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Abstract

Asymptotic results are obtained for the mean and variance of the inter-
spike time of a model neuron in which subthreshold depolarizations are
represented by an Ornstein-Uhlenbeck process (QUP). The presence of a
small amount of noise, even when it has zero mean, always reduces the mean
firing time or increases the mean firing rate. The results are used to interpret
the effects of jitter on firing rates of crayfish stretch receptors and to predict
the effects of noise on pacemaker activity. We also consider the amount of
regularization of an input train of spikes effected by the model neuron as it
transforms the input to an output spike train. This is done by evaluating the
coefficient of variation of the output interspike interval for a wide range of
input parameter values. Conditions under which the coefficient of variation of
the output is less than that of the input are obtained. The details of the
perturbation techniques used to obtain the asymptotic results are contained
in an appendix.

1. Introduction

The Ornstein—-Uhlenbeck process has often been used to approximate sub-
threshold depolarizations of a nerve cell receiving random synaptic inputs (Gluss,
1967; Johannesma, 1968; Roy and Smith, 1969; Capocelli and Ricciardi, 1971;
Holden, 1976; Ricciardi and Sacerdote, 1979; Tuckwell and Cope, 1980). If the
cell receives Poisson excitation and inhibition with rates £, and f; and the excitatory
and inhibitory postsynaptic potential amplitudes are @, and a; (a,, a; = 0), then
the random depolarization in the diffusion approximation X(r) satisfies the
ordinary stochastic differential equation,

6)) dxX(r) = [- X(O) + fea. — figs)dt + [ foa* + fia,212dW(),

whenever the depolarization is below threshold for firing, . In this equation W(¢)
is a Wiener process with zero mean and variance ¢, and time is measured in units
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of the membrane time constant. Of interest to us here is the neuronal firing time
problem. This asks for the distribution or moments of the time t,(x,), at which
X(7) first reaches threshold 6, given that X(0) = x,. We will always take x, =0,
corresponding to the case of a cell initially at resting level, and set T = 17,4(0).
Exact expressions for the mean and variance of the firing time can be found
from the Laplace transform of its density (Roy and Smith, 1969; Ricciardi and
Sacerdote, 1979). These expressions, which take the form of infinite series, have
been evaluated on the computer for specific values of the basic input parameters

2 a =fa. — fia
3) b =[fa’ + fia?1'"?,

and the parameters 0 and x,. In general, the use of the exact expressions is compu-
tationally difficult; but in certain parameter ranges relatively simple asymptotic
expressions can be found which give a ready insight into the dependence of the
mean and variance of the firing time on input parameters. Ricciardi and Sacerdote
obtained such an expression when 4% >> 6 and a = 0.

There have been investigations of the first passage time problem for the
Ornstein-Uhlenbeck process outside the realm of neurobiology. Early studies
include those of Andronov, Pontriagin and Witt (1933), Wang and Uhlenbeck
(1945) and Darling and Siegert (1953). Approximate solutions for the moments
of the first passage time have been found by Bolotin (1967) and Thomas (1975).
Tables of the density and first two moments of the first passage time have been
compiled by Keilson and Ross (1975) who used asymptotic expressions for the
density and moments when 5* << 0% and a =0.

In this paper we will obtain asymptotic expressions for the mean and variance
of the interspike interval in the case of small input variability. The mathematical
derivations are contained in the Appendix. We will use these asymptotic results to
analyse data on firing rates of slowly adapting stretch receptors (Buno et al., 1978)
and to ascertain the quantitative effects of noise on pacemaker activity. We will
also obtain by asymptotic and other methods the dependence of the coefficients
of variation of output interspike intervals on the input parameters.

2. Asymptotic results

In order to reduce the number of parameters in the problem it is convenient to
introduce the two dimensionless quantities,
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In this section, we limit ourselves to those cases where
®) g2 << 1

so that the standard deviation b, of the input, is small relative to the threshold
depolarization 0. In presenting the asymptotic results we consider the following
cases separately:

(A). Mean steady state response («) ‘above’ threshold so that
o—1>>e
(B). Mean steady state response ‘below’ threshold so that
1 —a>>e
(C). Mean steady state response very close to threshold so that
1 — o = 0().

A. Results foroa — 1 >>¢

From the results obtained in the Appendix we have the following approximate
expressions for the mean and variance of the firing time for ¢« — 1 >> ¢:

a & 1 1
© A~ (ﬁ) - z[m 2
& 1 1
@) var[T] ~ E[Qx_jﬁf - o—cijl

To the extent that var[T] is of order &%, we have, to a first approximation, the mean
firing time (for &> << 1) being the same as the time at which the mean depolariza-
tion reaches 0. Also, for inputs with a small standard deviation so that &2 << 1
and for threshold voltages well below the values eventually attained by the mean
depolarization so that &*/(w — 1)*> << 1, the first order correction reduces the
mean firing time.

B. Results for 1 — a>>¢

For 1 — a >> ¢, the asymptotic expressions for the solutions of the differential
equations for the first and second moments are not as simple as in Case A ; but it
is still possible to obtain simple approximate formulas for the moments of the
firing time as these only require values of the solutions for a nerve cell initially
at rest, X(0) = 0. It can be shown (see Appendix) that

® E[T] ~ ——fw oM,
-

for all (1 — a)® >> g%, Note that E[T'] tends to o as ¢ — 0 as it must. When the
mean steady state response is below the threshold value (« < 1) and there is no
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noise, it is simply not possible for the depolarization to reach the prescribed
threshold in finite time. On the other hand, any amount of noise, however small,
makes it possible for the process to cross any threshold, however high relative to
the mean steady state response, at some finite time.

