COMPARATIVE ANALYSES OF THIN PARABOLOIDAL SHELLS OF REVOLUTION UNDER GRAVITY LOAD

J. W. MAR
Associate Professor, MIT
F. Y. M. WAN
Lincoln Laboratory,MIT

INTRODUCTION

The motivation for the work described in this paper is the quest for larger and more accurate reflecting surfaces. Radio astronomers and radar designers are continually pushing on to higher and higher frequencies. To the structural designers, this means the construction of reflectors on the order of 100 or more feet in diameter with the restriction that these reflectors cannot deviate more than several hundredths of an inch from the desired shape of a paraboloidal shell of revolution. This is a very stringent specification and requires a deflection analysis of the structure to an accuracy that is more difficult to attain than, for example, that for stresses necessary for the strength design.

The behavior of thin elastic shells under prescribed loading conditions has been the subject of numerous investigations. Through these investigations, the equations governing the shell behavior and the associated boundary conditions have been established; the conditions for membrane behavior, the extent of the edge zone effect, the applicability of shallow shell theory, and other characteristics of a thin elastic shell have become well understood. However, there is a considerable hiatus between the equations that govern the shell behavior and the numerical results that are necessary for engineering purposes. The reason, of course, is the inherent complexities of the equations and their solutions. In view of the time and labor involved, it is not practical for a designer to tackle anew the solutions of the shell equations whenever the feasibility of a new design is in doubt. We hope that the work described here will be of aid and comfort to the structural engineer who must bear the responsibility for the integrity of his design and who must, therefore, assign numbers to his answers.

The paraboloidal shell of revolution under gravity load has been analyzed in detail (within the framework of small deflection theory) by: 1. membrane theory, 2. shallow shell theory, 3. asymptotic integration of the usual two-dimensional shell equations, and 4. numerical integration of the same shell equations. Appropriate comparisons of the numerical results clearly delineate the meaning of membrane behavior, edge zone effect, and shallow shell behavior, expose the limitations of each method of analysis, and make explicit the behavior of the shell. There are a few surprises or effects that have not been predicted by previous investigations. However, the numerical results do permit quantitative determination of conclusions that heretofore were only known qualitatively.

Consideration will be confined to a simply supported, closed paraboloidal shell of revolution (homogeneous, isotropic, and with constant thickness), whose axis of revolution coincides with the direction of gravity. Restricted though this case may be, it does illustrate most of the properties exhibited by the shell. Paraboloidal shells oriented arbitrarily with respect to the gravity axis (i.e., without axi-symmetry) and with other com-

OPERATED WITH SUPPORT FROM U.S. ARMY, NAVY, AND AIR FORCE

ABSTRACT

The deflections and stresses of paraboloidal shells of revolution under gravity load have been analyzed in detail by: 1. membrane theory, 2. shallow shell theory, 3. asymptotic integration of the shell equations, and 4. numerical integration of the same shell equations. Results of numerical calculations have been compiled in a form suitable for design. A description of these analyses for shells whose axis of revolution coincides with the direction of gravity is presented, and the characteristic behavior of the shells is discussed.
bimations of edge conditions have also been investigated [1]; the results await future publication. Computer programs (written for the IBM 7090) which analyze paraboloidal shells in a manner described herein will be deposited in SHARE in the near future.

FORMULATION OF THE PROBLEM

The equation of the middle surface of a paraboloidal shell of revolution is

\[y = \frac{r^2}{4f} \] \hspace{1cm} (1)

where \(f \) is the focal length of the paraboloid and \(r \) is the distance between the surface and the axis of revolution \(y \) (Figure 1). Corresponding expressions for the relevant geometric quantities are

\[A_1 = 2f\sqrt{1 + \gamma^2}, \quad A_2 = 2f\gamma, \quad A_{12} = 0 \]
\[R_1 = 2f(1 + \gamma^2)^{3/2}, \quad R_2 = 2f\sqrt{1 + \gamma^2} \]
\[\frac{1}{R_{12}} = 0 \] \hspace{1cm} (2)

where

\[\gamma = \frac{r}{2f} = \frac{dy}{dr} = \tan \varphi \]

In the derivation of the above expressions, we have implicitly chosen the non-dimensional parameters \(\gamma \) and \(\theta \) as the two middle surface coordinates \(\xi_1 \) and \(\xi_2 \). The corresponding base vectors \(\vec{a}_1, \vec{a}_2 \) and a third vector \(\vec{n} \) defined by the cross product of \(\vec{a}_1 \) and \(\vec{a}_2 \) form an orthogonal system of shell coordinates. In the subsequent development, the subscripts 1 and 2 will be replaced by \(r \) and \(\theta \) respectively wherever it seems more connotative.

The usual two-dimensional theory of thin elastic shells requires the satisfaction of the following equilibrium conditions by the stress resultants and bending moments.

\[\frac{d(\gamma N_r)}{d\gamma} - N_\theta + \frac{\gamma}{1 + \gamma^2} V_r = 2fp_0 h \gamma^3 \]
\[\frac{d(\gamma V_r)}{d\gamma} + \frac{\gamma}{1 + \gamma^2} N_r + \gamma N_\theta = 2fp_0 h \gamma \] \hspace{1cm} (3)
\[\frac{d(\gamma M_r)}{d\gamma} - M_\theta - 2f\gamma h \sqrt{1 + \gamma^2} V_r = 0 \]

where \(p_0 \) is the weight density of the shell.

If the displacements of the shell are small in comparison with the shell thickness, and if the transverse shear deformability is neglected, the strains of the shell can be related to the middle surface displacements and to the stress resultants and bending moments as follows

\[\epsilon_r = \tilde{\epsilon}_r - \frac{z}{2} \chi_r, \quad \epsilon_\theta = \tilde{\epsilon}_\theta - \frac{z}{2} \chi_\theta \] \hspace{1cm} (4)

where

\[\tilde{\epsilon}_r = \frac{1}{2f\sqrt{1 + \gamma^2}} \frac{du_r}{dy} - \frac{w}{2f[1 + \gamma^2]^{3/2}} \]
\[= \frac{N_r - \nu N_\theta}{Eh} \]
\[\tilde{\epsilon}_\theta = \frac{u_r}{2f\gamma\sqrt{1 + \gamma^2}} - \frac{w}{2f\sqrt{1 + \gamma^2}} \]
\[= \frac{N_\theta - \nu N_r}{Eh} \] \hspace{1cm} (5)

\[\chi_r = \frac{1}{2f\sqrt{1 + \gamma^2}} \frac{d\theta_r}{dy} - \frac{(M_r - \nu M_\theta)}{D(1 - \nu^2)} \]
\[\chi_\theta = \frac{\theta_r}{2f\gamma\sqrt{1 + \gamma^2}} - \frac{(M_\theta - \nu M_r)}{D(1 - \nu^2)} \]
\[\theta_r = \frac{u_r}{2f[1 + \gamma^2]^{3/2}} + \frac{1}{2f\sqrt{1 + \gamma^2}} \frac{dw}{dy} \] \hspace{1cm} (6)

The middle surface displacement components \(u_r \) and \(w \) are in turn related to the displacement components of the shell \(U_r \) and \(W \) by

\[U_r = u_r - z\theta_r, \quad W = w \] \hspace{1cm} (7)

It is to be understood that the system of shell equations (3), (5), and (6) is defined over the interval \(0 \leq \gamma \leq \gamma_0 \), where the corresponding \(r_1 \) and \(r_u \) are the lower and upper edge of the shell respectively (\(r_1 = 0 \) in the present consideration as the shell is closed at the apex). These equations are supplemented by the simply supported edge condition at \(\gamma_u \), i.e.,

\[w(\gamma_u) = u_r(\gamma_u) = M_r(\gamma_u) = 0 \] \hspace{1cm} (8)

and the condition of finiteness at the apex of the shell.

