology on K, U is a nonempty
τ -open neighbourhood of zero, and L is a proper subfield of K. If UU−1 6= K then τ is
discrete. If L has τ -interior then τ is discrete.
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An affine invariant topology on K is a topology that is invariant under any invertible affine
transformation K → K. The étale open topology on K is affine invariant by Fact 1.13.1.

Proof. If U = {0} then τ is discrete, so we may suppose that U contains a non-zero element.
Suppose UU−1 6= K. Fix a ∈ K \ UU−1. Note that a 6= 0. Therefore aU ∩ U is a τ -open
neighbourhood of zero and aU ∩U = {0}. Hence τ is discrete. Now suppose that L contains
a nonempty τ -open O ⊆ K. Fix a ∈ O. After replacing O with O − a we suppose that
0 ∈ O. Then OO−1 ⊆ L hence OO−1 6= K. Thus τ is discrete. �

We also see that Theorem B is sharp. Suppose K is large and imperfect. Let F be the
image of the Frobenius K → K. Then F is existentially definable, infinite, and has empty
EK-interior by Proposition 5.2, so F is not an éz subset of K.

Corollary 5.3 follows by the arguments above.

Corollary 5.3. If K is éz then K does not define an infinite proper subfield of K.

This allows us to easily give examples of large perfect fields which are not éz. We fol-
low [Feh10, Example 9]. Let L be a characteristic zero field and L((x, y)) be the fraction
field of the formal power series ring L[[x, y]]. Then L((x, y)) is large [Pop10], L((x, y)) de-
fines L[[x, y]] [JL89, Theorem 3.34], and by a theorem of Delon L[[x, y]] defines the subfield
Q [Del81, Theorem 2.1]. Therefore L((x, y)) is not éz.

We give two more applications to éz fields. Algebraically, real, and p-adically closed fields
are known to be one-cardinal. We first generalize this fact.

Corollary 5.4. Suppose that K is éz. Then K is one-cardinal, in particular |X| = |K| for
every infinite definable subset X of Km.

Proof. We suppose that X is an infinite definable subset of Km and produce a definable
Y ⊆ X2 and a definable surjection Y → K. As X is infinite there is a coordinate projection
π : Km → K such that π(X) is infinite. Then π(X) is éz and hence contains a nonempty
étale open subset O of K, fix c ∈ O. Let Y be the set of (a, b) ∈ X2 such that π(b) 6= c and
f : Y → K be given by f(a, b) = (π(a)− c)/(π(b)− c). Apply Proposition 5.2. �

A field topology on K is a V-topology if and only if it is induced by a non-trivial absolute
value or valuation. We refer to [EP05, Appendix B] for background on V-topologies.

Corollary 5.5. Suppose K is large and perfect and τ is a V-topology on K. Then the
following are equivalent:

(1) the étale open topology on K refines τ ,
(2) the étale open topology on V (K) refines the τ -topology for any K-variety V ,
(3) there is an infinite existentially definable subset of K which is not τ -dense in K.

Suppose furthermore that K is éz. Then (1)−(3) above hold if and only if there is an infinite
definable subset of K which is not τ -dense.

Proof. We show that (1) − (3) are equivalent, the last claim follows from our proof. The
equivalence of (1) and (2) holds without any assumptions on K, see [JTWY]. The following is
also shown in [JTWY]: the étale open topology on K refines τ if and only if some nonempty
étale open subset U of K is not τ -dense. Let U be such a set. Fix p ∈ U . Then there is
an étale K-variety morphism f : V → A1 such that p ∈ f(V (K)) ⊆ U . Then f(V (K)) is
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existentially definable, infinite, and not τ -dense. Suppose that X is an infinite existentially
definable subset of K which is not τ -dense. By Theorem A we have X = U ∪ Y where U is
étale open and Y is finite. Then U is nonempty, note that U is not τ -dense. �

6. Frobenius fields

In this section we prove Theorem 6.1. This completes the proof of Theorem D.

Theorem 6.1. Perfect Frobenius fields are éz.

Frobenius fields are by definition PAC, and PAC fields are large [Pop, 1.A.1]. We need to
show that every definable set is an éz set. We first recall some background.

Proposition 6.2. Suppose that K is large and perfect. Suppose that L is an expansion of the
language of rings by relation symbols, K is an L-structure which expands K by definitions,
and K is model complete. Suppose {a ∈ Km : K |= R(a)} and {a ∈ Km : K |= ¬R(a)} are
éz sets for any n-ary relation symbol R ∈ L. Then K is éz.