We find that the corresponding expression for the variance is,

&n
1 -w?

for all (1 — «)? >> ¢%; it becomes unbounded as & - 0.

eZ(I —1)2/82.

)] Var[T] ~

C. Results for |1 — a| = 0(e)

When the steady state mean depolarization in the absence of noise is close
to threshold so that « = 1 + ye where 9 = 0(1), the previous results do not apply.
A different method of solution of the differential equations for the moments is
needed as presented in the Appendix. The asymptotic expressions for the mean
and variance of the firing time depend on whether « is just below unity (y < 0)
or just above unity (y = 0).

For the mean firing time we obtain,

1
ln(;) + K, — Ki(y), y 20,

(10) E[T] ~
b(})+ k= KD £ 5 7 <0,
where
an K@z =2 f e f :0 e ds dt,
(12) g2) =24/n f T
(13) K, = 0-98175501 .. .

The corresponding expressions for the variance of the interspike time are,

{[Kb — KPP + G, 720,
(14) Var[T] ~
(K — Ki(—y) + g(_')’)]z + Cy(=7), 7 <0,

where
(15) C,(2) = 2[K; — Ky(2) + KKi(2)],
(16) Ky(Z) — 2 f e J * e Ky(s) ds d,

17 Cs(2) = 2[gl2) — Ki(z) — %Kb]2 - %[sz — 4K},
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and K; = 0-134929 . .. . With |y| = 0(1), the values of K,(|7)), g(v]) — Ki(|»D
and KZ([ 7|) can be found in Tables 2 and 3 of Keilson and Ross (1975).
For the special case when o = 1 we obtain

(18) E[T] ~ ln(%) + K,
and
19) Var[T] ~ K% + 2K,.

3. Applications of the asymptotic results

The above asymptotic results enable us to readily predict the effects of small
amounts of noise on the time between action potentials in the ‘leaky integrator’
model of neuronal activity when subthreshold depolarizations are represented by
an Ornstein—Uhlenbeck process.

A. Effects of jitter on siretch receptor firing rates

We see from the asymptotic behaviour of E[T] that the effect of a small amount
of noise, even of zero mean, is to decrease the expected time between action poten-
tials. This is not obvious from the complicated exact formula obtained for E[T]
by Roy and Smith (1969). In those cases where o < 1, the reduction of the mean
interspike time is from infinite to finite values. Previous computer simulations
(Stein, 1967) and exact calculations (Tuckwell, 1976) had shown a similar effect
when synaptic excitation caused jumps in membrane potential. In contrast, for
the earlier model of Gerstein and Mandelbrot (1964) in which the depolarization
can be represented below threshold by X(7) = mt + oW(t), where m and o are
constants depending on the input, a zero mean noise input does not alter the mean
interspike time. For that model, it is known that the expected value of the time to
reach threshold depends only on the mean value of the input and not on its
variability.

The reduction of the mean interspike time in the OUP model by input noise as
indicated by the asymptotic results of Section 2 provides a simple theoretical
explanation of the effects of jitter applied to slowly adapting crayfish receptors
(Buno et al., 1978). For these experiments the effect of the jitter was always to
increase the mean discharge rate. In one case, for example, a cell under a steady
input current fired at 3-7 impulses per second. In the presence of jitter (assumed
zero mean noisy input) the mean firing rate was increased to 6-1 impulses per
second. Crude parameter estimates are possible for this experiment. The value of
o is estimated to be about 1-98 using the value 150 msec for the membrane time
constant at this frequency of firing (A. Kohn, personal communication). The
asymptotic expression from part C of the last section then yields the estimate of
0-4 for e.

B. Noisy pacemaker cells
In the ideal situation a pacemaker cell discharges at regular intervals and the
density of the interspike time is a delta function centered at the mean value. For
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the noisy pacemaker one expects the density to be approximately normal with a
small spread about the mean value as depicted in MacGregor and Lewis (1977,
Ch. 10, p. 235).

A simple model for a pacemaker is a leaky integrator with constant input
current such that the steady state depolarization, in the absence of noise, exceeds
threshold. Thus o > 1 and the time between spikes is 7' = In[a/(a — 1)]. Now,
if there is noise so that the scaled depolarization satisfies

(20) AX(t) = (¢ — X)dt + edW(t),  X(0) =0,

with X < 1 and o >> 1 + &, the results of part A of the last section apply. We
then find that the mean interval between discharges, pr, is shortened by the
presence of noise (even though this has zero mean) to the value given approxi-
mately by formula (6). The variance of o3 of the same interval is given approxi-
mately by formula (7). Furthermore, we expect T to be approximately a normal
random variable with probability density

1
(2D ¢r(2) = m exp[—

(z - #T)Z;l'

2
20

From normal tables we may find the probability that T lies within prescribed
intervals.

4, Coeflicient of variation

The coefficient of variation of the interspike time is its standard deviation
divided by its mean. It can be employed to quantify the regularity of a spike train.
A neuron receiving random synaptic excitation and inhibition has a random input
spike train, with time between spikes 7; and a random output spike train with
interspike time T, as depicted in Fig. 1. With the input train is an associated
coefficient of variation C; and a corresponding quantity C, is associated with the
output train of spikes. A natural question to ask is what effect the neuron pro-
duces on the regularity of the spike train as it transforms an input train to an
output train? Does it tend, for example, to regularize the train, or equivalently, is
C, less than C;?

