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In this paper a theorem is discussed that unifies two lines of work in I/O monotone control systems. Under
a generalized small gain hypothesis, it is shown that almost all solutions of closed loops of MIMO monotone
systems are convergent, regardless of whether the feedback is positive or negative. This result is based on
a topological argument showing that any monotonically decreasing n-dimensional map that has convergent
iterations must have a unique fixed point. The paper also generalizes the standard small gain theorem by
replacing the small gain condition with a weaker hypothesis. An example and simulations are given involving
a simple cyclic system under arbitrary feedback.
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1 Introduction

A class of autonomous and control systems that has been studied extensively for potential
applications in biological systems is that of monotone systems. The simplest form of such system
is a cooperative dynamical system, an n-dimensional ODE of the form

x′ = f(x), (1)

with the property that ∂fi
∂xj

(x) ≥ 0 for every x ∈ X ⊆ Rn and i 6= j. Although one can

define monotone systems in more generality as systems that have exclusively positive feedback
interactions, they can be brought to this form after a change of variables (see Section 4 for
details). The solutions of monotone systems preserve a partial order defined on the state space
(18). Regarding their qualitative dynamical behavior, the key result shown by Hirsch in the
1980’s states that under mild irreducibility assumptions almost every bounded solution of a
monotone system converges towards a steady state (16). The use of almost is meant in the sense
of measure, i.e. the set of exceptional initial conditions has measure zero.

The reason monotone systems can be useful in biological applications is that often the amount
of information given about biological systems is very limited and of a qualitative rather than
quantitative nature. If it is known that all interactions between different variables in the system
are positive, then much can be deduced about the qualitative dynamics of the system as described
above. For instance, if all solutions are bounded and there are only two stable steady states,
then one can conclude that almost all solutions converge towards one of these two steady states
and rule out chaotic behavior, stable periodic oscillations, etc. (18).
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The theory of monotone systems was extended to systems with inputs and outputs by Sontag
and Angeli in a series of papers (2, 3). Again in the simplest case, an input/output (I/O) system

x′ = f(x, u), y = h(x) (2)

is cooperative if ∂fi
∂xj

(x, u) ≥ 0, ∂fi
∂uk

(x, u) ≥ 0 for every i, j = 1 . . . n, i 6= j, k = 1 . . .m, and every

x ∈ X ⊆ Rn, u ∈ U ⊆ Rm. Assume for simplicity that X,U are box sets i.e. Cartesian products
of bounded or unbounded intervals. Two different types of feedback are considered. In positive
feedback I/O systems it is assumed that ∂hk

∂xi
(x) ≥ 0 for all k, i and all x ∈ X, and in negative

feedback systems ∂hk
∂xi

(x) ≤ 0 for all k, i and all x. The closed loop of an I/O cooperative system
is an autonomous control system defined as

x′ = f(x, h(x)). (3)

In the positive feedback case the closed loop is itself a cooperative system (2) and can therefore
be studied using techniques from monotone systems theory. This is not the case in nontrivial
systems under negative feedback. System (2) is assumed to converge globally towards a unique
equilibrium gX(u) under any constant input u ∈ U , and the function g(u) = h(gX(u)) is called
the I/O characteristic of the system. We make the standing assumption that if g(e) = e, then
g′(e) has no eigenvalue of magnitude 1 (nondegeneracy).

The I/O characteristic g(u) can be potentially measured experimentally, and it provides an
amount of quantitative information complementing the qualitative assumptions. Specifically, it
was shown that the stable steady states of the cooperative closed loop x′ = f(x, h(x)) are in
bijective correspondence with the stable fixed points of g(u). Therefore in the positive feedback
case, one can determine whether the system is multistable or monostable by examining g(u)
alone. Originally described in (2), this result has been generalized and applied to various specific
models in (8, 12), among others.

In the negative feedback case, the literature has focused around nonlinear small gain results.
Specifically, it was shown (3) that if all solutions of the system

uk+1 = g(uk) (4)

converge towards a unique fixed point ū, then the closed loop (3) has a globally attractive
steady state gX(ū). This seminal result, known as the small gain theorem for I/O monotone
control systems, enables an analysis of many non-monotone dynamical systems using ideas from
monotone systems theory. It was generalized, expanded, or applied in several references including
(9, 10, 15, 17).

Notice that although the positive and negative feedback frameworks are very similar, the
growing literature has focused on one case or the other, with largely no unifying results. (A
different approach for unification in mixed feedback systems is being pursued in the manuscript
(21).)

Contributions of this paper

An idea originally proposed by Eduardo Sontag (22) is to alter the hypothesis that (4) has a
unique globally attractive fixed point, and to assume instead that almost every solution converges
towards some fixed point which may depend on the initial condition. One can call this the



July 25, 2013 22:23 International Journal of Control IJC˙re˙submission

International Journal of Control 3

generalized small gain condition, GSGC. If there are multiple locally stable fixed points of (4),
Sontag conjectured that the solutions of the closed loop may converge towards one of multiple
stable steady states, an important improvement over the original result. Condition GSGC was
also devised as a way to unify the negative and positive feedback frameworks. Another interesting
effort to generalize the small gain theorem is the work by Malisoff and de Leenheer (17), where
the I/O characteristic was allowed to be multivalued and the authors consider an associated
discrete inclusion corresponding to (4).