Proof. Suppose that X is an L-definable subset of Km. Then there is a quantifier free
L-definable subset Y of Km+n such that π(Y ) = X, where π is the coordinate projection
Km+n → Km. By Theorem A it suffices to show that a quantifier free L-definable subset
of Km is éz. By Proposition 4.3.1 it suffices to show that any atomic or negated atomic L-
formula φ(x1, . . . , xm) defines an éz subset of Km. Let x = (x1, . . . , xm). By Proposition 4.4
it suffices to consider two kinds of formulas:

(1) R(f1(x), . . . , fn(x)) for an n-ary R ∈ L and f1, . . . , fn ∈ K[x],
(2) ¬R(f1(x), . . . , fn(x)) for an n-ary R ∈ L and f1, . . . , fn ∈ K[x].

We treat case (1), the second case follows by the same argument. Let f = (f1, . . . , fn). Then

{a ∈ Km : K |= R(f1(a), . . . , fn(a))} = f−1 ({b ∈ Kn : K |= R(b)}) .
Apply Proposition 4.3.2. �

Fact 6.3 is [PW, Corollary 3.7].

Fact 6.3. The set of (a0, . . . , am−1) ∈ Km such that tm + am−1t
m−1 + . . . + a1t + a0 ∈ K[t]

is separable and irreducible is étale open.

We also apply Fact 6.4. Fact 6.4 was proven in unpublished but very influential work
of Cherlin, van den Dries, and Macintyre [CvdDM80, Theorem 41]. (Frobenius fields are
referred to as “Iwasawa fields” in [CvdDM80].)

Fact 6.4. Let L be the expansion of the language of rings by an m-ary relation symbol Rm

for all m ≥ 2 and K be the expansion of K to an L-structure where for all a0, . . . , am−1 ∈ K
K |= Rm(a0, . . . , am−1) if and only if K |= ∃t(tm + am−1t

m−1 + . . .+ a1t+ a0 = 0).

If K is a perfect Frobenius field then K admits quantifier elimination.

Theorem 6.1 follows from Fact 6.4, Proposition 6.2, and Proposition 6.5 below.

Proposition 6.5. Suppose K is perfect. For any m ≥ 2 both

Xm := {(a0, . . . , am−1) ∈ Km : K |= ∀t(tm + am−1t
m−1 + . . .+ a1t+ a0 6= 0)}, and

Ym := {(a0, . . . , am−1) ∈ Km : K |= ∃t(tm + am−1t
m−1 + . . .+ a1t+ a0 = 0)}

are éz.
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For each a = (a0, . . . , am−1) ∈ Km we let pa ∈ K[t] be tm + am−1t
m−1 + . . .+ a1t+ a0.

Proof. Each Ym is éz by Theorem B. We apply induction on m ≥ 2 to show that Xm is éz.
As K is perfect an irreducible pa is also separable. A quadratic or cubic polynomial does
not have a root if and only if it is irreducible, so by Fact 6.3 X2 and X3 are both EK-open,
hence éz. Suppose m ≥ 4. If a ∈ Km and pa does not have a root in K then either:

(1) pa is irreducible, or
(2) there is k ∈ {2, . . . ,m − 2}, b ∈ Kk, and c ∈ Km−k such that pa = pbpc and neither

pb nor pc has a root in K.

By Fact 6.3 the set of a ∈ Km such that pa is irreducible is étale open, so it suffices to show
that the set a ∈ Km satisfying (2) is an éz set. It is enough to fix k ∈ {2, . . . ,m − 2} and
show that

{a ∈ Km : ∃(b, c) ∈ Kk ×Km−k[(pa = pbpc) ∧ (b ∈ Xk) ∧ (c ∈ Xm−k)]}
is an éz set. By Theorem A it suffices to show that

{(a, b, c) ∈ Km ×Kk ×Km−k : (pa = pbpc) ∧ (b ∈ Xk) ∧ (c ∈ Xm−k)}
is an éz set. By Proposition 4.3.1 it suffices to show that both

(1) {(a, b, c) ∈ Km ×Kk ×Km−k : pa = pbpc} and
(2) Km ×Xk ×Xm−k

are éz subsets of Km ×Kk ×Km−k. The first set is Zariski closed, hence éz. By induction
Xm and Xm−k are both éz. Apply Proposition 4.3.4. �

7. Dimension of éz sets, proof of Theorem C

We prove some natural facts about dimension of éz sets under the assumption that K is
large. Given a K-variety V and a subset X of V we let X be the Zariski closure of X in V .
Recall that dimX = dimX by definition. We first prove Lemma 7.1 which shows that the
results of this section apply to existentially definable sets in perfect large fields and arbitrary
definable sets in éz fields.