If the excitation and inhibition are both (independent) Poisson processes, with
rates f, and f;, then the pooled input is also a Poisson process with rate f. + fi.
The coefficient of variation for the interval between events in a Poisson process is
unity so that for this model input we have C; = 1 independent of the magnitudes
of the synaptic potentials or their frequencies. It is therefore of interest to compute
the coefficient of variation of the output train for various values of the input
parameters for the model described in the Introduction. After scaling there are
two parameters: «, which describes the mean of the input, and & which describes
its variability.

The kinds of asymptotic analysis employed to find the mean and variance of the
interspike time for the case of small variability can also be employed to find the
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Fig. 1. A neuron, depicted by a circle, receives random inputs and emits a random spike train.
T; and T, are the corresponding random interevent times.

asymptotic behaviour of C,(a, ¢). This analysis, more delicate than those for the
mean and variance, is explained in the Appendix. Further knowledge of the
dependence on the parameters is obtained from the asymptotic behaviour of
C,(a, ¢) for large input variability with a fixed «, and for large mean input with a
fixed ¢, including those obtained by Ricciardi and Sacerdote (1979). We have
supplemented these asymptotic results with direct numerical solution of the
relevant boundary value problems. Fortunately the values of « and & at which the
asymptotic methods do not yield accurate approximations are those at which the
numerical integrations are not hampered by difficulties due to excessively large
numbers. As a check on some of these results the tables of Keilson and Ross (1975)
were employed where appropriate.

For small values of ¢ the following facts emerge from the asymptotic analysis
(see Appendix). When o > 1, C, is less than 1 and tends to zero as ¢ = 0. For
0 < o < 1, C, is also less than 1 and tends to /K2 + 2K,/In(1/e) as « approaches
1 from below. When « is negative we find C, is less than 1 only for small negative
values of a. For larger negative values C, is greater than 1 but in the limit as
o - — oo, C, approaches 1 from above. Furthermore there is just one finite value
of « at which C, =1 so C, must attain a maximum at some negative value of «
which depends on &.

In the limit as ¢ — 0, the input becomes deterministic and threshold crossings
are only possible when o > 1. Then, since the output is also deterministic, the
value of C, is necessarily zero. This is consistent with the above asymptotic results.
When ¢ is very small and ¢ < 1, the mean and standard deviation of T, are, from
the results of section 2 part B, approximately equal. That is, C,—~ 1 as ¢ >0
for @ < 1. This is in accordance with the fact that there are only infrequent random
threshold crossings so that we have effectively a waiting time for rare events
(Poisson process with coefficient of variation unity). Thus the overall result is

(22) lim Cy(e, &) = H(1 — a),
ad]
where H(-) is the unit step function.
In the case of large input variability and fixed «, C, increases as the square root
of ¢ and exceeds unity for sufficiently large ¢. In the case of large mean input and

fixed ¢, C, 0 as o - o0 and C, approaches unity from above as a -> c0. Again,
these facts are derived in the Appendix.
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In Fig. 2 we give the graphs of C,(«, &) vs. o for various & using the asymptotic
results for small and large ¢ as well as numerical solutions for moderate &. We see
from these graphs that there are many values of « and ¢ for which C, < 1, and
furthermore we often find C, close to zero. Recalling that C; = 1, we find some-
what amazingly that the (model) neuron is capable of transforming a ‘completely
random’ sequence of events into a nearly regular sequence and thus can serve to
filter out noise.

C.V,

7 )}
ﬁ\ = €=10//%

€=b/8 ZO —€=)7
Q=a/8 = €=
€=
V10 ea11./28 T—
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Fig. 2. A sketch of the dependence of the coefficient of variation of the interspike time for the

Ornstein—-Uhlenbeck model on the parameter a for for various values of the standard deviation

of the input process. For ¢ = 0 a step function is obtained and the C.V. can attain values greater
than unity when there is noise and there is sufficient inhibition.

In the case of excitation only, ¢ = f.(a./0) and & = f.(a./6)*. For many cells
we have a./0 << 1 (synaptic potentials small relative to threshold) so that con-
ditions under which C, < 1 (namely &> << 1 and « > 1) may prevail. When
inhibitory inputs are introduced « must decrease and &* must increase so that in
general the ouput becomes less regular since C, must generally increase in the
parameter ranges of physiological interest.

For Stein’s model (Stein, 1965) with excitation only, both computer simulations
and exact solutions (Stein, 1967; Tuckwell and Richter, 1978) revealed that C, was
less than unity. In a following study which included inhibition (Tuckwell, 1979),
computer simulations indicated that sometimes a value of C, greater than unity
could be obtained. For that model it was deduced that a value of C, greater than 1
implied the presence of inhibitory inputs. The results in Fig. 2 of this paper show
that there are many instances when the diffusion approximation leads to a value
of C, greater than unity when inhibition is either absent or present. The need for
further work with more realistic neuronal models is indicated to ascertain whether
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a value of C, greater than unity strongly suggests that a cell is in fact receiving
synaptic inhibition. Unfortunately the models considered thus far, in which the
subthreshold depolarization is a Markov process, are those most amenable to
analysis.
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APPENDIX

The kth moment of t,(x,), denoted by Ti(x,) with 7,(x,) = 1, is determined by
the boundary value problem (Darling and Siegert, 1953)

d*T, dr,

(1A) 1p* — e + (a — )EFk:_kT"‘l’ k=1,2,..))
(1B,0) T(0) =0, lim [ﬂ] =0
x0—> —w | dX,

