Lecture 1. Limits and Sequences

Motivation

Here we consider sequences of real numbers.

A criterion for convergence

Definition (Boundedness)

We say that a sequence $(x_n)_{n\in\mathbb{N}}$ is bounded above (below) iff there exists a real number $M\in \mathbb{R}$ such that $$ x_n\leq M\text{ for all }n\in \mathbb{N}\quad(x_n\geq M\text{ for all }n\in \mathbb{N})\, . $$

Theorem (Monotone Sequences)

Every monotone increasing sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers, i.e. satisfying $$ x_n\leq x_{n+1},\: n\in \mathbb{N}, $$ which is also bounded above, converges.

Proof

Corollary

Any non-empty subset $S$ of reals which is bounded above (below) has a supremum or least upper bound (infimum or greatest lower bound) $\sup S$ ($\,\inf S$).

Proof

Exercise

The above proof of the corollary is flawed. Find the mistake and try to correct it. The problem was identified by Wes Whiting (Incoming Fall 2018) and below is his suggested fix.

Proof (Wes Whiting)

Remark

If $S\neq \emptyset$ is bounded above, then the proof shows that $$ \forall\varepsilon >0\:\exists\: s\in S\text{ s.t. }s>\sup S -\varepsilon. $$

Example

Let a sequence $(x_n)_{n\in\mathbb{N}}$ be recursively defined by $x_1=1$, $x_{n+1} = \sqrt{3+x_n}$. Show that $\lim_{n \to \infty} x_n$ exists and find its value.

Discussion

Theorem (Euler Number)

$\lim_{n\to\infty} (1+\frac{1}{n})^n$ exists, is called Euler's number, and is denoted by $e$.

Exercise

Show that $(1+x)^{\alpha}\le 1+\alpha x$ for all $x>0$ and $0<\alpha<1$.

Example

\begin{equation*} \lim_{n \to \infty}\bigl( 1+ \frac{1}{n^2+1}\bigr)^{n^2+n}=\lim_{n\to \infty} \bigl(1+ \frac{1}{n^2+1}\bigr)^{(n^2+1)\frac{n^2+n}{n^2+1}}=\Big[ \lim_{n \to \infty} \bigl(1+ \frac{1}{n^2+1}\bigr)^{n^2+1}\Big] ^1 = e. \end{equation*}

Elementary Properties of Limits.

Proposition (Linearity)

The following hold for any two convergent sequences $(x_n)_{n\in\mathbb{N}},(y_n)_{n\in\mathbb{N}}$
(i) $\lim_{n\to\infty} (x_n+y_n)=\lim_{n\to\infty} x_n +\lim_{n\to\infty} y_n$.
(ii) $\lim_{n\to\infty} (x_n-y_n)=\lim_{n\to\infty} x_n -\lim_{n\to\infty} y_n$.
(iii) $\lim_{n\to\infty} (x_ny_n)=(\lim_{n\to\infty} x_n )(\lim_{n\to\infty} y_n)$.
(iv) $\text{ If }\lim_{n\to\infty} y_n\ne 0,\text{ then } \lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$.

Proof

Theorem (Squeeze Theorem)

Assume that $x_n\le y_n\le z_n\text{ for } n\ge 1\text{ and that} \lim_{n\to\infty} x_n=\lim_{n\to\infty} z_n=x$. Then $\lim_{n\to\infty} y_n=x$.

Example

Let $\lim_{n\to\infty} x_n=x$. Prove that $$ \lim_{n\to\infty} \frac{x_1+\dots+x_n}{n}=x. $$

Discussion

Limits superior and inferior

Define $$ \bar{x}_n = \sup \{x_m: m\ge n\} $$ and notice that $\{\bar{x}_n\}_{n=1}^\infty$ is non-increasing. Therefore either the sequence is unbounded above and $\bar{x}_n =\infty$ for all $n$ or $\lim_{n \to \infty} \bar{x}_n$ exists and is finite or it is $-\infty$. Similarly, defining $$ \underline{x}_n = \inf \{x_m: m\ge n\}\, , $$ we obtain an non-decreasing sequence and thus $\lim_{n \to \infty} \underline{x}_n$ either exists or equals infinity unless the sequence is unbounded below and $\bar{x}_n =-\infty$ for all $n$.

Definition (Limits Superior and Inferior)

The limits superior and inferior of a sequence $(x_n)_{n\in\mathbb{N}}$ are given by \begin{gather*} \lim \sup_{n\to \infty} x_n = \lim_{n\to \infty} \bar{x}_n\\ \lim \inf_{n\to \infty} x_n = \lim_{n\to \infty} \underline{x}_n \end{gather*}

Remark

Notice that $\underline{x}_n \le \bar{x}_n $ and so one always has that $$ \lim \inf_{n\to \infty} x_n \le \lim \sup_{n \to \infty} x_n\, . $$

Theorem

$\lim_{n \to \infty} x_n$ exists if and only if $$ \lim_{n\to \infty} \inf x_n =\lim_{n\to \infty} \sup x_n\, . $$

Exercise

Prove the above theorem.

Examples

(a) Let $x_n = (-1)^n$, $n=1,2,\dots$, then $$ \overline{x}_n = \sup\{(-1)^m, m\ge n\} = 1,\quad \underline{x}_n = \inf\{(-1)^m, m\ge n\} = -1. $$ Therefore, $\lim\sup_{n\to\infty} x_n=1 \ne -1=\lim\inf _{n\to\infty} x_n$, so that $\lim_{n \to \infty} (-1)^n$ does not exist.

(b) Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be two bounded sequences. Show $$ \lim \sup_{n\to \infty} (x_n + y_n) \le \lim \sup_{n \to \infty} x_n + \lim \sup_{n \to \infty} y_n. $$

Discussion

Definition (Subsequence)

Given a sequence $(x_n)_{n\in\mathbb{N}}$ and a sequence of indeces $(n_j)_{j\in\mathbb{N}}$, we say that $(x_{n_j})_{j\in \mathbb{N}}$ is a subsequence of $(x_n)_{n\in\mathbb{N}}$ if $n_1 < n_2<\dots$.

Example

If we take $x_n = (-1)^n$, $n=1,2,\dots$, then \begin{align*} \text{(i) } &(x_{2n})_{n\in \mathbb{N} }\text{ with }x_{2n} =1\text{ is a subsequence of }(x_n)_{n\in\mathbb{N}}.\\ \text{(ii) } &(x_{2n+1})_{n\in \mathbb{N}}\text{ with }x_{2n+1} = -1\text{ is also a subsequence.} \end{align*} Although $\lim_{n \to \infty} x_n$ does not exist, $$ \lim_{n\to \infty} x_{2n} =1\text{ and }\lim_{n\to \infty} x_{2n+1} =-1 $$ do.

Theorem

If $(x_n)_{n\in\mathbb{N}}$ is a sequence in $\mathbb{R}$, then $$ \lim_{n \to \infty} x_n = x\iff \lim_{k \to \infty}x_{n_k} = x\text{ for all subsequences }(x_{n_k})_{k\in \mathbb{N}}\text{ of }(x_n)_{n\in\mathbb{N}}\, . $$

Proof

Proposition

Given a bounded sequence $(x_n)_{n\in\mathbb{N}}$ in $\mathbb{R}$, there exists a subsequence $(x_{n_k})_{k\in \mathbb{N} }$ such that $$ \limsup_{n \to \infty} x_n = \lim_{k \to \infty}x_{n_k}\, . $$

Proof

Theorem (Bolzano-Weierstrass)

Every bounded sequence in $\mathbb{R}$ has a convergent subsequence

Proof