Lemma 7.1. Suppose that V is a K-variety, X is a definable subset of V (K), and either:

(1) X is existentially definable, or
(2) K is éz.

Then X is an éz subset of V (K).

Proof. Suppose (2). Let V1, . . . , Vk be affine open subvarieties of V that cover V . By Propo-
sition 4.3.1 it suffices to show that each X ∩ Vi(K) is an éz set. We suppose that V is
affine. Let V → Am be a closed immersion. Let X ′ be the image of X under V (K)→ Km,
then X ′ is a definable set and is hence an éz set. Note that X is the preimage of X ′ under
V (K) → Km and apply Proposition 4.3.2. If X is existentially definable then the relevant
objects are existentially definable, and the same argument shows that X is éz. �

Theorem 7.2. Suppose that K is perfect and large, V is a K-variety, and X is a nonempty
éz subset of V (K). Let W1, . . . ,Wk be smooth irreducible subvarieties of V , and X1, . . . , Xk

be such that each Xi is a nonempty étale open subset of Wi(K) and X =
⋃k
i=1Xi. Then

dimX = max{dimW1, . . . , dimWk}.
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Lemma 4.1 ensures that such Wi and Xi exist.

Proof. By Fact 1.15 each Ui is Zariski dense in Wi and is hence Zariski dense in W i. Thus
X =

⋃k
i=1Wi. By Fact 1.3

dimX = dim
k⋃
i=1

Wi = max{dimW1, . . . , dimWk} = max{dimW1, . . . dimWk}.

�

Lemma 7.3. Suppose that K is large, V is a smooth irreducible K-variety, and X is a
nonempty éz subset of V (K). Then X = O ∪ Y where O is a definable étale open subset of
V (K) and Y is not Zariski dense in V (K).

Lemma 7.3 applies in particular to V = Am. Note that an éz subset of V (K) agrees Zariski-
locally at the generic point of V with a (possibly nonempty) étale open subset of V (K).

Proof. Note that V (K) is Zariski dense in V by Fact 1.15. Let V1, . . . , Vk be closed subva-
rieties of V (K) and X1, . . . , Xk be such that each Xi is an étale open subset of Vi(K) and

X =
⋃k
i=1Xi. By irreducibility of V each Vi is either nowhere Zariski dense in V or agrees

with V . Let I be the set of i ∈ {1, . . . , n} such that Vi = V . Then Xi is an étale open subset
of V (K) when i ∈ I and Xi is not Zariski dense in V (K) when i /∈ I. Let U =

⋃
i∈I Xi and

Y =
⋃
i/∈I Xi. �

Proposition 7.4. Suppose that K is large, V is a smooth irreducible K-variety, and X is a
nonempty éz subset of V (K). Then X has EK-interior in V (K) if and only if dimX = dimV .

Again, Proposition 7.4 applies to V = Am.

Proof. By irreducibility dimX = dimV if and only if X is Zariski dense in V . By Lemmas 7.1
and 7.3 we have X = U ∪ Y where U ⊆ V (K) is étale open and Y ⊆ V (K) is not Zariski
dense. By Fact 1.15 Y has empty EK-interior in V (K). Hence X has EK-interior in V (K)
if and only if U 6= ∅. Again by Fact 1.15 U 6= ∅ if and only if X is Zariski dense in V . �

Corollary 7.5 follows directly from Proposition 7.4,

Corollary 7.5. Suppose that K perfect and large and V is a K-variety. Then every éz
subset of V (K) has nonempty EK-interior in its Zariski closure.

Lemma 7.6. Suppose that K is large and perfect, V is a nonempty irreducible K-variety,
and X is an éz subset of V (K). Then there is a smooth subvariety W of V , a nonempty
étale open subset O of W (K), and a dense open subvariety U of V such that O = X ∩U(K)
and dimX \O < dimX.

In particular an éz subset of V (K) is, modulo a set of lower dimension, an étale open subset
of the K-points of a smooth subvariety of V . The elements of O can be reasonably considered
to be smooth points of X, so Lemma 7.6 informally shows almost every point of X is smooth.