An exact solution in terms of double quadratures is possible for the boundary
value problem (BVP) (1A)-(1C), but simple asymptotic expressions in different
parameter ranges are often more useful than the complicated exact expression.
These asymptotic expressions may be obtained directly from the BVP (1A)-(1C)
by perturbation methods and the method of matched asymptotic expansions. To
carry out the asymptotic analyses, we introduce o = a/0 and & == b/0 as before
and also x = x,/6. In terms of «, &, and x we write the differential equation (1A) as

(2A) ‘%‘827:’]‘ + (“ - x)'j—;c = _ka—19 (k at 1, 2, .o .)
and the auxiliary conditions (1B) and (1C) as
(2B,C) T(1) =0, hm T.(x) =0

where () = d()/dx. While our subsequent asymptotic analyses also apply to other
types of limiting condition for x - — oo, the condition (2C) is consistent with the
fact that a reflecting boundary condition is appropriate for the corresponding one-
sided exit problem over a finite interval.

Asymptotic mean and variance of interspike time for noise with
low variability
A. Low threshold values.—For low threshold values so that 4/0 =a > 1, we

have o« — x > 0 for all x < 1. For a sufficiently small value of b so that

2 — b%/0? << 1, a singular perturbation solution of the BVP (2A)-(2C) is appro-
priate (Cole, 1968). Away from the end points of the solution domain, an approxi-
mate solution of the BVP can be obtained by expanding Ti(x;e¢) in a regular
perturbation series in powers of &*:
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3 Tx;6) = X T{P(x)e™

n=1
and requiring that the system (2) be satisfied identically in e. In particular, the
leading term of the so-called ‘outer solution’ (3) for 7;(x) is governed by

(@ — )TPOK) = —1, (—o<x<1)
@ _
TO() =0, and lim Tx) =0

x> —c0

so that we have

(5) T4O(x) — 1n<°‘ - x).

a—1

Note that 7(”(x) as given by (5) is a nonnegative monotone decreasing function
as x increases. Furthermore, T{”(x) satisfies both boundary conditions in 0]
without a supplementary boundary layer solution. In fact, a boundary layer
analysis shows that the ODE (4A) does not support a boundary layer solution
at x = 1 when a > 1. The leading term solution (5) for 7,(x) is identical to the
passage time for a deterministic input.

We can continue the process to calculate higher order terms in the series (3).
For example, we have for the 0(¢?) term,

. " 1
(@ = TP = —47 =3

(6) ((X — X)Z
TP =0, T (-0)=0

which determines T{"’(x). Except for 0(¢*) terms, we have

o —x &2 1 1 “
N T.(x) ~ ln(m> — Z[(oc — 12 - = x)2:| + 0(c%)

The two-term perturbation solution (7) provides an accurate approximation of
the exact solution whenever &*/(« — 1)* << 1. This simple approximate solution
is considerably more informative than the double quadrature exact solution
(given later in (20)).

A similar perturbation solution for 7',(x) can be obtained by the same procedure.
To terms of order &*, we have

@ —x\ P & a— X 1 1 4
) Ty(x) ~ I:ln(a - 1)] -~ E[ln((x—;—l> - 1][(“ s - @ = x)5:| + 0(c%)

Higher order correction terms for T(x) and T,(x) as well as coefficients for the
higher moment series can be calculated similarly. Since the process is straight-
forward, we will not carry out these calculations but only note that the asymptotic
solutions (7) and (8) for the BVP for T',(x) and T,(x) are identical to the asymptotic
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expansions of the corresponding exact solutions to the order obtained. Moreover,
these asymptotic solutions are uniformly valid for all —o0 < x < 1.

From (7) and (8), we can get the following asymptotic expression for the
variance of the exit time,

© Var[zy(x)] = To(x) — [T(x)]

It 1 .
NB[(a—l)z—(a—x)2]+0(8 )

B. High threshold values.—For the more difficult case of « = 4/ < 1, we note
that the coefficient (o« — x) of the T} term in (2A) vanishes once inside the solution
domain, namely when x = a«. At and near the ‘turning point’ (Cole, 1968), the
first derivative term no longer dominates the second derivative term in (2A) no
matter how small ¢ is. Thus, the same ‘outer solution’ (3) is not expected to hold
for the whole of the interior of the solution domain. To the left of the turning
point, x < a, we expect an outer solution to be adequate. For the leading term
outer solution for 7(x), we have again

o — X

1 -«

(10) TOMX) =4, + Zn( > (x < a);
but now the constant of integration 4, must be determined by relating this outer
solution to a solution valid across the turning point. In particular, it cannot be
determined by the boundary condition at x = 1 since this solution is only valid
for x < a < 1 as it becomes unbounded as x tends to «. The leading term outer
solution (10) does have the correct behaviour as x - — 0.

To the right of the turning point, x > «, we also have as a leading term outer
solution for T,(x),

(1D TOx) = A, + In(x — «) (x > o)

Evidently, this outer solution should only be used away from x = « as it becomes
unbounded there. The only constant of integration 4, is needed for the matching of
T{9(x) with a solution valid across «. Therefore, unlike the o > 1 case,
this outer solution cannot be made to satisfy the boundary condition 7,(1) =0
and we expect a boundary layer (or inner) solution adjacent to x = 1 (Cole, 1968).