In this paper, the open conjecture is resolved in a negative sense. Assuming the generalized
small gain condition GSGC, along with irreducibility and mild regularity assumptions, it is
proved that g(u) can only have one fixed point. This means that the generalized small gain the-
orem collapses into the standard theorem, as GSGC is equivalent to the standard convergence
of all solutions of (4) towards a unique fixed point. It is shown that monotonically decreasing,
irreducible m-dimensional maps with convergent iterations can only have one fixed point (The-
orem 3.3), which is surprising and of interest by itself. Its proof makes use of topological degree
theory and various linear algebra tools.

Although GSGC may not lead to multistable systems in the negative feedback case, it does
satisfy the more general intended purpose to unify the positive and negative feedback frameworks
in the I/O monotone literature. Given such a system under either positive or negative feedback,
under GSGC and mild irreducibility conditions almost every solution of the closed loop converges
towards a stable steady state (Theorem 4.2). In the negative feedback case this equilibrium is
unique, but in the positive feedback case the system can be multistable.

While the main idea for this unified statement is simple, the additional technical assumptions
of the positive and negative feedback results are different, and a nontrivial part of the work
is to find a common set of additional assumptions that fit both frameworks. In particular, the
negative feedback result makes irreducibility assumptions on the I/O characteristic, while the
positive feedback results in the literature tend to assume irreducibility of the closed loop system.
It is shown here that assuming irreducibility of the closed loop is sufficient for both cases.

In Section 2 linear I/O cooperative systems under positive or negative feedback are considered,
and it is shown that if the closed loop is irreducible, then the I/O characteristic is also irreducible.
Section 3 uses topological tools to show that under GSGC, the I/O characteristic of a system
under negative feedback must have a unique fixed point. Section 4 describes and proves a theorem
that unifies both the positive and negative feedback frameworks for multiple input, multiple
output (MIMO) systems. Section 5 discusses a simple example of a cyclic feedback loop of
arbitrary sign, together with simulations illustrating the use of Theorem 4.2. Section 6 discusses
a case when the same system can be decomposed as a positive or negative feedback loop.

2 Irreducibility of I/O characteristics

This section is concerned with linear cooperative systems, with or without inputs. A linear
system x′ = Ax can be seen to be cooperative if and only if all non-diagonal entries of A are
nonnegative. In this case the matrix A itself is called cooperative. Given any linear system
x′ = Ax on Rn, associate to it the directed graph G with nodes x1, . . . , xn and a directed edge
from xi to xj if and only if Aji 6= 0. Each edge can be labeled as positive or negative depending
on the sign of aji. If G is strongly connected, the linear system is said to be irreducible. A
path on the directed graph is meant in the usual sense, and it consists of a set of edges of the
form (xi1 , xi2), (xi2 , xi3), . . . , (xip−1

, xip). Also, a few standard notations are used involving order
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relations in multiple dimensions. Given two vectors x, y ∈ Rk, define

x ≤ y if xi ≤ yi for all i = 1 . . . k,

x� y if xi < yi for all i = 1 . . . k,

x < y if x ≤ y, x 6= y.

Similarly for ≥,�, >. Using this notation, a cooperative system satisfies that if x(t), y(t) are
two solutions and x(0) ≤ y(0), then x(t) ≤ y(t) for every t ≥ 0 (18). The first lemma is standard
but it is included for the sake of completeness. Recall that a square matrix A is Hurwitz if all
its eigenvalues have negative real part.

Lemma 2.1 Suppose that the matrix A is cooperative and Hurwitz. Then all entries of P :=
−A−1 are nonnegative. Moreover for every i, j, i 6= j, there exists a path from xi to xj on the
graph of A if and only if Pji > 0.

Proof Consider a solution x(t) of the system x′ = Ax. Then

A

∫ ∞
0

x(t) dt =

∫ ∞
0

x′(t) dt = −x(0)

and Px(0) = −A−1x(0) =
∫∞

0 x(t) dt. If x(0) ≥ 0, then x(t) ≥ 0 for all t > 0 by cooperativity,
so that Px(0) ≥ 0 and all entries of P are nonnegative. Also, setting x(0) = ei we have

Pji = [Pei]j =

∫ ∞
0

xj(t) dt.

If there exists a path from xi to xj on the graph of A, then xj(t) > 0 for every t > 0 by
cooperativity of x′ = Ax, and therefore Pji > 0. Conversely if there is no path from xi to xj ,
then a solution with initial condition ei satisfies xj(t) = 0, hence Pji = 0. �

Consider a cooperative I/O control system under positive feedback

x′ = Ax+Bu, y = Cx. (5)

That is, all off-diagonal entries of A and all entries of B,C are nonnegative. Assuming that
A is Hurwitz, one can easily show that the I/O characteristic of the system is well defined by
the matrix −CA−1B. Also, the closed loop of the system is given by the matrix A + BC. The
following lemma relates the irreducibility of this matrix with that of the closed loop system.