Proof. By Lemma 4.1 there are pairwise disjoint smooth irreducible subvarieties V1, . . . , Vk
of V and X1, . . . , Xk such that each Xi is a nonempty étale open subset of Vi(K) and

X =
⋃k
i=1Xk. Let dimX = d. By Theorem 7.2 we have d = max{dimV1, . . . , dimVk} and

dimVi = dimXi for each i. We may suppose that there is ` ∈ {1, . . . , k} such that dimVi = d
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when i ≤ ` and dimVi < d when ` < i. Let Z =
⋃k
i=1 Vi \ Vi. By Fact 1.5 each Vi \ Vi is a

closed subvariety of V , so Z is a closed subvariety of V . By pairwise disjointness we have
Vi \ Z = Vi \

⋃
j 6=i Vj for all i ∈ {1, . . . , k}. It follows that each Xi \ Z is a (possibly empty)

étale open subset of X. By Fact 1.2 and Fact 1.3 we have

dimZ = max{dimV2 \ V2, . . . , dimVk \ Vk}
< max{dimV2, . . . , dimVk} = d.

Hence Xi \ Z is nonempty when i ≤ `. Let U = V \ (Z ∪ V`+1 ∪ . . . ∪ Vk), so U is a
dense open subvariety of V . If i ≤ ` then Vi ∩ U is disjoint from Vj for j 6= i. Let
O = X ∩ U = (X1 ∩ U) ∪ . . . ∪ (X` ∩ U). By Fact 1.15 Xi ∩ U is nonempty when i ≤ `.

Let W =
⋃`
i=1 Vi ∩ U , note that W is isomorphic as a K-variety to the disjoint union of the

Vi∩U . If i ≤ ` then U is Zariski dense in Vi. Hence W is smooth as each Vi is smooth. Each
Xi ∩ U is an EK-open subset of W (K), hence O is an EK-open subset of W (K). We have

dimV \ U = max{dimZ, dimV`+1, . . . , dimVk} < d.

Hence dimX \O < d. �

Proposition 7.7. Suppose that K is perfect and large, V is a K-variety, X ⊆ Y are éz
subsets of V (K), and dimX = dimY . Then X has nonempty EK-interior in Y .

The converse to Proposition 7.7 fails, e.g. let X = {(0, 1)} and Y = X ∪ {(t, 0) : t ∈ K}.

Proof. Applying Lemma 7.6 to Y we let W be a smooth subvariety of V , O be an étale
open subset of W (K), and U be a dense open subvariety of V such that Y ∩ U = O and
dimY \O < dimX. By Fact 1.3 dimX = max{dimX∩O, dimX\O}, so dimX∩O = dimX.
By Proposition 7.4 X ∩O has nonempty EK-interior in W (K), so X ∩O has nonempty EK-
interior in Y . �

We give an application to definable groups in éz fields. Recall that a K-algebraic group is a
group object in the category of K-varieties.

Corollary 7.8. Suppose that K is large, G is a K-algebraic group, and H is an éz subgroup
of G(K). Then H is an étale open subgroup of its Zariski closure in G(K). Thus if K is éz
then any definable subgroup of G(K) is an étale open subgroup of its Zariski closure.

Van den Dries showed that if K is a characteristic zero Henselian field then any definable
subgroup of Gln(K) is a valuation open subgroup if its Zariski closure [vdD89, 2.20].

Proof. Let W be the Zariski closure of H in G. Then W is a K-algebraic subgroup of G, so
W (K) is a Zariski closed subgroup of G(K). Note that if a ∈ W (K) then x 7→ ax gives a K-
variety isomorphism W → W , and hence induces an EK-homeomorphism W (K)→ W (K).
By Corollary 7.5 H contains a nonempty étale open O ⊆ W (K). We have H =

⋃
a∈H aO,

so H is an étale open subset of W (K). �

We now discuss large simple fields. We assume some familiarity with forking in simple
theories. We refer to [Pil98, Section 3] for background on f -generics in groups definable in
simple theories, note that Pillay uses “generic” where we use “f -generic”.

Corollary 7.9. Suppose that K is perfect, bounded, and PAC and X is a definable subset
of Kn. Then X is f -generic for (Kn,+) if and only if X has nonempty EK-interior in Kn.
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Bounded PAC fields are simple [Cha99], all known infinite simple fields are bounded PAC,
and infinite simple fields are conjectured to be bounded PAC. Pseudofinite fields and infinite
algebraic extensions of finite fields are perfect, bounded, and PAC. Corollary 7.9 follows from
Corollary 7.10 below and the fact that perfect bounded PAC fields are éz.