For this layer solution, we introduce a stretched variable y = (1 — x)/e* and
write the ODE (2A) with k =1 as

12) 177 — (0 — 1 4 )T = —¢&*

where Ty(y) = T,(x) and ()" = d()/dy. We now seck a perturbation series for
T,(») in powers of &?; the leading term T'* of this series is seen to be

(13) TO0) = Bl — e 20 P] = BJI — ¢ 2070000
where one of the two constants of integration has been fixed so that

TOWO) = T7¢(1) = 0.
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(Note that there is no decayed exponential solution near x = 1 when o > 1 and
therefore no boundary layer solution there.) The matching of the ‘“inner solution’
(13) and the outer solution (11) in an intermediate region (through an inter-
mediate variable z = (1 — x)/e, say) requires 4, + In(l — «) = B, so that (11)
becomes

X —a

(14) TO(x) ~ B, + ln<~
1 -«

) O <l —-—x<1—a.

The remaining constant of integration B, is to be determined by relating this outer
solution to a solution valid across x = a. More specifically, an asymptotic
solution for T,(x) valid in a neighborhood of x = « contains two new constants
of integration, say C, and C,. The four unknown constants 4,, B,, C,, and C,
are then determined by matching conditions on T;(x) and T(x) in two overlapping
regions of validity of the two pairs of contiguous solutions.

Near the turning point x = ¢, the appropriate stretched variable is x — o« = &f
which transforms the ODE (2A) with k£ = 1 into

d*T,  dT,
(15) tar Tt o

where T(¢) = T((x). Unfortunately, no simplification is possible for this ODE
which is equivalent to (2A) and is effectively the same as the principal ODE in
Keilson and Ross (1975) for the first moment of the first passage time; the exact
solution of (15) is in the form of a double integral. However, for the purpose of
matching T (¢) and T{”(x), we need only the asymptotic behavior of T , for large |tl

It is a straightforward calculation to obtain for large values of |t| (Cole, 1968)

C., + C., 67 + In(2) t>>1)
t2 _
(16) T\()~3 =C,+Cyt+ In<x °‘>
t 1 -«
Al+ln<a—x> (t<< -1
L 1 -«

where the matching of 7(f) and T{®(x) for x << o has been used to determine
the two constants of integration in the asymptotic solution of (15) for t << —1.
The matching of T(¢) and T{”(x) for x >> a can also be used to set C,; =0
and C,, = A,. However, while a term of the form e**/¢ is eliminated in the range
t << —1 by the auxiliary condition T;(— o0) = 0 (see (17)), the same type of term
can be retained in the range 7 >> 1 to give a slightly more accurate solution than
the leading term outer solution. This additional degree of accuracy will be needed
in our analysis of the coefficient of variation in a later section. The solution (16)
for t>>1 can actually be made to satisfy the boundary condition T;(x — 1) =0
by setting C,y = —C,,t;e” "2 with ¢; = (1 — a)/e so that
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ho~ cf1 - o]

i t
an
=C,l1 - l -« e~<1—x)(1+x—2z>/52} (t>> 1)
X —

For x = 1 — &2y, we have T,(¢) ~ T;() (see (13)) if C,, = B,. Having determined
C,, (in terms of C,, = B,) we now see that, away from the boundary x = 1, the
term e'*/t in (16) for ¢ >> 1 is in fact small (of exponential order) compared to the
first term in the same expression and hence either (17) or (10) is an acceptable
leading term outer solution.

To determine the remaining constants C,, = B, and A4, in T{(x), we must
consider the local structure of T,(¢) near ¢t = 0 and relate this local structure to
the asymptotic behaviours of T{°(7) for  >> 1 and ¢t << —1. We will not repeat
the analysis of Lakin (1972) which establishes the required connection formulas
for a general second order ODE (and references to earlier papers such as Ackerberg
and O’Malley (1970)) but simply make use of his connection formulae to find
B, = A, = g(t,) = C, where

(18) g(t) = 2ﬁft e’dy, g(t) ~ itf e’ (t>>1)

After some simplifications by the asymptotic behaviour of g(¢) for ¢ >>1 given
in (18), we have

C+ln<a—x> (¢ — x>>8)

1 —a

19) T~ 2 C — )%/j_ze(x—a)z/gz + ln(f : Z) (e<<x —a<1—a)

LC[l — e~ 20-00 =0/ (0<1 - x=0@)

Since t; = (1 — )/, the underlined terms in (19) are negligibly small compared
to C ~ /zme'tjt; and may be omitted in the range e<<x —a <1 —a —s&.
Retaining them gives a slightly more accurate asymptotic solution, with the
additional accuracy needed in some delicate situations such as the dependence of
the coefficient of variation on « discussed in a later section. (The advantage of
retaining exponentially small terms in a perturbation solution was also encountered
in a recent study of D. Ludwig on Harvesting Strategies in a Randomly Fluctuating
(Fish) Population (University of British Columbia I.A.M.S. Technical Report
No. 79-22, May, 1979).) In contrast, the term n[(x — x)/(1 — )] is dominant for
a sufficiently large value of (x — x) and cannot be neglected in the range
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o — x >>e. It is not difficult to verify by the asymptotic behaviour of the exact
solution of boundary value problem (2),

1 N
20) neg = | | [ eeowen e |
that (19) gives the correct asymptotic behaviour of T,(x) for ¢ << 1 in the entire
solution domain except for a small neighborhood of « and that all terms neglected
are small of higher order compared to the terms retained.
For [x - oz[ /e =0(1), a simple approximate expression for T;(x) may be
obtained from a Taylor series solution of (15)