MEMBRANE BEHAVIOR

Under the proper circumstances, the paraboloidal shell will prefer to carry the applied loads by the development of the stress resultants \(N_r \) and \(N_\theta \) rather than by the development of the transverse shear resultant \(V_r \).
and bending moments \(M_r \) and \(M_\theta \). The investigation of the shell behavior can be simplified considerably if we assume \(\chi_r \) and \(\chi_\theta \) (and consequently \(M_r \), \(M_\theta \) and \(V_r \)) to be absent throughout the shell. In other words, the shell is assumed to have no bending stiffness. Such behavior of the shell is commonly called the membrane behavior although the term “momentless” behavior is more connotative. The so-called membrane equations are easily obtained by omitting the \(M_r \), \(M_\theta \) and \(V_r \) terms from the equations of equilibrium.

\[
\begin{align*}
\frac{d(\gamma N_r)}{d\gamma} - N_\theta &= 2f\rho_0 h \gamma^2 \\
\frac{N_r}{1 + \gamma^2} + N_\theta &= 2f\rho_0 h
\end{align*}
\]
\((9) \)

This system of equations can now be solved for \(N_r \) and \(N_\theta \) without any reference to the strain-displacement relations.

It should be observed that the system of equations for determining the displacements \(u_r \) and \(w \) is also equivalent to a 1st order differential equation (6). In other words, the membrane behavior is governed by a 2nd order system, and only one condition can be prescribed at each edge of the shell. It is clear from the equations themselves that one of these conditions must be given in terms of the displacements and that the remaining condition can be given either in terms of the displacements or the stress resultants, with the restriction that the shell may neither be constrained in the normal direction nor experience a transverse edge load [2], [3].

In our investigations, the shell is to be constrained in the tangential direction so that \(u_r (\gamma_u) = 0 \) and the condition of finiteness will be imposed upon \(N_r \) at the apex. Thus we have

\[
\begin{align*}
N_r &= \frac{2f\rho_0 h}{3\gamma^2} \left[(1 + \gamma^2)^{3/2} + C_1 \right] \\
N_\theta &= 2f\rho_0 h \left[1 - \frac{(1 + \gamma^2)^{3/2} + C_1}{3\gamma^2 \sqrt{1 + \gamma^2}} \right]
\end{align*}
\]
\((10) \)

where \(C_1 = -1 \). The displacement components \(u_r \) and \(w \) can now be obtained from (6).

\[
\begin{align*}
u_r &= \frac{4f^2 \rho_0}{3E\sqrt{1 + \gamma^2}} \left\{ (1 + \nu) \gamma \log_e \frac{\gamma}{1 + \nu} + \frac{3 - \nu}{2} \gamma^3 \right. \\
&+ \gamma^5 + C_1 \left[\gamma \sqrt{1 + \gamma^2} - (1 + \nu) \sqrt{1 + \gamma^2} \gamma \right. \\
&- (1 + \nu) \gamma \log_e \left(\frac{1 + \sqrt{1 + \gamma^2}}{\gamma} \right) \left. \right\} + C_2 \gamma \}
\end{align*}
\]
\((11) \)

\[
w &= \frac{4f^2 \rho_0}{3E\sqrt{1 + \gamma^2}} \left\{ (1 + \nu) \log_e \gamma - \frac{1 + \nu}{\gamma^2} + \frac{3 - \nu}{2} \gamma^2 \right. \\
&+ \gamma^4 + C_1 \left[2(\nu - 1) + \frac{1 + \nu}{\gamma^2} + \nu \gamma^2 \right] \\
&+ C_1 (1 + \nu) \left[\sqrt{1 + \gamma^2} - \log_e \left(\frac{1 + \sqrt{1 + \gamma^2}}{\gamma} \right) \right] + C_2 \gamma \}
\]

where \(C_2 \) is such that \(u_r (\gamma_u) = 0 \).

SHALLOW SHELL BEHAVIOR

A paraboloidal shell of revolution is considered shallow if

\[
\left(\frac{dy}{dr} \right)^2 = \gamma^2 \ll 1
\]
\((12) \)

so that

\[
1 + \gamma^2 \cong 1
\]

It can be shown [1] that if the approximation (12) is applied consistently, the system of shell equations can, without additional assumptions,\(^1\) be reduced to

\[
\begin{align*}
-D\nabla^2 \nabla^2 w + 2f\nabla^2 F &= (2f) \rho_0 h \\
A \nabla^2 \nabla^2 F + 2f \nabla^2 w &= -A (1 - \nu) 4f^3 \rho_0 h
\end{align*}
\]
\((13) \)

where

\[
\nabla^2 () = \frac{d^2 ()}{d\gamma^2} + \frac{1}{\gamma} \frac{d ()}{d\gamma}, \quad A = \frac{1}{Eh}
\]

\(F \) is a stress function from which \(N_r \) and \(N_\theta \) are derivable.

\[
\begin{align*}
N_r &= \frac{1}{4f^2} \left(\frac{1}{\gamma} \frac{dF}{d\gamma} \right), \quad N_\theta = \frac{1}{4f^2} \left(\frac{d^2 F}{d\gamma^2} \right) \\
we also have also \quad V_r &= \frac{-D}{8f^2} \frac{d (\nabla^2 w)}{d\gamma}, \quad u_r = \gamma (2f \bar{e}_\theta + w)
\end{align*}
\]
\((14) \)

\(^1 \)In order to arrive at an equivalent set of equations for an asymmetrically loaded shell, it is necessary to impose additional assumptions on the transverse shear resultants and the bending moments [4].
\[
M_r = \frac{-D}{4f^2} \left(\frac{d^2 w}{d\gamma^2} + \nu \frac{dw}{\gamma d\gamma} \right), \quad M_\theta = \frac{-D}{4f^2 \gamma} \left(\frac{d^2 w}{d\gamma^2} + \frac{1}{\gamma} \frac{dw}{d\gamma} \right)
\]

(15)