Corollary 7.10. Suppose that K is perfect, large, and simple. Let X be an éz subset of Kn.
Then X is f -generic for (Kn,+) if and only if X has nonempty EK-interior. In particular
an existentially definable subset of Kn is f -generic for (Kn,+) if and only if it has nonempty
EK-interior.

Corollary 7.10 follows from Lemma 7.3, Fact 7.11, and Lemma 7.12 below. Fact 7.11 is
proven in [PW].

Fact 7.11. If K is large and simple then any nonempty definable étale open subset of Kn is
f -generic for (Kn,+).

Lemma 7.12. Suppose that K is infinite and simple, X is a definable subset of Kn, and X
is not Zariski dense in Kn. Then X is not f -generic for (Kn,+).

In the proof below we use “f -generic” for “f -generic for (Kn,+)”.

Proof. It suffices to show that the Zariski closure of X is not f -generic. Thus we may
suppose that X is Zariski closed, in particular X is quantifier free definable. Let K be a
highly saturated elementary expansion of K and Kalg be the algebraic closure of K. Let
Y be the subset of Kn defined by the same formula as X and Y ′ be the Kalg-definable set
defined by the same (quantifier free) formula as X. Fix a ∈ Kn such that the type of a over
K is f -generic. It is enough to show that a + Y divides over K. Let (ai)i∈I be a K-Morley
sequence in a over K. Then (ai)i∈I is also a Morley sequence in Kalg. Then a + Y ′ divides
in Kalg over K as dim a+ Y ′ < n, so by Kim’s lemma, (ai)i∈I witnesses dividing in Kalg. It
is now easy to see that a+ Y divides over K. �

8. Algebraic boundedness, proof of Theorem E

In this section we show that éz fields are algebraically bounded. Let Z be a K-variety. Given
a subvariety W of Z × A1 we let Wa be the scheme-theoretic fiber of W over a ∈ Z. Given
a subset X of Z(K) × K we let Xa be the set-theoretic fiber of X above a ∈ Z(K), i.e.
{b ∈ K : (a, b) ∈ X}. Recall that the K-points of the scheme-theoretic fiber agree with the
set-theoretic fiber of the K-points, i.e. Wa(K) = W (K)a.

Theorem 8.1. Suppose that K is éz, Z is a K-variety, and X ⊆ Z(K) × K is definable.
Then there are closed subvarieties V1, . . . , V` of Z × A1 such that for any a ∈ Km with
0 < |Xa| <∞ there is i such that (Vi)a is finite and contains Xa.

We first explain how Theorem 8.1 implies that éz fields are algebraically bounded. Alge-
braically closed fields are algebraically bounded [vdD89, 2.9], so we suppose that K is éz and
not algebraically closed. Let X ⊆ Km×K be definable, and V1, . . . , V` be closed subvarieties
of Am × A1 as above. Applying Fact 1.6 we obtain for each Vi a polynomial fi such that
Vi(K) = {a ∈ Km ×K : fi(a) = 0}. Algebraic boundedness follows.

We first prove Lemma 8.2.
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Lemma 8.2. Suppose that K is large, Z is a K-variety, W is a subvariety of Z × A1, O
is a nonempty étale open subset of W (K), and a ∈ Z(K) lies in the image of the projection
O → Z(K). Then Oa is finite if and only if Wa is finite.

Proof. The right to left implication is trivial. Suppose that Wa is infinite. Then Wa is a dense
open subvariety of A1, so Wa(K) is a cofinite subset of K. Let Wa → W be the morphism
given by x 7→ (x, b). Then Oa is the preimage of O under the induced map Wa(K)→ W (K).
Therefore Oa is a nonempty étale open subset of Wa(K), hence Oa is an étale open subset
of K. Hence Oa is infinite by largeness. �

Lemma 8.3. Suppose that K is large, Z is a K-variety, and X ⊆ Z(K) ×K is an éz set.
Then {a ∈ Z(K) : 0 < |Xa| <∞} is definable and there is n such that if a ∈ Z(K) and Xa

is finite then |Xa| ≤ n. Particularly, if K is éz then K eliminates ∃∞.

Proof. The second claim follows easily from the first claim, so we only prove the first claim.
Let W1, . . . ,Wk be closed subvarieties of Z × A1 and X1, . . . , Xk be such that each Xi is a
nonempty definable étale open subset of Wi(K) and X =

⋃k
i=1Xi. For each i let Yi be the

set of a ∈ Z such that |(Wi)a| <∞. By Fact 1.2 each Yi is a Zariski open subset of Z, hence
Yi ∩Z(K) is definable. For each i let Pi be the set of a ∈ Z(K) such that a ∈ π(Xi) implies
a ∈ Yi. Note that each Pi is definable. Lemma 8.2 shows that for any a ∈ Z(K), (Xi)a is
finite if and only if a ∈ Pi. Therefore 0 < |Xa| < ∞ if and only if a ∈ π(X) and a ∈ Pi for
all i. Finally note that π(X) is definable.