T = Ty(x) = i\:‘,oc,,t"
@ =6+ eyt + 30 + 36t + 5t + )
—( L)

since ¢ = (x — a)fe = 0 is an ordinary point of the differential equation (15).
The series (21) converges for all finite values of 7 as the linear differential equation
(15) has no finite singular points. The two constants of integration ¢, and ¢, can
therefore be determined by matching the asymptotic behaviour of (21) with the
asymptotic solution (19) for || >>1 to be ¢; = —./n and ¢, ~ C for
(1 — &) >> e. (It is actually easier to get these constants from (20) with ¢, = T(0)
and ¢, = T,(0).) Therefore, we have

(22A) Ti(x) = Ty(1) ~ C — J7g,(t) — g.(t) <|t| = 1x g 0(1))
where
1,5 1 .7 . ‘1_
(22B) g =t+ 32 +H + &7 + ... = 2\/7_:.g(t)
(220 () =1* + M* + % + ...,

for (1 — a) >> ¢, with g,(¢) being the Taylor series for g(z)/2 \/n. From (22), we
see that 7(x) is monotone decreasing as x crosses the turning point «. For
|f] = 0(1), Ty(x) is effectively a constant as C ~ ge® ~®*=*/(1 — &) dominates the
rest of the series for (1 — «) >> ¢ so that the underlined terms in (22) may be
omitted.

The structure of the boundary value problem for 7,(x) is the same as that of
T'y(x) except for the forcing term of the differential equation. An analysis similar
to that for T(x) above yields a leading term asymptotic solution for T,(x) which
may be simplified to read
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-~

[T, + C* — 4c1n<1 ; °‘> (& — x>> &)

el ) (i

X — &

£

=0(1)>

(23) () ~ 4 [T,0)]? + C* — [g®OF — 2[C — g(t)]ln(l ; “)

+ 4g(t)ln<)1€ — Z) (x +e<<x<1)

2C2[1 _ e—2(1—a)(1—x)/52] 0<1t —x= 0(82)

where again we have g(f) ~ \/Ee‘Z/t. With (1 — «)/e>> 1, the underlined terms
in (23) are also small of higher order compared to other terms in the same expres-
sion for (1 — x)/e > 1, they are needed only in some delicate situation such as the
behaviour of the coefficient of variation discussed in a later section. The variance
of the exit time is given asymptotically by

1._.
c? < x>1>
&

C2[1 — em4U-o@ =/ (O < 1 ;‘x _ 0(1)>

(24)  Var[z(x)] ~

which becomes unbounded, except at x = 1, as ¢ = 0.

C. Threshold values near the steady state mean depolarization.—As noted in
Section 2, the case 0 = a, with a/f =1 + ys and y = 0(1), must be treated
separately. In this case, the differential equation (2A) for T;(x) takes the form:

(25) 1827, + (1 —x+ 9T = —kTi-: (k=12...).
For k = 1, this equation admits an outer solution

(26) T,(x) ~ A)(e) + In(l — x) + &— +621”2y2+
' ’ 1—x 40 —-x "7

where 4, is a constant of integration whose dependence on the parameter ¢ is com-
pletely arbitrary since any constant is a complementary solution of (25). Evidently,
the outer solution (26) for << 1 does not satisfy the boundary condition 7(1) = 0
though it satisfies the condition T(— o0) = 0. The differential equation (25) has a
turning point at « which is in the neighborhood of the boundary point. For an
inner solution in that neighbourhood, we use a stretched variable 7 = (1 — x)/e
and write the equation for T as
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(27) TV - (4 0T = —1,

where primes denote differentiation with respect to ¢.

In terms of the stretched variable #, the boundary conditions at x = 1 becomes
Ty(t = 0) = 0. For the inner solution to match with the outer solution is it neces-
sary to have 7{(f) » 0 as t - oo.

For y = 0, this inner solution may be taken in the form
t+y o0
(28) ﬂ;ﬂf wﬁ e duds = Ki(t + 7) — Ki(p) (v = 0)
v s

where K;(z) is as defined in (11) of Section 2. For ¢ >> 1, we have

(29) K@+ y)~ )+ K, + Xt + ...,

with K = 0-981755 .. .. The matching of (26) and (28) in an intermediate range
1 — x =0(e) gives A,(e) = In(l/e) + K, — K,(y). Therefore, we have for
7> 0

1 —
m)m@w%gﬂ+qm+ﬂzx

oo Ci(y) = Ky — Ky(p).

For y < 0, and x < o, the inner solution may be written as

(3D Ty(x) = K = |y) — Ky + e(p) (< 0)
where g(?) is as defined in (18). The matching of (26) and (31) in the intermediate
range 1 — x = 0(\/¢) gives 4, = In(l/e) + K, — K(|y) + g(|y) and therewith

(32) Ti(x) ~ ln(1

It should be noted that (28) and (31) are in fact the exact solution of the BVP
(2) with k =1 for « > 1 and « < 1, respectively, and (30) and (32) are their
asymptotic expansions away from o. Thus, the matched asymptotic solution
procedure is really not necessary for obtaining the asymptotic behaviour (30) and
(32) in the case of O.U. processes. However, we anticipate that this solution
procedure will simplify the determination of the corresponding asymptotic
behavior for more general stochastic processes and its use for the O.U. process
here is intended to illustrate the various ramifications in its application un-
encumbered by the technical details of the more general case.