Lemma 2.2 Consider a Hurwitz cooperative linear control system (5) under positive feedback.
Assume that all the columns of B, and all the rows of C, are nonzero. If A+BC is irreducible,
then −CA−1B is irreducible.

Proof
Consider the graph G of the closed loop matrix A + BC, and the graph G′ of the matrix A.

Due to the cooperativity assumptions, G′ is a subgraph of G. If there is a directed path in G′

from the variable xk to xl, then the lk-entry of P := −A−1 is positive by the above lemma (and
vice versa). Define for any input variable ui the set of nodes in the graph Ri := {xk | [B]ki 6= 0},
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and for yi the set of nodes Si := {xl | [C]il 6= 0}. By the assumptions in the statement, these sets
are nonempty for every ui and yi.

We have that

[−CA−1B]ij = [CPB]ij =
∑

k,l=1...n

cilplkbkj , (6)

where i 6= j, bij = [B]ij , cij = [C]ij , pij = [P ]ij . By cooperativity, cilplkbkj ≥ 0 for each k, l.
Therefore, [−CA−1B]ij 6= 0 if and only if there exist k, l such that cil 6= 0, plk 6= 0, bkj 6= 0.
From the discussion above and the previous lemma, it follows that [−CA−1B]ij 6= 0 if and only
if there exist xk ∈ Rj and xl ∈ Si such that there is a directed path from xk to xl in G′.

Observe that if an edge (xl, xk) is in G but not in G′, then necessarily [BC]kl 6= 0. This is
because in that case [A]kl = 0 but [A + BC]kl 6= 0. Therefore there must exist i such that
bki 6= 0, cil 6= 0, in other words xk ∈ Ri, xl ∈ Si.

Now consider two fixed input nodes ui, uj , i 6= j, and suppose that A+BC is irreducible. To
prove irreducibility of CPB we find as follows a sequence ui = uh0

, . . . , uhN+1
= uj , such that

[−CA−1B]hλhλ+1
6= 0, λ = 0 . . . N . Let xk ∈ Ri, xl ∈ Sj , and consider a directed path in G from

xk to xl. Denote all edges on this path that are not on G′ as (xf1 , xg1), . . . (xfN , xgN ). Now for
each λ = 1, . . . , N , let hλ be such that xfλ ∈ Shλ , xgλ ∈ Rhλ . Since xk ∈ Ri = Rh(0), xf1 ∈ Sh1

,
and there is a path from xk to xf1 along G′, then [CPB]h(0)h(1) 6= 0. Similarly by construction,
it holds that [CPB]hλhλ+1

6= 0, for λ = 1 . . . N . �

Observe that if one of the columns of B (or one of the rows of C) is zero, then CA−1B may
not be irreducible. However these assumptions are mild - if a column of B is zero, then one
can simply eliminate the unused input from the system without any change in the dynamics.
Similarly for unused outputs.

For the sake of completeness, the following proposition is stated and proved, which gives
sufficient conditions for the equivalence of the irreducibility of A+BC and −CA−1B. The key
concepts used here are known as weak excitability/transparency and were defined in (2). Consider
the directed graph defined by the open loop system using the nodes xi, ui, yi. We say that there
exists a path from ui to xj if there is k such that Bki 6= 0 and −A−1

jk > 0 (see Lemma 2.1.
Similarly with paths from a state variable to an output variable. We say that a system is weakly
excitable and weakly transparent if every input (state) variable has a path leading to some state
(output) variable, and every output (state) variable has a path leading to it from some state
(input) variable.

Proposition 2.3 Consider a Hurwitz, cooperative linear control system (5). Assume also that the
system is weakly excitable and weakly transparent. Then A + BC is irreducible if and only if
−CA−1B is irreducible.

Proof Following up on the proof of Lemma 2.2, note that if for some variables xk, xl and ui it
holds that xl ∈ Ri, xk ∈ Si, then necessarily [BC]lk 6= 0, and therefore (xk, xl) is an edge in G.

The assumptions of weak excitability and weak transparency imply the remaining hypotheses
of the previous result. They also allow us to assume the following statement: for every xl, there
exist ui and xk ∈ Ri (xk ∈ Si) such that there is a path on G′ from xk to xl (from xl to xk).
Assume that −CA−1B is irreducible. Given any xk, xl, k 6= l, find a path from xk to xk′ ∈ Si
and from xl′ ∈ Rj to xl. Find a sequence ui = uh1

, . . . , uhN = uj , such that [−CA−1B]hλ+1hλ 6= 0,
λ = 1 . . . N − 1, and use the equivalence after equation (6) and the paragraph above to find a
directed path from xk to xl. �

Having proved Lemma 2.2 for the positive feedback case, the corresponding result for negative
feedback control systems is surprisingly simple. A cooperative system (5) under negative feedback
is of the form
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x′ = Ax+Bu, y = −Cx, (7)

under the same assumptions for the matrices A,B,C.

Theorem 2.4 Consider a Hurwitz cooperative linear control system under positive (5) or negative
(7) feedback. Assume that all the columns of B, and all the rows of C, are nonzero. If the closed
loop matrix A±BC is irreducible, then the I/O characteristic matrix∓CA−1B is also irreducible.