Fact 1.2 shows that for each i there is ni such that if a ∈ Z and |(Wi)a| <∞ then |(Wi)a| ≤ ni.
By what is above we have |Xa| < ∞ if and only if there is I ⊆ {1, . . . , k} such that
Xa ⊆

⋃
i∈I(Wi)a and |(Wi)a| <∞ for all i ∈ I. Thus |Xa| <∞ implies |Xa| < n1 + . . .+ nk

for all a ∈ Z(K).
�

We now prove Theorem 8.1.

Proof. By Lemma 8.1 {a ∈ Z(K) : 0 < |Xa| < ∞} is definable. After possibly replacing X
with {(a, b) ∈ X : 0 < |Xa| < ∞} we suppose that Xa is finite for all a ∈ Z(K). Applying
Lemma 4.1 we fix smooth irreducible subvarieties W1, . . . ,Wk of Z×A1 and X1, . . . , Xk such
that each Xi is an étale open subset of Wi(K) and X =

⋃k
i=1Xi. By Fact 1.15 each Xi is

Zariski dense in Wi. Let π : Z × A1 → Z be the projection.

Claim 8.4. Fix i and let Yi = {a ∈ π(Wi) : |(Wi)a| <∞}. Then dimπ(Wi)\Yi < dim π(Wi).

Proof. By Fact 1.2 π(Wi) is constructible and Yi is a Zariski open subset of π(Wi). Note
that π(Xi) is Zariski dense in π(Wi) as Xi is Zariski dense in Wi. By Lemma 8.2 π(Xi) ⊆ Yi,
so Yi is Zariski dense in π(Xi). By Fact 1.2 dim π(Wi) \ Yi < dimπ(Wi). �Claim

Let W =
⋃k
i=1Wi. Then X is Zariski dense in W , hence π(X) is Zariski dense in π(W ).

We apply induction on dimπ(X) = dim π(W ). If dimπ(X) = 0 then π(X) is finite, so X
is finite, hence Zariski closed, and we take ` = 1, V1 = X. Suppose dimπ(W ) ≥ 1. Let

T =
⋃k
i=1[π(Wi) \ Yi]. By the claim and Fact 1.3 we have

dimT = max{dimπ(W1) \ Y1, . . . , dimπ(Wk) \ Yk}
< max{dimπ(W1), . . . , dimπ(Wk)} = dimπ(W ).
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As T is constructible X∩ [T ×A1] is definable. Applying induction to X∩ [T ×A1] we obtain
closed subvarieties V1, . . . , V`−1 of Z ×A1 such that if a ∈ Z(K)∩ T and Xa 6= ∅, then there
is i ∈ {1, . . . , ` − 1} such that Xa ⊆ (Vi)a and (Vi)a is finite. Now suppose a ∈ Z(K) and
a /∈ T . By definition of Z each (Wi)a is finite, hence Wa is finite. Let V` = W . �

9. Theorem F generic continuity of definable functions

Proposition 9.1. Suppose that K is éz, X is a definable subset of Km, and f : X → Kn is
definable. Let E be the set of a ∈ X at which f is continuous. Then dimX \ E < dimX.

We do not know if E is definable. Proposition 9.1 shows that the set of points of discontinuity
is contained in a definable subset of X of dimension < dimX. Proposition 9.1 follows from
Proposition 9.2 and Lemma 7.6.

Proposition 9.2. Suppose that K is éz, V is a smooth irreducible subvariety of Am, O is a
nonempty definable étale open subset of V (K), and f : O → Kn is definable. Then there is
a dense open subvariety U of V such that f is continuous on O ∩ U(K).

Thus if K is éz then any definable function Km → Kn is EK-continuous on a dense Zariski
open subset of Km. Note that O ∩ U(K) is EK-dense in O by Fact 1.15. Proposition 9.2 is
a consequence of the following generic description of definable functions with codomain K.