The expressions (30) and (32) are to be used only for ¢ = (I — x)/e>> 1. For
t =0(1), Ty(x) may be more efficiently evaluated by way of its Taylor series
representation (about the boundary point x = 1).

3 3
(33A) zuwzjmwk+yﬂ+£+31ﬁ+(3+1)4+”}

- X

>+Cﬂm+gmb+wl~+u-w<®.

I 1 —x

3 23

2 1 2
—[12+?vt3+—-%z—t4+...],
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instead of the integral representation where

(33B)  D,(2) = 2e=2r e s ds = \/Eezz[l — %j e ds].

t [

The series (33) was obtained by the method of undetermined coefficients directly
from the ODE (27) and the auxiliary conditions T; = 0 and dT,/dt = D(y) at
t = 0, the second condition being a direct consequence of (28).

Similar arguments applied to (25) and the auxiliary conditions (2B) and 20
for k = 2 give the asymptotic expressions

[T,(x)]* + Ci(y) + Caly) (y=0)

[T,()1? + [Co(|y]) + gD + Cs(lvD (y <0)

away from the boundary x = 1, where C,(z) and C;(z) are as given in (15) and
(17) of Section 2, and the Taylor series representation

(34) To(x) ~ {

, 1 +29 , 5
(B5A)  To() = Dy()| 4+ v + 5 | = [3DP )
with

(35B)  D,(z) = 4e** J ) e—SZUS Dl(t)dt:lds,

z o

for 1 — x = 0(g). With y = 0(1), D,(y) can be obtained from a standard table
for the error function while D,(y) is easily calculated.

For 1 — x>>¢, we have

Ci(y + C,(») (y = 0)

(36)  var[g,(x)] ~ {
[C.(v) + g(2PP* + Cs(v (y<0

Asymptotic results for coefficient of variation
The coefficient of variation of the interspike time is defined as

__standard deviation of interspike interval

37 C.V.

3

mean interval

and is employed as one means of quantifying the regularity of a train of spikes.
For the model neuron initially at rest

_ N0 - [OF
O

(38) C.V.

We will obtain a number of asymptotic results for this quantity for various ranges
of dimensionless input mean « and standard deviation .
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A. Asymptotic behaviour for small input variability—For 0 < ge<<1 and
o > 1, we find, from the regular perturbation solutions (7) and (8) when
o—1

>>1 and from the matched asymptotic solution (30) and (34) when
a=1+7ye>1,
. 1 1 f —* f 1 1

V2@ —-1)2 o o—1 4l (0 — 1* o
(@>>1 + 0(e))
39) CV.~ <

1
l—”(l—> VKT +2K) +[K(0) - 2001 (@=1+ye > ).
n
e

It is seen from (39) that we have 0 < C.V. < 1 for sufficiently small ¢ with
C.V. -0 as ¢ -+ 0, which is what we expect for a > 1.

For 0 < a < 1, we obtain, from (19) and (23) when *>>1 and from 32

and (34) when o« = 1 — |y[e (with y = 0(1)),

Q) ()] ()

@) CV.~{ 1
; <1> VKE +2K)) + 3y — Ku(|yDP? (@ =1 - [yle).
n

&

L3
Here we have 0 < C.V. < 1for0 € « < 1 and 0 < g << 1 with
VK? + 2K,
In(1/e)

as a approaches 1 from below. Note that deleting the underlined (small) term in (23)
for T',(x) would have given a qualitatively incorrect result for the C.V,
For the remaining range, — oo < a < 0 we obtain from the asymptotic solutions

(19) and (23) (with 0<% ; “),

4n CV. -

1 -«

1+ e~ (1-2/e2 (—a>>¢)

|oc

1 - éln(l ; oz), (—a<<eg)

The behaviour of C.V. in the range given by (42) will be discussed in the next
section.

(42) CV.~
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B. Structure of C.V. for negative o and small input variability.—For inhibition
dominant inputs, we find from (42) some interesting behaviour of the C.V. as a
function of «. Whereas the C.V. is less than unity for small negative values of
a(0 < —ax<<eg), we find that for larger negative values of « (—a>>¢>0) the
C.V. attains values greater than unity and
{43) lim CV.=1 (0 < e<< ).

We will show that there is exactly one finite value of o, depending on & and denoted
by &, at which C.V. attains the value unity. To obtain &, we begin by using the
expression for the C.V. (valid for all values of «)

) CV.~1+ —Cl-[ﬁgn(r,» + gt — m(ls 4 t):l ‘ 0<%)

1 —
where 1, = —afe > 0 and C :g<—8—“> = 0(eet ~®***) for 0 < e<< 1. [Note

that 7, may be 0(1) and hence the power series expressions for 7y and T, have
to be used in (44). These power series expressions are most useful for |t| =0(1)
but are valid for all #, 0 < |f| < c0.] From equation (44), we see that the C.V.
for 0 < ¢ << 1 is (up to exponentially small terms) unity at 7, = 7, determined bv

& w5 + ) = VAR + 80

This transcendental equation for 7, has exactly one real root which is positive and
increases with decreasing &, since ln(— + £, ] is monotone increasing and concave
€

while \/7g,(%,) + g.(t,) is monotone increasing and convex. For a given £, where
C.V. is unity, we have « = & = —e&f, and we see, from (44) and the fact that the
quantity in square brackets there changes sign, that C.V. < 1 for a < 2 <0
and C.V. > 1fora < & < 0. Furthermore, an analysis of (45) shows that we have