Proof The positive feedback case was proved in Lemma 2.2. For the remaining negative feedback
case, recall that the closed loop matrix is A−BC, and the I/O characteristic matrix is CA−1B.

We prove that the (unsigned) interaction graph for A−BC is a subgraph of that for A+BC.
Suppose that [A − BC]ij 6= 0 for i 6= j. In case that Aij > 0, then also [A + BC]ij > Aij is
nonzero. Since A is cooperative, the only other alternative is Aij = 0, in which case [A+BC]ij =
−[A − BC]ij 6= 0. Thus by irreducibility of the matrix A − BC, the matrix A + BC is also
irreducible.

By Lemma 2.2 it follows that −CA−1B is irreducible. But then CA−1B is also irreducible
since it has the same nonzero entries. �

3 Convergent monotonically decreasing maps

In this section we prove an interesting topological property of monotonically decreasing maps
g : U → U , U ⊆ Rm, that is, functions with the property that if u ≤ v then g(u) ≥ g(v).
Assuming that the generic iteration of this map converges towards a fixed point, it is shown that
under regularity and nondegeneracy assumptions g can only have a unique fixed point.

Lemma 3.1 For U ⊆ Rm, let g : U → int U be a C2 monotonically decreasing map. Let g′(e) be
irreducible for any fixed point e ∈ U , and assume that a.e. solution of (4) is convergent. Then g
cannot have any exponentially unstable fixed point.

Proof
Suppose that g does have an exponentially unstable fixed point e ∈ U . Since g′(e) is irreducible,

the cooperative matrix −g′(e) is also irreducible and therefore strongly cooperative (18). By the
Perron-Frobenius theorem, there exists λ > 1 and v � 0 such that g′(e)v = −λv. Define
u := e+ εv, where ε is small enough that u ∈ int U . Then

g(u) = g(e+ εv) = g(e) + g′(e)εv + o(ε) = e− λεv + o(ε),

g(2)(u) = g(g(u)) = g(e− λεv + o(ε)) = g(e) + g′(e)(−λεv + o(ε)) + o(ε) = e+ λ2εv + o(ε).

Therefore for sufficiently small ε

u− g(u) = (1 + λ)εv + o(ε)� 0,

g(2)(u)− u = ε(λ2 − 1)v + o(ε)� 0.

This implies the inequality

g(u) < u < g(g(u)) (8)



July 25, 2013 22:23 International Journal of Control IJC˙re˙submission

International Journal of Control 7

for some u ∈ int U . We will show now that this inequality is inconsistent with the assumption of
generic convergence towards a fixed point, which implies a contradiction. The following inequality
follows directly from (8) and antimonotonicity, again using g(p) to denote the p-th iteration of g:

. . . g(5)(u) ≤ g(3)(u) ≤ g(u) < u < g(2)(u) ≤ g(4)(u) ≤ . . . .

In particular, the sequence g(i)(u) cannnot converge. Let z be such that u� z. Then g(2)(u) ≤
g(2)(z), and more generally g(2k)(u) ≤ g(2k)(z) for all k = 1, 2, . . .. Also g(2k+1)(z) ≤ g(2k+1)(u)
for all k = 0, 1, 2, . . .. Therefore g(i)(z) does not converge either. Since u ∈ int U , the set of such
z has nonzero measure, which violates the a.e. convergence condition. �

The following lemma uses a topological argument to ensure that if a discrete system defined
on the unit ball B in Rm has two stable fixed points, then it must also have one exponentially
unstable fixed point. For details on the background of degree theory in Rm, the reader is referred
to (7) and (20).

Lemma 3.2 Suppose that g : B → B is a C2 function, g(x) 6= x on ∂B, and that 1 is not an
eigenvalue of the matrix g′(e) whenever g(e) = e (nondegeneracy). Suppose also that g has two
Lyapunov stable fixed points. Then g must have at least one exponentially unstable fixed point.

Proof
Define f : B → Rm by f(x) = g(x) − x. Then f has no zeros on ∂B, and any zero of

f(x) in B has nonsingular linearization. Moreover, the system x′ = f(x) has two exponentially
stable steady states in B, and each has degree (−1)m with respect to the function f(x) ((7),
Theorem 2.11.5). The degree deg(f,B) is also equal to (−1)m ((7), proof of Theorem 2.11.4).
Since

deg(f,B) =
∑

y∈f−1(0)

deg(f, y),

there must exist another zero x0 of f in B such that deg(f, x0) 6= (−1)m. Clearly x0 cannot
be exponentially stable, therefore there is an eigenvalue λ of f ′(x0) such that Reλ ≥ 0, λ 6= 0.
But then λ+ 1 is eigenvalue of g′(x0), and |λ+ 1| > 1. This shows that g has an exponentially
unstable fixed point. �

Theorem 3.3 Suppose U ⊆ Rm is a box set and g : U → int U is a C2, bounded, nondegener-
ate, monotonically decreasing function such that system (4) has a.e. convergent solutions. Also
assume that for every fixed point e, g′(e) is irreducible. Then g has a unique fixed point.