The solutions to the system (13) and the corresponding stress resultants, tangential displacement component, and bending moments are

\[
w = K_3 + K_1 \text{ber}(k\gamma) + K_2 \text{bei}(k\gamma) + K_4 \text{ker}(k\gamma) + K_6 \text{kei}(k\gamma) - \frac{4f^2 \rho_0 (1 - \nu)}{E} \frac{\gamma^2}{2}
\]

\[
F = \frac{Eh^2}{\sqrt{12(1 - \nu^2)}} \left[-K_1 \text{bei} + K_2 \text{ber} - K_4 \text{kei} + K_6 \text{ker} + K_6 \log_e(k\gamma)\right] + \frac{f \rho_0 h}{2} (2f\gamma)^2
\]

\[
N_r = \frac{Eh}{2fk\gamma} \left[-K_1 \text{bei}' + K_2 \text{ber}' - K_4 \text{kei}' + K_6 \text{ker}' + \frac{K_6}{(k\gamma)^2}\right] + f \rho_0 h
\]

\[
N_\theta = \frac{-Eh}{2f} \left(K_1 \text{ber}'' - K_2 \text{ber}'' + K_4 \text{kei}'' - K_6 \text{ker}'' + \frac{K_6}{(k\gamma)^2}\right) + f \rho_0 h
\]

\[
V_r = -DK^2 \left(-K_1 \text{bei}' + K_2 \text{ber}' - K_4 \text{kei}' + K_6 \text{ker}'\right)
\]

\[
M_r = -DK^2 \left[K_1 \left(\text{ber}'' + \frac{\nu \text{ber}'}{k\gamma}\right) + K_2 \left(\text{bei}'' + \frac{\nu \text{bei}'}{k\gamma}\right) + K_4 \left(\text{ker}'' + \frac{\nu \text{ker}'}{k\gamma}\right)\right]
\]

\[+ K_6 \left(\text{kei}'' + \frac{\nu \text{kei}'}{k\gamma}\right) + \frac{\rho_0 h^2}{12}
\]

(16)

\[
M_\theta = -DK^2 \left[K_1 \left(\text{ber}'' + \frac{\text{ber}'}{k\gamma}\right) + K_2 \left(\text{bei}'' + \frac{\text{bei}'}{k\gamma}\right) + K_4 \left(\text{ker}'' + \frac{\text{ker}'}{k\gamma}\right)\right]
\]

\[+ K_6 \left(\text{kei}'' + \frac{\text{kei}'}{k\gamma}\right) + \frac{\rho_0 h^3}{12}
\]

\[
u_r = \frac{1 + \nu}{k} \left(K_1 \text{bei}' - K_2 \text{ber}' + K_4 \text{kei}' - K_6 \text{ker}' + \frac{K_3 k\gamma}{1 + \nu} - \frac{K_6}{k\gamma}\right) + \frac{(1 - \nu)\rho_0}{E} \frac{(2f\gamma)^2}{2}
\]

where

\[
k^4 = 12 \left(1 - \nu^2\right) \left(\frac{2f}{h}\right)^2, \quad (\cdot)' = \frac{d(\cdot)}{d(k\gamma)}
\]

\[
I_0(\sqrt{i} k\gamma) = \text{ber}(k\gamma) + i \text{bei}(k\gamma), \quad K_0(\sqrt{i} k\gamma) = \text{ker}(k\gamma) + i \text{kei}(k\gamma)
\]

\[K_i, \ i = 1, 2, \ldots, 6, \] are constants of integration. The condition of finiteness can be met by setting \(K_4, K_5, \) and \(K_6\) equal to zero and the remaining constants can be determined by the simply supported edge condition (8). The portion of (16) which corresponds to the homogeneous solutions of (13) was first obtained by E. Reissner [5].

ASYMPTOTIC INTEGRATION

An equivalent form of the shell equations (3), (5), and (6) is the 4th order system [6], [7]
\[
\frac{d^2 \theta_r}{d\gamma^2} + \frac{1}{\gamma(1 + \gamma^2)} \frac{d\theta_r}{d\gamma} - \left(\frac{1}{\gamma^2} + \frac{\nu}{1 + \gamma^2} \right) \theta_r + \frac{2f\sqrt{1 + \gamma^2}}{D} U = 0
\]

(17)

\[
\frac{d^2 U}{d\gamma^2} + \frac{1}{\gamma(1 + \gamma^2)} \frac{dU}{d\gamma} - \left(\frac{1}{\gamma^2} + \frac{\nu}{1 + \gamma^2} \right) U - 2fEh\sqrt{1 + \gamma^2} \theta_r = \theta_0
\]

where

\[
\theta_0 = -\frac{4f\rho h\gamma}{3} [(1 + 3\nu) + C_1(1 + \gamma^2)^{-3/2}]
\]

\[
U = 2f\sqrt{1 + \gamma^2} V_r
\]

In terms of \(U\) and \(\theta_r\), the relevant stress resultants, bending moments, and displacement components are

\[
N_r = -\frac{V_r}{\gamma} + V_0 , \quad N_\theta = -\left(\frac{1}{2f\sqrt{1 + \gamma^2}} \frac{dU}{d\gamma} + \frac{V_0}{1 + \gamma^2} - 2f\rho h \right)
\]

\[
M_r = \frac{-D}{2f\sqrt{1 + \gamma^2}} \left(\frac{d\theta_r}{d\gamma} + \frac{\nu}{\gamma} \theta_r \right)
\]

\[
M_\theta = \frac{-D}{2f\sqrt{1 + \gamma^2}} \left(\frac{\nu}{\gamma} \frac{d\theta_r}{d\gamma} + \theta_r \right)
\]

\[
w = -\frac{2f}{\sqrt{1 + \gamma^2}} \int [(1 + \gamma^2)\theta_r - \gamma\bar{\varepsilon}_\theta] d\gamma
\]

\[
u_r = \gamma w + u_b \sqrt{1 + \gamma^2} = \gamma (2f\bar{\varepsilon}_\theta \sqrt{1 + \gamma^2} + w)
\]

where

\[
V_0 = \frac{2f\rho h\gamma}{3\gamma^2} [(1 + \gamma^2)^{3/2} + C_1]
\]

and \(u_b\) is the displacement in the radial direction. The system (17) can be reduced to a single 4th order differential equation in \(\theta_r\).

\[
L\theta_r + 12(1 - \nu^2) \left(\frac{2f}{h} \right)^3 (1 + \gamma^2) \theta_r = -\frac{2f\sqrt{1 + \gamma^2}}{D} \theta_0
\]

(19)

where \(L\) is a 4th order linear differential operator. For a thin paraboloidal shell of revolution, \((2f/h) \gg 1\), an asymptotic expansion of the solution in powers of \((h/2f)^{1/2}\) is appropriate. Retaining only the leading term of the corresponding expansions and observing that the leading intensity does not vary appreciably over a distance of the order \((2fh)^{1/2}\), we have the following expressions for the quantities of interest

\[
\theta_r = F_0 [e^{\psi} (C_3 \cos \psi + C_4 \sin \psi) + e^{-\psi} (C_5 \cos \psi + C_6 \sin \psi)]
\]

\[
V_r = \frac{Eh^2}{4f m^2} \int \frac{F_0}{\sqrt{1 + \gamma^2}} [e^{\psi} (C_3 \sin \psi - C_4 \cos \psi) - e^{-\psi} (C_5 \sin \psi - C_6 \cos \psi)]
\]

\[
N_r = \frac{\sqrt{h}}{2m} \int \sqrt{1 + \gamma^2} [e^{\psi} \left(C_3 \sin \left(\psi + \frac{\pi}{4} \right) - C_4 \cos \left(\psi + \frac{\pi}{4} \right) \right) - e^{-\psi} \left(C_5 \sin \left(\psi - \frac{\pi}{4} \right) - C_6 \cos \left(\psi - \frac{\pi}{4} \right) \right)]
\]