Proposition 9.3. Suppose that K is éz, V is a smooth irreducible subvariety of Am, O is a
nonempty definable étale open subset of V (K), and f : O → K is definable. Then there is a
dense open subvariety U of V , definable étale open subsets O1, . . . , Ok of O, and irreducible
h1, . . . , hk ∈ K[x1, . . . , xm, t] such that O ∩ U(K) =

⋃k
i=1Oi and for every i ∈ {1, . . . , k}:

(1) hi(a, f(a)) = 0 and hi(a, t) is not constant zero for all a ∈ Oi,
(2) the closed subvariety Wi of U × A1 given by hi(x1, . . . , xm, t) = 0 is smooth,
(3) the graph of the restriction of f to Oi is an étale open subset of Wi(K),
(4) f is continuous on Oi.

We prove Proposition 9.3 by obtaining (1) − (3) and then applying Lemma 9.4 to get (4).
We Γ(f) be the graph of a function f .

Lemma 9.4. Suppose that K is large and perfect, V is a smooth irreducible K-variety, O is
a nonempty EK-open subset of V (K), W is a smooth irreducible subvariety of V × An with
|Wa| <∞ for all a ∈ V , and f : O → Kn is such that Γ(f) is an étale open subset of W (K).
Then there is dense open subvariety U of V such that f is continuous on U(K) ∩O.

Proof. Let π be the projection W → V . Then π(W ) contains O, so by Fact 1.15 π(W ) is
Zariski dense in V . Therefore π is dominant. By Fact 1.2.5 dimV = dimW . Corollary 3.7
gives a dense open subvariety U of V such that the projectionW (K)∩[U(K)×Kn]→ U(K) is
EK-open. Suppose that a ∈ U(K)∩O. We show that f is continuous at a. Let P ⊆ Kn be an
étale open neighbourhood of f(a). By Fact 1.13.5 U(K)×P is an étale open neighbourhood
of (a, f(a)), hence Q := π(Γ(f)∩ [U(K)×P ]) is an étale open neighbourhood of a. Suppose
that a′ ∈ Q. The projection Γ(f) ∩ [U(K) × P ] → U(K) is injective, so (a′, f(a′)) is in
Γ(f) ∩ [U(K)× P ], hence f(a′) ∈ P . �

Lemma 9.5 produces the irreducibility required by Proposition 9.3.
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Lemma 9.5. Suppose that K is algebraically bounded, X is a definable subset of Km, and
f : X → K is definable. Then there are irreducible g1, . . . , gk ∈ K[x1, . . . , xm, t] such that
for every a ∈ X there is i such that gi(a, t) is not constant zero and gi(a, f(a)) = 0.

Proof. As K is algebraically bounded there are h1, . . . , hk ∈ K[x1, . . . , xm, t] such that for
every a ∈ X there is i such that hi(a, t) is not constant zero and hi(a, f(a)) = 0. For each

i let h1i , . . . , h
`(i)
k ∈ K[x1, . . . , xm, t] be the irreducible factors of hi. Then for every a ∈ X

there are i, j such that hi(a, t) is not constant zero and hji (a, f(a)) = 0. Note that hji (a, t)
cannot be constant zero. �

We now prove Proposition 9.3.

Proof. Applying Theorem 8.1 and Lemma 4.1 we get irreducible hi, . . . , hk ∈ K[x1, . . . , xm, t]
such that for every a ∈ O there is i ∈ {1, . . . , `} such that hi(a, t) is not constant zero and
hi(a, f(a)) = 0. For each i let

Yi = {a ∈ U : hi(a, t) 6= 0, hi(a, f(a)) = 0}.
Note that each Yi is definable, hence éz, and the Yi cover O. Applying Lemma 7.3 we see
that for each i we have Yi = Oi ∪ Y ′i where Oi is a definable étale open subset of V (K)
and Y ′i is not Zariski dense in V . Let U be a dense open subvariety of V such that each
Y ′i is disjoint from U . After replacing O with U(K) ∩ O we may suppose that each Yi is
étale open. Let Wi be the closed subvariety of U × A1 given by hi(x1, . . . , xm, t) = 0, note
that Wi is irreducible as hi is irreducible. The image of the projection Wi → U contains Oi

and is hence dominant. For each i let Ui be the set of a ∈ V such that |(Wi)a| < ∞. By
Fact 1.2 each Ui is an open subvariety of V . If a ∈ Oi then |(Wi)a| < ∞ as hi(a, t) is not
constant zero, so each Ui is Zariski dense in V by Fact 1.15. After replacing U with