Proof Since g is bounded, we can restrict it to a bounded invariant subset, g : Û → Û , where
Û ⊆ U is homeomorphic to the closed unit ball, and all fixed points of g are contained within
int Û .

It follows from Lemma 3.1 that g cannot have an exponentially unstable fixed point. On
the other hand, the result in the last lemma transfers to the nondegenerate function g : Û →
Û by homeomorphism with the unit ball. So if g had two stable fixed points, it would also
have an exponentially unstable fixed point, leading again to a contradiction. It follows from
nondegeneracy that g cannot have weakly unstable fixed points. Hence it only has one fixed
point, and this fixed point is exponentially stable. �

As a corollary, a generalization of the small gain theorem in (10) is proved. It is a more general
result because it replaces the standard small gain condition with the weaker condition GSGC. On
the other hand this can be considered a negative answer to the conjecture, since no multistability
for the closed loop can be obtained.

Corollary 3.4 Consider a C2 cooperative MIMO control system (2) under negative feedback,
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and let the I/O characteristic g : U → int U be bounded and nondegenerate. If GSGC holds,
then the solutions of the closed loop of system (2) converge globally towards a unique steady
state.

Proof As a direct consequence of Theorem 3.3, the I/O characteristic function g(u) has a unique
fixed point ū. Therefore by GSGC almost every solution of (4) must converge towards ū. In fact
every solution must converge towards this fixed point, since every u ∈ U can be bound from
above and below by converging states, v ≤ u ≤ w. Therefore the standard small gain condition
in Theorem 2 of (10) is satisfied, and the conclusion follows. �

4 Unified Positive/Negative Feedback Theorem

Having proved the preliminary results, in order to state the main result a more general definition
for monotoncity is discussed. An I/O control system (2) is called orthant monotone if there exist
δi ∈ {−1, 1} for i = 1 . . . n, and τk ∈ {−1, 1} for k = 1 . . .m, such that

δiδj
∂fi
∂xj

(x, u) ≥ 0, δiτk
∂fi
∂uk

(x, u) ≥ 0

for every i, j = 1 . . . n, i 6= j, k = 1 . . .m, x ∈ X, and u ∈ U . It is said to be under positive
feedback if

δiτk
∂hk
∂xi

(x) ≥ 0,

and under negative feedback if

δiτk
∂hk
∂xi

(x) ≤ 0,

again for every i = 1 . . . n, k = 1 . . .m, x ∈ X. An I/O control system is orthant monotone if
and only if the signed digraph of the system including the states and the inputs contains no
unordered closed loops of negative parity (2). On the other hand the following result holds.

Lemma 4.1 Given an orthant monotone system (2) under positive or negative feedback, define
the new variables zi := δixi, vk := τkuk. With respect to these new variables, system (2) is I/O
cooperative, under positive or negative feedback respectively.

Proof
For given i and k, one can replace xi by δizi and uk by τkvk in the equation to obtain the new

system

z′i = δix
′
i = δifi(δz, τv), vk = τkh(δz), (9)

where δz is shorthand notation for (δ1z1, . . . , δnzn) and similarly for τv. One can verify that

∂

∂zj
δifi(δz, τv) = δiδjfi(δz, τv) ≥ 0,

∂

∂vk
δifi(δz, τv) = δiτkfi(δz, τv) ≥ 0.

Also

∂

∂zi
τkhk(δz) = δiτkhk(δz) ≥ 0
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in the positive feedback case, and similarly in the negative feedback case. �

In that sense, much of what can be proved for cooperative I/O systems generalizes to arbitrary
orthant monotone systems.

Consider an I/O orthant monotone control system (2) with a well defined I/O characteristic
g : U → U , and its corresponding closed loop system (3). In the positive feedback case, and
under conditions of nondegeneracy and irreducibility, it has been established that almost every
solution of the closed loop (3) converges towards a stable steady state, and that these stable
steady states are in bijective correspondence with the stable fixed points of (4). See (12) and the
included references for various forms of this result. In the negative feedback case, if all solutions
of (4) converge towards a unique equilibrium, then (3) is globally attractive towards one steady
state (2, 3).

The topological argument in Section 3 and the irreducibility results from Section 2 are used
now to address both positive and negative feedback systems in the same framework. An I/O
control system (2) is said to be sign-definite if the sign of each of ∂fi/∂xj , ∂fi/∂uk, ∂hk/∂xj
(positive, negative, or zero) does not change as a function of x or u. Such a system has a well
defined signed, directed graph G after linearization around any point.

Theorem 4.2 Consider a C2 sign-definite, orthant monotone control system (2) under either
positive or negative feedback. Assume that the Jacobian of the closed loop (3) is nonsingular at
steady states and irreducible at every x ∈ X. Also assume that there is a well defined, bounded
I/O characteristic g : U → int U . Finally, suppose that the system satisfies the generalized small
gain condition GSGC.
Then almost every bounded solution of the closed loop (3) converges towards a (not necessarily
unique) stable equilibrium. Moreover, the stable equilibria of (3) are in bijection with the stable
fixed points of (4) via the map x→ h(x).