\[
N_\theta = \frac{\sqrt{h}}{2m} \int \sqrt{1 + \gamma^2} \left[e^{\psi} \left(C_3 \sin \left(\psi + \frac{\pi}{4} \right) - C_4 \cos \left(\psi + \frac{\pi}{4} \right) \right) - e^{-\psi} \left(C_5 \sin \left(\psi - \frac{\pi}{4} \right) - C_6 \cos \left(\psi - \frac{\pi}{4} \right) \right) \right]
\]

\[
M_r = -\frac{\sqrt{h}}{4m^3} \int \frac{F_0}{\sqrt{1 + \gamma^2}} [e^{\psi} \left(C_3 \cos \left(\psi + \frac{\pi}{4} \right) + C_4 \sin \left(\psi + \frac{\pi}{4} \right) \right) - e^{-\psi} \left(C_5 \cos \left(\psi - \frac{\pi}{4} \right) + C_6 \sin \left(\psi - \frac{\pi}{4} \right) \right)]
\]

\[
M_\theta = \nu M_r , \quad u_r = u_m
\]

\[
w = \frac{\sqrt{h}}{m} F_0 \sqrt{1 + \gamma^2} \left[e^{\psi} \left(C_3 \sin \left(\psi + \frac{\pi}{4} \right) - C_4 \cos \left(\psi + \frac{\pi}{4} \right) \right) - e^{-\psi} \left(C_5 \sin \left(\psi - \frac{\pi}{4} \right) - C_6 \cos \left(\psi - \frac{\pi}{4} \right) \right) \right] + w_m
\]

where

\[
\psi = m \sqrt{\frac{2f}{h}} \int \sqrt{1 + \gamma^2} d\gamma , \quad F_0 = \frac{(1 + \gamma^2)^{1/8}}{h\sqrt{\gamma} \sqrt{2fh}} , \quad m = \sqrt{3(1 - \nu^2)}
\]

\(u_m\) and \(w_m\) are given by the first and the second equations of (11), respectively. \(C_i, i = 1, \ldots, 6\), are constants of integration.

The retention of the leading term in the homogeneous development for \(u_r\) (i.e., \(u_r - u_m\)) would necessitate the ascertainment of the second term in the expansions for \(V_r\) and \(\theta_r\), while neglecting the difference be-
between \(u_r \) and \(u_m \) is equivalent to omitting terms of the order \(u_m (h/2f)^{1/2} \). In the development above, a more consistent derivation of \(u_r = u_m \) (up to an error of the order \((h/2f)^{1/2} \)) would be to consider \(u_h \) and \(u_r \), the axial displacement (which are of the same order in \((h/2f)^{1/2} \)) instead of \(u_r \) and \(w \). The solutions which are finite at the apex correspond to those obtained by setting \(c_h = c_n = 0 \) and \(c_1 = -1 \) in the above expressions. The remaining constants can be determined by the simply supported edge condition (8). The above results are essentially those derived by F. B. Hildebrand [8]. Note that we may arrive at the same results if we first express the equations of equilibrium for the stress resultants in terms of the displacement components, and then apply the technique of asymptotic integration to the resulting equations. The latter approach is also suitable for the asymptotic solutions to shells which are not loaded axisymmetrically.

NUMERICAL INTEGRATION

The differential equations (17) can be converted into finite difference equations by Stirling’s interpolation formula truncated after the second difference.

\[
\begin{align*}
 a_0 \delta r_{i+1}^j + a_0 \delta \theta_i^j + a_0 \delta r_{i-1}^j + a_0 U^j_i &= 0 \\
 a_i^j U^{i+1}_i + a_i^j U^j_i + a_i^j U^{i-1}_i + a_i^j \theta^j_i &= \theta^j_i
\end{align*}
\tag{21}
\]

where

\[
\begin{align*}
 a_i^j &= \gamma_i^2(1 + \gamma_i^2) + \delta_i \gamma_i \\
 a_i^j &= -\delta_i^2(1 + (1 + \nu) \gamma_i^2) + 2 \gamma_i^2(1 + \gamma_i^2) \\
 a_i^j &= \gamma_i^2(1 + \gamma_i^2) - \delta_i \gamma_i \\
 a_i^j &= -\delta_i^2(1 + (1 - \nu) \gamma_i^2) + 2 \gamma_i^2(1 + \gamma_i^2) \\
 a_i^j &= \frac{2\gamma_i^2(1 + \gamma_i^2)^{3/2}}{D} \\
 a_i^j &= -2 \frac{E h \gamma_i^2}{(1 + \gamma_i^2)^{3/2}} \\
 a_i^j &= \begin{cases}
 \frac{1}{2} (\gamma_{i+1} - \gamma_{i-1}), & 1 < i < m \\
 (\gamma_{i+1} - \gamma_i), & i = 1 \\
 (\gamma_i - \gamma_{i-1}), & i = m
\end{cases} \\
 \theta^j_i &= \theta_{i-1}^j \gamma_i^2(1 + \gamma_i^2)
\end{align*}
\]

and if \(X \) is a function of \(\gamma \), the \(X^i = X(\gamma_i) \).

Consider \(m \) discrete points in the interval \(0 \leq \gamma_i \leq \gamma \leq \gamma_m \) (end points included). There are two equations of the form (21) for each point \(\gamma_i \) save \(\gamma_i = 0 \), for we can deduce from (17) that at the apex \(U = \theta_r = 0 \). Thus, there are \(2(m-1) \) equations for the \(2m \) unknowns \(U^{m+1}_m \), \(\theta_r^{m+1} \).

At the simply supported edge, we have

\[
\begin{align*}
 \frac{d \theta_r}{d \gamma} + \frac{\nu \theta_r}{\gamma} &= 0, \\
 \frac{d U}{d \gamma} - \frac{\nu U}{\gamma} &= -2f \sqrt{1 + \gamma^2} \left[V_0 \left(\nu + \frac{1}{1 + \gamma^2} \right) \right. \\
 &\left. -2f \rho u_h \right]
\end{align*}
\tag{22}
\]

(22) may be used to express \(U^{m+1} \) and \(\theta_r^{m+1} \) in terms of \(U^m, U^{m-1}, \theta_r^m, \) and \(\theta_r^{m-1} \) and thus reduces the number of unknowns by two to \(2(m-1) \). A solution to the resulting set of simultaneous algebraic equations for \(U^i \) and \(\theta^r_i, \) \(i = 2, \ldots, m \), is now accessible by the usual method of matrix inversion or relaxation. Again, the relevant stress resultants, bending moments, and displacements can be obtained from \(U^i \) and \(\theta^r_i \) by way of (18) where the differential and integral relations are replaced by the appropriate algebraic relations.

COMPUTATIONS

Computer programs have been written to carry out the necessary calculations for the four methods of analysis discussed above. In each of these programs, the inputs are the parameters which describe the geometry of the shell \((h, f, r_n, \text{ and } r_s)\), the properties of the material \((E \text{ and } \nu)\), and the load \((\rho_r)\). We may choose the edge condition to be simply supported or clamped. If the shell is not closed at the apex, any combination of these conditions can be prescribed. We also have the additional option of a free edge for one of the edges while the other is simply supported or clamped. The main outputs of these programs are the stress resultants, the bending moments, and the displacements, at the requested points on the shell. Except for the case of numerical integration, the calculations amount to first solving for the constants of integration according to the choice of boundary conditions and then using these constants to generate the desired information. We may mention that in the case of asymptotic integration, the results are erroneous in the vicinity of the apex of the shell where the asymptotic solutions cease to be meaningful. However, since the behavior of the shell at the apex can be deduced from the shell equations, the behavior
near the apex can be obtained, to a good approximation, by interpolation. A rigorous asymptotic solution can be valid near and at the apex [13].