⋂n
i=1 Ui

we suppose that each projection Wi → U has finite fibers. For each i let W ′
i be the singular

locus of Wi. As K is perfect W ′
i is a proper closed subvariety of Wi so dimW ′

i < dimWi.
Let π be the projection U × A1 → U . Hence

dimπ(W ′
i ) = dimW ′

i < dimWi = dimU.

where the equalities hold by Fact 1.2 as the projection Wi → U has finite fibers. Hence each
π(W ′

i ) is not Zariski dense in U , so there is a nonempty open subvariety U ′ of U which is
disjoint from each π(W ′

i ). For each i, Wi ∩ [U ′×A1] is smooth, so after replacing U with U ′

we suppose that each Wi is smooth. We maintain our assumption that each Wi is irreducible
as an open subvariety of an irreducible variety is irreducible.

It remains to arrange that the graph of the restriction of f to Oi is an étale open subset
of Wi(K). Let fi be the restriction of f to Oi. Then Γ(fi) is an éz subset of Wi(K), so
by Lemma 7.3 Γ(fi) = Pi ∪ Zi where Pi is a definable étale open subset of Wi(K) and Zi
is not Zariski dense in Wi. Let Z ′i be the Zariski closure of Zi in Wi. As above we have
dimπ(Z ′i) = dimZ ′i < dimWi = dimU . After again shrinking U as above we suppose that
U is disjoint from each π(Z ′i). It follows that Γ(fi) = Pi for all i. �

We now prove Proposition 9.2

Proof. Let f = (f1, . . . , fn). Applying Proposition 9.3 we obtain for each i ∈ {1, . . . , n} a
dense open subvariety Ui of V , irreducible polynomials hi1, . . . , hi` ∈ K[x1, . . . , xm, t], and
definable étale open subsets Oi1, . . . , Oi` of O such that for each i:
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(1) O ∩ Ui(K) =
⋃`
j=1Oij,

(2) hij(a, fi(a)) = 0 and hij(a, t) is non-constant zero for all a ∈ Oij,
(3) the graph of the restriction of fi to Oij is an étale open subset of Wij(K), where Wij

is the closed subvariety of Ui × A1 given by hij(x1, . . . , xm, t) = 0.

Let U =
⋂n
i=1 Ui, then U is a dense open subvariety of V . After replacing each Oij with

Oij ∩ U(K) we suppose U(K) contains every Oij. For each σ : {1, . . . , n} → {1, . . . , `} let
Oσ be

⋂n
i=1Oiσ(i). Note that O ∩U(K) is the union of the Oσ. It is enough to show that for

every σ there is a dense open subvariety Uσ of V such that f is continuous on Oσ ∩ Uσ(K).
Hence we fix such σ such that Oσ is nonempty, let O = Oσ and hi = hiσ(i). For each i let
Wi be the closed subvariety of U × A1 given by hi(x1, . . . , xm, t) = 0. Then the graph of
the restriction of each fi to O is an étale open subset of Wi(K). Following the argument of
Proposition 9.3 we may also suppose that |(Wi)a| <∞ for all a ∈ U and i ∈ {1, . . . , n}.
Now let W be the closed subvariety of U × Am given by

h1(x1, . . . , xm, t) = . . . = hn(x1, . . . , xm, t) = 0.

For each i ∈ {1, . . . ,m} let πi : U ×Am → U ×A1 be given by πi(x, y1, . . . , ym) = (x, yi) and
let ρi : U(K)×Km → U(K)×K be the induced map on K-points. Then

W = π−11 (W1) ∩ . . . ∩ π−1n (Wn) and Γ(f) = ρ−11 (Γ(f1)) ∩ . . . ∩ ρ−1n (Γ(fn))

Note that each π−1i (Wi) is a closed subvariety of U × Am and each ρ−1i (Γ(fi)) is an étale
open subset of π−1i (Wi)(K). Therefore Γ(f) is an étale open subset of W (K). Note also that
|Wa| <∞ for all a ∈ U . The proposition now follows by an application of Lemma 9.4. �

We finally proof Proposition 9.1.

Proof. Applying Lemma 7.6 let U be a dense open subvariety of Am, V be a smooth subva-
riety of Am, and O be a definable étale open subset of V (K) such that X ∩ U(K) = O and
dimX \ O < dimX. Let V1, . . . , Vk be the irreducible components of V . Applying Proposi-
tion 9.2 we fix for each i a dense open subvariety Ui of Vi such that f is continuous on each
X ∩ Ui(K). Note that E contains

⋃k
i=1X ∩ Ui(K) and dimX \

⋃k
i=1 Ui(K) < dimX. �
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