(46A) Zz —¢

for ¢ around 0-01, whereas for larger values of ¢ (but not greater than around 07
we have

. A4 1)
(46B) @z —‘78\/%[\/1 + ;lﬂ(;) - 1:|

It is clear from the above analysis that C.V. must attain a maximum value at
some negative value of o = o*, depending on &. For a fixed &, 0 < e<< 1, the
maximum point o* is determined by the condition

(47A) d[C.V.]
dt,

:O,

t, = 1f
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which gives (with primes indicating differentiation with respect to the argument)

(47B)  /mg, (1)) + g8)) — —=[V7g (1) + git)] = ln(— + >

2(1+ 159

This transcendental equation has exactly one real root which is positive. An
analysis of (47B) shows that the location of a* = —sf)" recedes toward — oo as ¢
decreases and is given approximately by the formula

2

(48) of =& — Le
The maximum value of the C.V. is given by
e[ \/mgi(t7) + g4t)]
V. ~1 0
(49) [CV.J ~ 1 SN TS 4

which tends to unity from above as ¢ — 0, since the exponential growth of C in
the denominator for small e dominates the corresponding growth of the numerator.

C. Limiting behavior of coefficient of variations for vanishing e —In the limit as
¢ > 0 the input becomes deterministic and crossings are only possible when ¢ > 1.
Then, since the output is also deterministic, the C.V. is necessarily zero. This is
consistent with formulas (39) and (41) when ¢—0. When ¢ is very small and o < 1,
we see from (19) and (23) that the second moment of the interspike time is asymp-
totically twice the square of the mean; hence, for very small & and « < 1, the
standard deviation and the mean of the output are approximately equal, i.e.,
CV.—1 as ¢ 0 for o < 1. This is consistent with the fact that there are no
deterministic threshold crossings and only infrequent random ones; thus, we have
effectively a waiting time problem for rare events (c.f. Poisson process where C.V.
of waiting time for one event is unity). Therefore, the overall picture for the C.V.
as ¢)0 is that of a step function H(1 — ).

D. Asymptotic behavior for large input variability.—When the standard deviation
of the noise is large compared to its mean, we obtain the following asymptotic
result for the coefficient of variation of the interspike time:

_ [2en(2) o\ =2 o?
(50) C.V. / 7 {1+<4]n2 1/ e o( >}

This result may be obtained from the exact series solution in (21) and (23) or from
the equivalent series form of the solution given by Ricciardi and Sacerdote (1979).
Thus we see that, for any fixed «, the C.V. increases as the square root of ¢ and
exceeds unity for sufficiently large ¢ whatever a may be. Note, however, that unless
o is much less than e, higher order terms than those given explicitly in (50) must be
retained to obtain an accurate estimate of the C.V. For [oc[ >> g, however, we will
find in the next subsection a simple expression for the C.V.
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E. Asymptotic behavior for large mean input—When o >> 1 we may rescale the
boundary value problem for the first two moments so that the regular perturba-
tion solution of (7) and (8) again applies. We then find

1
(1) CV. ~ i_<1 - —), (@>> 1, a>>¢e?)
Ja 4o
Similarly when — |a]>>82, we find after rescaling that the first part of (42) applies
in the form

(52) CV. ~ 1+ (1 + 1]ae @l (jo| >> —¢?)

We see therefore that for a fixed &, we have C.V. 0 as « — o0 and C.V. | 1 as
o — — 00.

F. The overall dependence of the C.V. on & and e.—The asymptotic results given
so far in this section provide a useful partial picture of the dependence of the
coefficient of variation of the interspike time on the dimensionless mean o and
standard deviation ¢ of the input to the model neuron. An alternate method of
determining the C.V. is by direct numerical integration of the differential equations
for T,(x) and T,(x). Fortunately the region in the (a, ¢) half-space where this is
not hampered by numerical difficulties due to excessively large numbers comple-
ments the regions in which the asymptotic expression we have obtained are valid.
Thus it is now possible to obtain the complete qualitative picture of the depen-
dence of the C.V. on « and &. As a check on the accuracy of some of these results,
the tables of Keilson and Ross (1975) have been employed where appropriate.

Figure 2 shows a set of C.V. versus a curves for various & (with «-axis stretched
four folds in the range 0 < o < 2). A description of this figure is as follows. In
the limiting case ¢ = 0 the C.V. versus « curve is the step function H(l — ) as
discussed in part C of this section. The curves for e << 1 depart slightly from the
step function with maxima slightly greater than 1 at some negative value of a.
They cross the step function at negative values of a as illustrated by the curve for
g =1/ \/2. As ¢ increases, the value of the maximum increases and moves to the
right as does the position at which the C.V. curve crosses the line C.V. = 1. At
still larger values of & the position «* of the maximum of the C.V. recedes toward
more negative a-values whereas the value of a at which C.V. =1 continues to
increase as does maximum C.V.

At intermediate values of ¢, represented by ¢ = /2 in Fig. 2, the value of the
C.V. remains above unity for all negative and some positive values of a, with
C.V. >0 as o —> oo. As ¢ increases further, the position o* of the maximum C.V.
is located approximately at —e./2 and the maximum grows approximately in
proportion to \/ ¢ (equation (50)). A representative curve for larger & is given by
the curve for & — 10 which shows the limits C.V. | 1 as « > —oo and C.V. >0
as o - 4 0.