Proof
Notice that all the assumptions on the I/O control system, including irreducibility, nonsin-

gularity, nondegeneracy and the convergence of the iterations of the I/O characteristic, are
preserved after making the simple change of variables described in Lemma 4.1. Also, the qual-
itative behavior of the new system is the same as that of the original system. Thus one can
without loss of generality assume that the original system is cooperative, i.e. δi = 1, τk = 1 for
all i, k.

In the positive feedback case, the closed loop is strongly cooperative since the Jacobian is
irreducible (19). Therefore almost every bounded solution converges towards the set of equilibria,
as stated in the Hirsch generic convergence theorem (16). A strengthening of that result is
Theorem 7 of (13), which uses the smoothness of the system to guarantee in this context that
the generic bounded solution converges towards a stable steady state. The bijection between
the stable equilibria of the closed loop and those of the discrete system (4) is established in
Theorem 4.6 of (12).

In the negative feedback case, the aim is to prove the hypotheses of Theorem 3.3. The I/O
characteristic function g : U → int U is C2 by the implicit function theorem and the fact that
det( ∂

∂xf(x, u)) 6= 0 for the function f(x, u) (nondegeneracy). This function is monotonically
decreasing by construction, see also Sontag and Angeli (3).

Consider a fixed point e ∈ U of g, and its corresponding steady state z ∈ X. One can linearize
around these points to obtain the system (7), where A = ∂f/∂x(z, e), B = ∂f/∂u(z, e), and
C = −h′(z). Then g′(e) = CA−1B and A−BC is the linearization of the closed loop at x = z.
The linearization is itself a Hurwitz cooperative I/O system under negative feedback. One can
assume that the columns of B and rows of C are nonzero from the fact that the system (2) is
sign-definite: if any such row or column was equal to zero, then it would remain equal to zero
under linearization of (2) around any u ∈ U , x ∈ X, in which case that input or output could be
removed without loss of generality. By hypothesis A−BC is irreducible, hence by Theorem 2.4
g′(e) is also irreducible. Therefore the linearization of −g around e is strongly cooperative.
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It follows from Sylvester’s determinant formula (1) that

det(A−BC) = det(A) det(I −A−1BC) = det(A) det(I + C(−A−1)B)

= det(A)(−1)n det(CA−1B − I).

By hypothesis, det(A − BC) 6= 0. Therefore λ = 0 is not an eigenvalue of CA−1B − I, i.e.
λ = 1 is not an eigenvalue of CA−1B = g′(e), and g is nondegenerate.

Having satisfied all assumptions of Theorem 3.3, one can conclude that g(u) has a unique fixed
point e ∈ U .

Now we use the framework established for the small gain theorem for negative feedback systems
in (10). It needs to be proved that every solution of (4) converges towards the unique steady
state e. Since g : U → int U , it is sufficient to consider a given initial condition u0 ∈ int U . By
generic convergence towards equilibria, there exist a < u0 < b such that gk(a) → e, gk(b) → e.
Using the reverse order property of the map g, it follows easily that uk = gk(u0)→ e.

All assumptions H1-H4 in (10) are satisfied. By Theorem 2 in that paper it follows that
every bounded solution of the closed loop converges towards the state z ∈ X associated with e.
The bijection between the unique steady state and the unique fixed point of g still holds, thus
completing the proof.

�

5 Example

As a simple application to illustrate this result, consider the cyclic system

x′1 = g1(xn)− α1x1,
x′i = gi(xi−1)− αixi, i = 2, . . . , n,

(10)

where gi(x) : [0,∞)→ (0,∞) are C2, bounded nonlinear functions such that g′i(s) 6= 0 for all s
(i.e. each gi is increasing or decreasing), and αi > 0 for i = 1, . . . n. Assume that this system is
defined on the state space X = [0,∞)n. This system can be easily seen to be the closed loop of
the following control system:

x′1 = g1(u)− α1x1,
x′i = gi(xi−1)− αixi, i = 2, . . . , n, h(x) = xn.

(11)

The I/O characteristic g(u) of this open loop system is well defined, see also below. In the
negative feedback case (e.g. when an odd number of gi are decreasing), this system has been
studied e.g. in (11). In the positive feedback case it is a simple example of a monotone dynamical
system. In the current unified framework we don’t need to worry about the sign of the feedback
but can state and prove the following result.

Proposition 5.1 Suppose that the Jacobian of (10) is nonsingular at steady states, and that
almost every solution of the discrete system uk+1 = g(uk) is convergent. Then almost every
solution of (10) is also convergent. Moreover, the map x→ xn is a bijection between the steady
states of (10) and the fixed points of g(u).

Proof
We need to prove that the assumptions of Theorem 4.2 are satisfied. First, the open loop system

(11) must be shown to be orthant monotone. This is obvious in light of the loop representation
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Figure 1. Simulations of the cyclic system (10) for n = 4 (positive feedback). Several sample solutions of the 1D discrete
system uk+1 = g(uk) (a,c) are compared with sample solutions of the corresponding continuous dynamical system (b,d).
Horizontal dotted lines indicate the fixed points and steady states of the system, respectively.

of the system since the open loop system has no actual feedback loops, but for illustration let us
find the corresponding δi, and τ . For i = 1 . . . n, let πi ∈ {−1, 1} be defined such that πig

′
i(s) > 0.