In the analysis of the shell by numerical integration, the solution to the set of simultaneous algebraic equations is obtained by matrix inversion. For the sake of economy in computer time and simplicity in programming, the matrix elements are assumed to be stored in the core. This imposes a limitation on the size of the matrix which, in turn, means a possible sacrifice of accuracy. However, it is found that the difference (in \(\theta_r \) and \(U \)) between using three-quarters and full capacity of the computer is about 6 per cent of the latter for \(\gamma_u < 1 \) (3 per cent for \(\gamma_u \leq 0.6 \)). This implies that either the convergence of the numerical integration procedure is extremely slow or the limitation imposed on the size of the matrix is not a severe handicap for \(\gamma_u < 1 \). A close examination of the results obtained by the different methods of analysis seems to favor the second possibility. Note that if integration is performed for (19) instead of (17), the storage requirement may be reduced by half. But the latter alternative yields reasonable results only for very coarse partitions of the interval \(\gamma_1 \leq \gamma \leq \gamma_u \) (i.e., \(\delta \) is not too small). This is not surprising for (19) is more sensitive to round-offs than (17). Since in actual design \(\gamma_u \) is usually smaller than unity, the capacity of the computer is rarely taxed in the integration of (17), and we shall not pursue the integration of (19) here. A comparison and detailed discussion of the two integration procedures and the precise meaning of the above statements can be found in [1].

To compute the normal displacements in the same analysis, we can apply the trapezoidal rule (or other quadrature formula) to the integral for \(w \) in (18). As an alternative, the matrix inversion technique used above can be applied to the difference equations corresponding to

\[
\frac{d^2 w}{d\gamma^2} + \frac{2\gamma}{1 + \gamma^2} \frac{dw}{d\gamma} + \frac{w}{1 + \gamma^2} = 2f \left[(1 + \gamma^2) \frac{d\theta}{d\gamma} + 3\gamma\theta_r - \theta_r \right]
\]

(23) is obtained by an appropriate combi-

nation of the last equation of (6) and the first equation of (5). Indirect though it may be, the latter approach has certain computational advantages when the difference between \(\gamma_u \) and \(\gamma_1 \) is small (Figure 2). In either case, additional error due both to round-off and truncation is introduced. Hence, the discrepancy between the displacement components obtained by numerical integration and those by other analyses is expected to be larger than the discrepancy in the stress resultants and bending moments. Calculations show that, for relatively deep shells (\(\gamma_u > 0.5 \)), the tangential displacements obtained in the analyses by numerical integration are erroneous. Fortunately, \(u_r \) is usually an order of magnitude smaller than \(w \) for \(\gamma_u \leq 1 \); therefore, its contribution to the total displacement of the shell is negligible, and we shall omit further consideration of \(u_r \) hereafter.

EXPLANATION OF FIGURES AND TABLES

In presenting some of the numerical results, we have worked with the non-dimensionalized quantities

\[
N^* = \frac{N_r}{2f_\rho_0 h}, \quad N^*_\theta = \frac{N_\theta}{2f_\rho_0 h}, \quad V^*_r = \frac{V_r}{\rho_0 h^2 \sqrt{2fh}}
\]

\[
M^*_r = \frac{M_r}{2f_\rho_0 h^2}, \quad M^*_\theta = \frac{M_\theta}{2f_\rho_0 h^2}, \quad \theta^*_r = \frac{E\theta_r}{2f_\rho_0} \sqrt{\frac{h}{2f}}
\]

\[
w^* = \frac{Ew}{4f^2 \rho_0}
\]

(24)

![Figure 2. Comparison of normal deflection.](image)
The normalizing factors are somewhat arbitrary for all except the membrane behavior in which special case the stress resultants and displacements can be scaled according to $2fp_0h$ and $4f^2p_0/E$. In the other cases, the non-dimensionalizing factors, while having some degree of analytical justification as true scale factors, are used mainly for ease of presenting the results.

The computational errors in w^* associated with the numerical integration procedures are shown in Figure 2 for five different size shells ($\gamma_u = 0.104, 0.260, 0.434, 0.600, 0.800$). For the two smallest shells, the numerical integration of equations (18) (solution of a quadrature) and (24) (solution of a 2nd order differential equation) are compared to the results of shallow shell theory. For the other three, the results are compared with the solutions by asymptotic integration.

The widths of the zone in which bending of the shell is significant are shown in Figure 3 for shells of three different focal lengths by the variations of $N_s^*, w^*, V_r^*,$ and M_r^* near the simply supported edge. Note that the outer radii of the shells are 500 in. in each case and that the abscissa is r rather than γ.

Figure 4 makes the same comparisons as Figure 3 except that the shell thickness is varied rather than focal length.

The stress resultant N_s^* and normal displacement w^* as computed by: 1. asymptotic integration, 2. shallow shell, 3. numerical integration, and 4. membrane methods are compared for five different size shells ($\gamma_u = 0.104, 0.260, 0.347, 0.434, 0.521$) in Figure 5. A single curve marked, for example, (1), (2), (3) means that these three methods produce essentially the same results in that region of γ.

Figure 6 is a companion to Figure 5 except that the quantities being compared are V_r^* and M_r^*. Note that the ordinate scales for V_r^* and M_r^* are different.

The comparisons made in Figure 5 are extended to four larger shells ($\gamma_u = 0.60, 0.80, 1.00, 1.20$) in Figure 7.

In Figure 8, the comparisons made in Figure 6 are extended to the four larger shells of Figure 7. Note again the different ordinate scales for V_r^* and M_r^*.

Representative numerical results for a shell with $\gamma_u = 0.260$ are tabulated in Table I for the various methods of solution. These are the numbers used for plotting the second (from the left) set of curves in Figures 5 and 6.

The numerical results used for plotting the last (from the left) set of curves ($\gamma_u = 0.521$) in Figures 5 and 6 are tabulated in Table II.

The numerical results used for plotting the third set (from the left) of curves ($\gamma_u = 1.00$) shown in Figures 7 and 8 are tabulated in Table III.