Then define the product δi := π1 . . . πi, for i = 1 . . . n. Notice that δiδi−1 = πi, for i = 2 . . . n. So

δiδi−1g
′
i(xi−1) = πig

′
i(xi−1) > 0, i = 2 . . . n.

Setting τ = 1, notice also that τδ1g
′
1(u) = π1g

′
1(u) > 0. In this way (2) is an orthant monotone

I/O system. Finally, given that h(x) = xn, δnτ∂h/∂xn = δn, which has the same sign as the
overall feedback of the system.

The I/O characteristic of (11) is

g(u) =
1

αn
gn ◦

1

αn−1
gn−1 ◦ . . . ◦

1

α1
g1(u),

and it is increasing or decreasing depending on the sign of δn.
Now we can verify the remaining assumptions of Theorem 4.2. The Jacobian of (10) is clearly

irreducible , and it is nonsingular at steady states by assumption. The Jacobian of the open
loop system (11) is an upper diagonal matrix with nonzero diagonal entries and it is therefore
nonsingular, hence the characteristic g is nondegenerate. The characteristic function g : [0,∞)→
(0,∞) is also bounded.

By Theorem 4.2, every bounded solution of the closed loop (10) is convergent. The map
x→ h(x) = xn establishes a bijection between steady states of (10) and the fixed points of g(u).
�

Several simulations were carried out to further illustrate this result. In system (10), set for the
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sake of the argument

gi(s) =
Khi
i

Khi
i + xhi

,

a classical sigmoidal, decreasing regulatory function. Then the system is under negative feedback
for odd n and under positive feedback for even n. For simplicity the parameters were chosen for
this system as Ki = 1, hi = 3 for all i. However the degradation terms αi were varied. In Figure 1
the case n = 4 is considered. In Figure 1a), setting ai = 0.5 for all i, several sample solutions of
the discrete system uk+1 = g(uk) are shown, illustrating that there are two fixed points towards
which the solutions converge. For Figure 1b), several random initial conditions for the closed
loop (10) are chosen, showing only the values of xn(t) over time for each simulation. Depending
on the initial condition, xn converges towards one of two possible steady state values. Notice
the correspondence in the values of the steady states in Figure 1a,b). In Figure 1c,d) a similar
situation is shown for ai = 1, i = 1 . . . n. The solutions of the discrete system converge towards
a unique fixed point, and in the simulations of the cyclic system xn(t) converges towards this
same value.

In Figure 2, the case n = 5 is considered using exactly the same parameters. In Figure 2a),
using the values ai = 0.5, one can see a single typical simulation of the discrete system, showing
that the solutions of the system do not converge towards a steady state. In Figure 2b) a single
sample solution of the closed loop (10) with the same parameters is displayed, showing the
formation of periodic oscillations. For Figure 2c,d), the parameters ai were set to 1 for all i.
Figure 2c) shows three separate simulations of the discrete system, and these solutions are
convergent towards a single fixed point. In Figure 2d) a single generic simulation of the system
is produced showing all system variables. Once again notice the correspondence between the
value of the fixed point in c) and the steady state in d). If the parameters Ki, αi, hi were varied
for different i, the correspondence would only hold for the steady state value of the variable
xn. Overall, Proposition 5.1 applies in three out of the four simulations, and the remaining
simulation illustrates what can happen when the assumptions don’t hold.

6 Feedback Ambivalence

It is interesting that sometimes the same system can be described as a positive feedback or a
negative feedback of I/O monotone systems. Consider two single input, single output (SISO),
cooperative negative feedback systems

x′1 = f1(x1, u1), x′2 = f2(x2, u2), y1 = h1(x1), y2 = h2(x2), (12)

with decreasing I/O characteristic functions g1(u1), g2(u2) respectively. Setting u1 = y2, u2 = y1

results in the closed loop system

x′1 = f1(x1, h2(x2)), x′2 = f2(x2, h1(x1)). (13)

System (13) is also the closed loop of the I/O system

x′1 = f1(x1, u1), x′2 = f2(x2, h1(x1)), u1 = h2(x2), (14)

which is orthant monotone by setting δ1 = 1, δ2 = −1, τ = 1. This open loop is under positive
feedback, since the output satisfies δ2τ∂h2/∂x2 ≥ 0. Viewing (13) as a closed loop in this
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Figure 2. Simulations of the cyclic system (10) for n = 5 (negative feedback). Sample solutions of the 1D discrete system
uk+1 = g(uk) (a,c) are compared with a single solution of the corresponding continuous system (b,d).

way, with an increasing I/O function g(u1) = g2(g1(u1)), Theorem 4.2 guarantees under mild
hypotheses that the solutions of the system converge a.e. to the steady states corresponding to
the fixed points of g.

On the other hand, (13) is the closed loop of the cooperative open system (12) with negative
feedback output (x1, x2) → (h2(x2), h1(x1)). One would think that Theorem 4.2 might apply
here and lead to a proof of the convergence of the solutions of (13) towards one of several steady
states. The I/O characterstic of that system is G(u1, u2) = (g2(u2), g1(u1)), and the associated
discrete system is

uk+1 = (g2(uk2), g1(uk1)). (15)

If the increasing function g has a single fixed point, then Proposition 5.1 might apply equally
to both scenarios and imply the global attractivity of (13) towards a unique steady state. But
suppose g has three fixed points, a1, a2, a3 ∈ R. For any i, j = 1 . . . 3, the pair (ai, g1(aj)) is a
2-cycle of (15):

G(ai, g1(aj)) = (g2(g1(aj)), g1(ai)) = (g(aj), g1(ai)) = (aj , g1(ai)),

and similarly G(aj , g1(ai)) = (ai, g1(aj)). In fact if, say, a1 and a3 are stable fixed points of the
system uk+1 = g(un), then the 2-cycle (a1, g1(a3)), (a3, g1(a1)) above can be seen to be stable for
the system (15). In this way, the negative feedback system cannot satisfy the condition GSGC.
That is, the same multistable system can be described in terms of positive or negative feedback,
but while the positive feedback formulation applies, the negative feedback formulation does not
satisfy the hypotheses of the theorem.
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7 Conjectures on Delay and Reaction Diffusion Equations

The main result in this paper, Therorem 4.2, could open the door to further generalizations of
the theory of monotone systems, since it allows to compare the positive and negative feedback
cases in the same context. One immediate extension of the results would be their generalization
to infinite dimensional systems such as systems with delays and reaction-diffusion equations.
In this section two results are stated as conjectures, the details of the proofs will be left for
future work. One difficulty in writing complete proofs lies in determining additional regularity
assumptions that are compatible with existing results for both positive and negative feedback
systems.

Consider first the case of delay equations, in particular the system

x′ = f(x(t), u), y = h(x(t− τ)), (16)

for fixed τ ≥ 0, and such that for τ = 0 the system is a monotone I/O system under positive or
negative feedback.

Conjecture 7.1 Suppose that system (16) satisfies the assumptions of Theorem 4.2 when τ = 0.
Then almost every bounded solution of x′ = f(x(t), h(x(t − τ))) converges towards a stable
equilibrium. Moreover, the stable equilibria of this system are in bijection with the stable fixed
points of g via the map x→ h(x).

Proof Sketch: In the positive feedback case, the local stability of the closed loop delay system
around a steady state is the same as that of the same system with delay τ = 0, i.e. system (3)
(Corollary 5.5.2 of (18)). It is also known that under certain hypotheses the ‘typical’ solution
of a strongly monotone delay system is convergent (13, 19)). One can conclude that the typical
solution converges towards a state corresponding to a stable steady state of (3). But these are
also the steady states corresponding to a stable fixed point of g, by Theorem 4.2. Regarding the
negative feedback case, in the same way as in the proof of Theorem 4.2, the generalized small
gain condition for the (finite dimensional) map g implies the stronger small gain hypothesis. A
generalization of the traditional small gain theorem to delay systems was developed in a paper
by Smith, Sontag and the author (9), which could be pursued in this context.

In the case of reaction diffusion equations, one can state the following conjecture. Consider a
system with variables wi = wi(x, t) given by equations

∂wi
∂t

= di∆wi + fi(w, u(t, x)), i = 1, . . .m, x ∈ Ω, t > 0, y(x, t) = h(w(x, t)), (17)

defined on a smooth convex domain Ω under Neumann boundary conditions, such that the
corresponding ODE (2) is monotone under positive or negative feedback. This ODE can be
defined by simply setting all di = 0 and fixing x. A framework for showing that (17) itself
satisfies monotonicity conditions was developed in (13), based on maximum principles for systems
of parabolic equations.

Conjecture 7.2 Suppose that system (17) satisfies the assumptions of Theorem 4.2 when di = 0,
i = 1 . . . n. Then almost every bounded solution of

∂wi
∂t

= di∆wi + fi(w, h(w(t, x))), i = 1, . . .m, (18)

converges towards a spatially uniform equilibrium. Moreover, the stable equilibria of this system
are in bijection with the stable fixed points of g via the map x→ h(x).



July 25, 2013 22:23 International Journal of Control IJC˙re˙submission

REFERENCES 15

Proof Sketch: It was shown in (13) that if an irreducible cooperative system

∂zi
∂t

= di∆zi + fi(z), i = 1, . . .m, t > 0, (19)

is defined on a smooth convex domain Ω under Neumann boundary conditions, then the generic
solution (in the sense of prevalence (13)) converges towards a spatially uniform equilibrium. Here
a system is understood as irreducible and cooperative if the corresponding ODE system (3) has
these properties. Since such uniform equilibria are in bijective correspondence with the steady
states of the ODE, determining the stable steady states of the ODE allows to determine the
dynamics of the generic solution of an irreducible cooperative reaction diffusion system. In the
negative feedback case, once again (9) develops a framework to prove the small gain theorem
for cooperative reaction diffusion systems, which could be further generalized using GSGC as
a hypothesis. Notice that the inputs are now functions of space and time, so that the I/O
characteristic is infinite dimensional and does not immediately fit the framework of Section 3.
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