DISCUSSION OF RESULTS

Comparisons of the numerical results

Table I: Comparison of Results

\[
10 \times M_* = 10 \times M_r/2\rho_h^3 \\
10 \times \gamma = 10 \times M_\gamma/2\rho_h^3
\]

\[
\begin{array}{cccccc}
\gamma & \text{Mem.} & \text{S.S.} & \text{A.I.} & \text{N.I.} & \text{Mem.} & \text{S.S.} & \text{A.I.} & \text{N.I.} \\
0.137 & 0.0063 & 0.0043 & 0.0049 & 0.0025 & 0.0010 & 0.0012 \\
0.143 & 0.0158 & 0.0070 & 0.0077 & 0.0037 & 0.0019 & 0.0023 \\
0.156 & 0.0161 & 0.0135 & 0.0143 & 0.0066 & 0.0038 & 0.0050 \\
0.169 & 0.0203 & 0.0179 & 0.0186 & 0.0089 & 0.0051 & 0.0070 \\
0.186 & 0.0067 & 0.0072 & 0.0066 & 0.0058 & 0.0019 & 0.0042 \\
0.189 & -0.0008 & 0.0008 & -0.0003 & 0.0035 & 0.0000 & 0.0021 \\
0.192 & -0.0106 & -0.0077 & -0.0093 & 0.0004 & -0.0025 & -0.0006 \\
0.199 & -0.0349 & -0.0219 & -0.0246 & -0.0086 & -0.0098 & -0.0089 \\
0.208 & -0.103 & -0.0888 & -0.0937 & -0.0307 & -0.0268 & -0.0287 \\
0.218 & -0.1913 & -0.1709 & -0.1781 & -0.0635 & -0.0515 & -0.0580 \\
0.231 & -0.3269 & -0.3057 & -0.3061 & -0.1169 & -0.0893 & -0.1053 \\
0.244 & -0.3827 & -0.3521 & -0.4148 & -0.1501 & -0.1058 & -0.1332 \\
0.257 & -0.1431 & -0.1329 & -0.1351 & -0.0896 & -0.0401 & -0.0739 \\
\end{array}
\]

\[
N_r^* = N_r/2\rho_h \\
N_\gamma^* = N_\gamma/2\rho_h
\]

\[
\begin{array}{cccccc}
\gamma & \text{Mem.} & \text{S.S.} & \text{A.I.} & \text{N.I.} & \text{Mem.} & \text{S.S.} & \text{A.I.} & \text{N.I.} \\
0.020 & 0.5001 & 0.5000 & 0.5001 & 0.5001 & 0.5000 & 0.5001 & 0.5001 \\
0.059 & 0.5013 & 0.5000 & 0.5013 & 0.5013 & 0.5001 & 0.5005 & 0.5005 \\
0.111 & 0.5046 & 0.4999 & 0.5045 & 0.5045 & 0.5015 & 0.4992 & 0.5008 & 0.5007 \\
0.140 & 0.5073 & 0.4997 & 0.5071 & 0.5071 & 0.5024 & 0.4988 & 0.5011 & 0.5011 \\
0.179 & 0.5120 & 0.5004 & 0.5123 & 0.5122 & 0.5039 & 0.5120 & 0.5144 & 0.5150 \\
0.205 & 0.5157 & 0.5031 & 0.5184 & 0.5179 & 0.5061 & 0.5276 & 0.5314 & 0.5316 \\
0.221 & 0.5183 & 0.5045 & 0.5223 & 0.5215 & 0.5059 & 0.5084 & 0.5165 & 0.5152 \\
0.238 & 0.5211 & 0.5022 & 0.5231 & 0.5228 & 0.5067 & 0.4183 & 0.4354 & 0.4322 \\
0.251 & 0.5235 & 0.4943 & 0.5184 & 0.5197 & 0.5075 & 0.2962 & 0.2970 & 0.2929 \\
0.260 & 0.5253 & 0.4831 & 0.5102 & 0.5138 & 0.5078 & 0.1212 & 0.1576 & 0.1541 \\
\end{array}
\]

\[
w^* = Ew/4f^2p_e \\
V_r^* = V_r/\rho_h\sqrt{2f^2}
\]

\[
\begin{array}{cccccc}
\gamma & \text{Mem.} & \text{S.S.} & \text{A.I.} & \text{N.I.} & \text{S.S.} & \text{A.I.} & \text{N.I.} \\
0.020 & -0.3734 & -0.3721 & -0.3733 & -0.2984 & 0.179 & -0.0027 & -0.0021 & -0.0017 \\
0.143 & -0.3700 & -0.3778 & -0.3809 & -0.3247 & 0.192 & -0.0101 & -0.0086 & -0.0053 \\
0.199 & -0.3669 & -0.4138 & -0.3914 & -0.3142 & 0.205 & -0.0213 & -0.0186 & -0.0149 \\
0.205 & -0.3665 & -0.4174 & -0.3934 & -0.3162 & 0.218 & -0.0321 & -0.0284 & -0.0228 \\
0.218 & -0.3655 & -0.4093 & -0.3835 & -0.3092 & 0.225 & -0.0338 & -0.0302 & -0.0243 \\
0.231 & -0.3646 & -0.3605 & -0.3363 & -0.2722 & 0.231 & -0.0301 & -0.0271 & -0.0220 \\
0.241 & -0.3638 & -0.2809 & -0.2613 & -0.2124 & 0.241 & -0.0069 & -0.0066 & -0.0064 \\
0.251 & -0.3630 & -0.1575 & -0.1460 & -0.1194 & 0.244 & 0.0074 & 0.0062 & 0.0034 \\
0.257 & -0.3624 & -0.0546 & -0.0504 & -0.0415 & 0.254 & 0.0770 & 0.0687 & 0.0516 \\
0.260 & -0.3621 & 0.0060 & 0.0000 & 0.0000 & 0.260 & 0.1495 & 0.1341 & 0.1022 \\
\end{array}
\]

\[r_u = 300 \text{ in., } f = 576 \text{ in., } \nu = 0.3, \text{ } h = 1 \text{ in.}\]

Mem. = Membrane, S.S. = Shallow Shell
A.I. = Asymptotic Integration, N.I. = Numerical Integration

show a very close agreement among the stress resultants and the bending moments obtained by the different methods of analysis (Figures 5, 6, 7, and 8; Tables I, II, and III). The larger discrepancies in the tangential and normal displacement components have been explained in a previous section.

As concluded qualitatively in previous investigations, the membrane behavior is indeed the dominant behavior of the shell except for an edge zone of width \(d\) (for the type of loading and boundary conditions considered here). Since we consider only shells for which

\[
\frac{(2f)^2\rho_h}{Eh} \ll 1
\]

(25)

deviations from linear membrane theory are effectively due to bending [10] and the edge zone width is indeed of the order \((2fh)^{1/2}\)
(Figures 3 and 4) [9]. Note that if the inequality (25) is violated, then the nonlinear membrane action must also be considered [11], [12]. Figures 5 and 6 show that d is practically independent of r_u for $\gamma_u < 1$.

$$d \approx 2\sqrt{2fh}$$ \hspace{1cm} (26)

As a result, the approximation of the shell behavior by membrane behavior becomes increasingly crude as $\gamma_u \to 0$ if f and h are kept fixed (Figure 5). In particular, the membrane analysis of shells invariably predicts a maximum normal displacement at the apex of the shell while other analyses show that as $\gamma_u \to 0$, w_{max} moves away from the apex toward the edge of the shell.

For a fixed r_u, calculations show that all the starred quantities in (27) are independent of E and ρ_0. A change in f or h (again keeping r_u fixed) affects both the edge zone width (in a manner already described) and the amplitude of these quantities (N_r^*, N_θ^*, w_r^*, w_θ^* increase while M_r^*, M_θ^*, V_r^*, and θ_r^* decrease as f or h increases). However, the effect on the amplitudes is not appreciable (percentagewise), even if the change in γ_u is large, so long as $\gamma_u \leq 0.8$. Fixing f and h while varying r_u clearly results again in variations on the amplitudes in the same manner as keeping r_u and h fixed while varying f.

For $\gamma_u \leq 0.8$, the change in the amplitude of all these quantities is again not appreciable even for a large variation in γ_u (Figures 5 and 6). This latter observation is particularly important in the design of large antennae for the obvious reason. It is interesting to observe also that, except for the usual narrow edge zone, the deformation induced by gravity is independent of the shell thick-
Table II: Comparison of Results

<table>
<thead>
<tr>
<th>$10 \times M_\gamma^*$</th>
<th>$10 \times M_\theta^*$ = $10 \times M_\theta/2f_\rho h^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Mem.</td>
</tr>
<tr>
<td>0.397</td>
<td>0.0062</td>
</tr>
<tr>
<td>0.404</td>
<td>0.0093</td>
</tr>
<tr>
<td>0.417</td>
<td>0.0167</td>
</tr>
<tr>
<td>0.430</td>
<td>0.0215</td>
</tr>
<tr>
<td>0.443</td>
<td>0.0135</td>
</tr>
<tr>
<td>0.449</td>
<td>-0.0005</td>
</tr>
<tr>
<td>0.462</td>
<td>-0.0614</td>
</tr>
<tr>
<td>0.475</td>
<td>-0.1779</td>
</tr>
<tr>
<td>0.488</td>
<td>-0.3357</td>
</tr>
<tr>
<td>0.501</td>
<td>-0.4456</td>
</tr>
<tr>
<td>0.508</td>
<td>-0.4205</td>
</tr>
<tr>
<td>0.514</td>
<td>-0.2892</td>
</tr>
</tbody>
</table>

$$N_\gamma^* = N_\gamma/2f_\rho h$$

<table>
<thead>
<tr>
<th>N_γ^*</th>
<th>$N_\delta^* = N_\delta/2f_\rho h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Mem.</td>
</tr>
<tr>
<td>0.039</td>
<td>0.5006</td>
</tr>
<tr>
<td>0.202</td>
<td>0.5152</td>
</tr>
<tr>
<td>0.306</td>
<td>0.5349</td>
</tr>
<tr>
<td>0.355</td>
<td>0.5495</td>
</tr>
<tr>
<td>0.410</td>
<td>0.5626</td>
</tr>
<tr>
<td>0.449</td>
<td>0.5749</td>
</tr>
<tr>
<td>0.469</td>
<td>0.5815</td>
</tr>
<tr>
<td>0.488</td>
<td>0.5884</td>
</tr>
<tr>
<td>0.508</td>
<td>0.5955</td>
</tr>
<tr>
<td>0.521</td>
<td>0.6004</td>
</tr>
</tbody>
</table>

$$w^* = Ew/4f_\rho p_0$$

$$V_\gamma^* = V_\gamma/\rho h \sqrt{2f_\rho}$$

<table>
<thead>
<tr>
<th>γ</th>
<th>Mem.</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
<th>γ</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.039</td>
<td>-0.4492</td>
<td>-0.3634</td>
<td>-0.4492</td>
<td>-0.3484</td>
<td>0.391</td>
<td>0.0010</td>
<td>0.0005</td>
<td>0.0004</td>
</tr>
<tr>
<td>0.208</td>
<td>-0.4407</td>
<td>-0.3781</td>
<td>-0.4407</td>
<td>-0.3419</td>
<td>0.410</td>
<td>0.0018</td>
<td>0.0012</td>
<td>0.0009</td>
</tr>
<tr>
<td>0.332</td>
<td>-0.4269</td>
<td>-0.4015</td>
<td>-0.4267</td>
<td>-0.3312</td>
<td>0.430</td>
<td>0.0003</td>
<td>0.0008</td>
<td>0.0006</td>
</tr>
<tr>
<td>0.417</td>
<td>-0.4135</td>
<td>-0.4245</td>
<td>-0.4132</td>
<td>-0.3202</td>
<td>0.436</td>
<td>-0.0016</td>
<td>-0.0002</td>
<td>-0.0001</td>
</tr>
<tr>
<td>0.443</td>
<td>-0.4086</td>
<td>-0.4473</td>
<td>-0.4189</td>
<td>-0.3423</td>
<td>0.456</td>
<td>-0.0137</td>
<td>-0.0079</td>
<td>-0.0059</td>
</tr>
<tr>
<td>0.469</td>
<td>-0.4034</td>
<td>-0.4725</td>
<td>-0.4306</td>
<td>-0.3330</td>
<td>0.469</td>
<td>-0.0270</td>
<td>-0.0175</td>
<td>-0.0133</td>
</tr>
<tr>
<td>0.488</td>
<td>-0.3993</td>
<td>-0.4310</td>
<td>-0.3932</td>
<td>-0.3043</td>
<td>0.482</td>
<td>-0.0375</td>
<td>-0.0266</td>
<td>-0.0204</td>
</tr>
<tr>
<td>0.501</td>
<td>-0.3964</td>
<td>-0.3222</td>
<td>-0.2967</td>
<td>-0.2304</td>
<td>0.501</td>
<td>-0.0077</td>
<td>-0.0088</td>
<td>-0.0079</td>
</tr>
<tr>
<td>0.514</td>
<td>-0.3934</td>
<td>-0.1241</td>
<td>-0.1153</td>
<td>-0.0902</td>
<td>0.508</td>
<td>0.0302</td>
<td>0.0183</td>
<td>0.0121</td>
</tr>
<tr>
<td>0.521</td>
<td>-0.3919</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.521</td>
<td>0.1754</td>
<td>0.1274</td>
<td>0.0943</td>
</tr>
</tbody>
</table>

\[r_u = 600 \text{ in.}, f = 576 \text{ in.}, \nu = 0.3, h = 1 \text{ in.} \]

Mem. = Membrane, S.S. = Shallow Shell
A.I. = Asymptotic Integration, N.I. = Numerical Integration

ness while, if $\gamma_u \leq 0.8$, the variations of the displacements as a function of the thickness in this edge zone are negligibly small. The same can be said of the maximum stresses $(\sigma_r)_{max}$ and $(\sigma_\theta)_{max}$ as seen from the following relations.

\[
(\sigma_r)_{max} = \frac{N_r}{h} + \frac{6(M_r)_{max}}{h^2} = 2f_\rho \left[N_\gamma^* \right] + 6(M_r^*)_{max}
\]

\[
(\sigma_\theta)_{max} = \frac{N_\theta}{h} + \frac{6(M_\theta)_{max}}{h^2} = 2f_\rho \left[N_\delta^* \right] + 6(M_\theta^*)_{max}
\]

While no presentation of this nature can tabulate all the results needed for design purposes and give exhaustive discussion of these results, an attempt has been made here to treat a typical shell which exhibits most
Table III: Comparison of Results

\[10 \times M_r^* = 10 \times M_r / 2 f \rho h^2 \]

\[10 \times M_\theta^* = 10 \times M_\theta / 2 f \rho h^2 \]

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>Mem.</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
<th>Mem.</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.850</td>
<td></td>
<td></td>
<td>-0.0010</td>
<td>-0.0010</td>
<td></td>
<td></td>
<td>-0.0005</td>
<td>-0.0007</td>
</tr>
<tr>
<td>0.863</td>
<td></td>
<td></td>
<td>-0.0011</td>
<td>-0.0010</td>
<td></td>
<td></td>
<td>-0.0006</td>
<td>-0.0007</td>
</tr>
<tr>
<td>0.875</td>
<td></td>
<td></td>
<td>-0.0007</td>
<td>-0.0004</td>
<td></td>
<td></td>
<td>-0.0004</td>
<td>-0.0005</td>
</tr>
<tr>
<td>0.888</td>
<td></td>
<td></td>
<td>0.0011</td>
<td>0.0012</td>
<td></td>
<td></td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.900</td>
<td></td>
<td></td>
<td>0.0050</td>
<td>0.0044</td>
<td></td>
<td></td>
<td>0.0012</td>
<td>0.0012</td>
</tr>
<tr>
<td>0.913</td>
<td></td>
<td></td>
<td>0.0104</td>
<td>0.0084</td>
<td></td>
<td></td>
<td>0.0029</td>
<td>0.0027</td>
</tr>
<tr>
<td>0.925</td>
<td></td>
<td></td>
<td>0.0132</td>
<td>0.0095</td>
<td></td>
<td></td>
<td>0.0037</td>
<td>0.0032</td>
</tr>
<tr>
<td>0.938</td>
<td></td>
<td></td>
<td>0.0025</td>
<td>-0.0022</td>
<td></td>
<td></td>
<td>0.0005</td>
<td>-0.0007</td>
</tr>
<tr>
<td>0.950</td>
<td></td>
<td></td>
<td>-0.0399</td>
<td>-0.0426</td>
<td></td>
<td></td>
<td>-0.0122</td>
<td>-0.0149</td>
</tr>
<tr>
<td>0.963</td>
<td></td>
<td></td>
<td>-0.1301</td>
<td>-0.1265</td>
<td></td>
<td></td>
<td>-0.0392</td>
<td>-0.0446</td>
</tr>
<tr>
<td>0.975</td>
<td></td>
<td></td>
<td>-0.2523</td>
<td>-0.2402</td>
<td></td>
<td></td>
<td>-0.0759</td>
<td>-0.0857</td>
</tr>
<tr>
<td>0.988</td>
<td></td>
<td></td>
<td>-0.2992</td>
<td>-0.2847</td>
<td></td>
<td></td>
<td>-0.0900</td>
<td>-0.1041</td>
</tr>
</tbody>
</table>

\[N_r^* = N_r / 2 f \rho h \]

\[N_\theta^* = N_\theta / 2 f \rho h \]

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>Mem.</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
<th>Mem.</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>0.5021</td>
<td>0.5021</td>
<td>0.5021</td>
<td>0.5007</td>
<td>0.5007</td>
<td>0.5007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>0.5924</td>
<td>0.5924</td>
<td>0.5926</td>
<td>0.5259</td>
<td>0.5259</td>
<td>0.5259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.925</td>
<td>0.6438</td>
<td>0.6438</td>
<td>0.6439</td>
<td>0.5369</td>
<td>0.5369</td>
<td>0.5369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.725</td>
<td>0.6926</td>
<td>0.6926</td>
<td>0.6927</td>
<td>0.5459</td>
<td>0.5459</td>
<td>0.5459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.800</td>
<td>0.7337</td>
<td>0.7337</td>
<td>0.7338</td>
<td>0.5525</td>
<td>0.5525</td>
<td>0.5525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.888</td>
<td>0.7865</td>
<td>0.7865</td>
<td>0.7866</td>
<td>0.5600</td>
<td>0.5600</td>
<td>0.5600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.950</td>
<td>0.8274</td>
<td>0.8277</td>
<td>0.8276</td>
<td>0.5651</td>
<td>0.5651</td>
<td>0.5651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.975</td>
<td>0.8444</td>
<td>0.8450</td>
<td>0.8449</td>
<td>0.5671</td>
<td>0.5671</td>
<td>0.5671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.988</td>
<td>0.8531</td>
<td>0.8528</td>
<td>0.8530</td>
<td>0.5681</td>
<td>0.5681</td>
<td>0.5681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>0.8619</td>
<td>0.8539</td>
<td>0.8600</td>
<td>0.5690</td>
<td>0.5690</td>
<td>0.5690</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[w^* = E w / \rho f \rho \]

\[V_r^* = V_r / \rho h \sqrt{2f} \]

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>Mem.</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
<th>(\gamma)</th>
<th>S.S.</th>
<th>A.I.</th>
<th>N.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.075</td>
<td>-0.7876</td>
<td>-0.7876</td>
<td>-0.6400</td>
<td>0.888</td>
<td>0.0005</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.349</td>
<td>-0.7456</td>
<td>-0.7456</td>
<td>-0.6042</td>
<td>0.900</td>
<td>0.0009</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.575</td>
<td>-0.6733</td>
<td>-0.6733</td>
<td>-0.5434</td>
<td>0.913</td>
<td>0.0009</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.738</td>
<td>-0.6002</td>
<td>-0.6002</td>
<td>-0.4796</td>
<td>0.925</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.813</td>
<td>-0.5600</td>
<td>-0.5600</td>
<td>-0.4437</td>
<td>0.938</td>
<td>-0.0039</td>
<td>-0.0028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.875</td>
<td>-0.5230</td>
<td>-0.5222</td>
<td>-0.4009</td>
<td>0.950</td>
<td>-0.0111</td>
<td>-0.0078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.925</td>
<td>-0.4911</td>
<td>-0.4982</td>
<td>-0.3866</td>
<td>0.963</td>
<td>-0.0195</td>
<td>-0.0140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.950</td>
<td>-0.4744</td>
<td>-0.5027</td>
<td>-0.3845</td>
<td>0.975</td>
<td>-0.0196</td>
<td>-0.0154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.988</td>
<td>-0.4481</td>
<td>-0.2647</td>
<td>-0.2028</td>
<td>0.988</td>
<td>0.0104</td>
<td>0.0033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>-0.4391</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.000</td>
<td>0.1016</td>
<td>0.0675</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(r_a = 1152 \text{ in.}, f = 576 \text{ in.}, \nu = 0.3, h = 1 \text{ in.} \)

Mem. = Membrane, S.S. = Shallow Shell
A.I. = Asymptotic Integration, N.I. = Numerical Integration

of the shell characteristics and to discuss some of the interesting observations. Other aspects of a paraboloidal shell of revolution can be found in [1], and, if necessary, in the computer programs which generate the needed information. In this same reference, the problem of a shell oriented arbitrarily with respect to the direction of gravity was also treated.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the invaluable aid of Miss Elaine Boyce in the preparation of this paper.

REFERENCES

SUPPLEMENTARY NOTATION

y^1, y^2, y^3 rectangular coordinates

r focal length of the paraboloid

a_1, a_2 radius of revolution of the paraboloidal surface

\mathbf{a}, \mathbf{v} covariant base vectors of the middle surface of the undeformed shell

n, \mathbf{n} inward normal to the middle surface of the undeformed shell

γ slope of the meridional tangent to the paraboloidal surface

φ angle between the meridional tangent and the tangent plane to the apex of the paraboloidal surface

ρ_0 weight density (force per unit volume)

$A, \frac{1}{Eh}$

τ_u, τ_t the upper edge of the shell

$C_1, C_2, \ldots C_6$ the lower edge of the shell

$K_1, K_2, \ldots K_6$ constants of integration

constants of integration