Lecture 10. The Riemann Integral

Motivation

Riemann Sums

Definitions (Upper and Lower Sums)

Let $-\infty < a < b < \infty$ and $f:[a,b]\to \mathbb{R}$ be a bounded function. Partition the interval $[a,b]$ by $P=\{ x_0,\dots,x_n\}$ where $$ a = x_0 < x_1 < \dots < x_n = b. $$ The partition $P$ has a norm $\| P\|$ given by its maximal interval length $$ \| P\| = \max \{ \Delta x_i=x_i - x_{i-1}\, :\, i=1,2,\dots ,n\}. $$ Define \begin{align*} m_i(f)&= \inf\{ f(x): x_{i-1} \le x < x_i \}\\ M_i(f)&= \sup\{f(x): x_{i-1} \le x < x_i \}. \end{align*} and consider the lower and upper partial sums of $f$ (with respect to the partition $P$) given by \begin{align*} L(f,P)&= \sum_{i=1}^n m_i \Delta x_i,\\ U(f,P)&= \sum_{i=1}^n M_i \Delta x_i. \end{align*} It is easy to see that $L(f,P) \le U(f,P)$.

Remark

In fact, for any two partitions $P_1$ and $P_2$ for $[a,b]$, we always have $L(f,P_1) \leq U(f, P_2)$.

Discussion

Definition (Riemann Integral)

Now the lower and upper integrals of $f$ on $[a,b]$ are defined by \begin{align*} L(f)&= \lim_{\| P\|\to 0} L(f,P)\text{ and}\\ U(F)&= \lim_{\| P\| \to 0} U(f,P), \end{align*} respectively. They both always exist by monotonicity. Let $f\in \operatorname{B}\bigl([a, b],\mathbb{R}\bigr)$, that is, a real valued bounded function defined on $[a,b]$. It is said to be (Riemann) integrable, or simply R-integrable iff $$ L(f) = U(f). $$

Conditions for Riemann Integrability

Theorem

Let $f\in \operatorname{B}\bigl([a, b],\mathbb{R}\bigr)$ Then $f$ is R-integrable iff, for any $\epsilon > 0$, there is a partition $P$ of $[a,b]$ such that $$ U(f,P) - L(f,P)\leq\epsilon. $$

Proof

Examples

(a) If $f\in \operatorname{C}\bigl([a,b],\mathbb{R}\bigr)$, then $f$ is integrable.
(b) Let the Dirichlet function $D:\mathbb{R}\to \mathbb{R}$ be defined by $$ D(x)=\begin{cases} 1,&x\text{ is rational}\\ 0,&x\text{ is irrational}\end{cases} $$ Then $D$ is not integrable on any interval $[a,b]$, since $U(f)=b-a>0=L(f)$. The Dirichlet function is the typical example of a non-integrable function.
(c) Let $R:[0,1]\to \mathbb{R}$ be given by $$ R(x)=\begin{cases} 0,&x\text{ is irrational,}\\ 1/n,&x=m/n\text{ and }(m,n) =1.\end{cases} $$ Then $R$ is integrable on $[0,1]$.
(d) If $f:[a,b]\to \mathbb{R}$ is monotone, then it is integrable.

Discussion


For a bounded $f:[a,b]\to \mathbb{R}$ define $$ D(f)=\{ x\in[a,b]\, :\, f\text{ is discontinuous at }x\}. $$

Theorem

Let $f\in \operatorname{B}\bigl([a,b],\mathbb{R}\bigr)$. Then $$ f \text{ is integrable iff } m(D) = 0\, (\text{i.e. iff }D\text{ has measure }0). $$

Remark

Notice that $D$ is said to have measure $0$ iff, for any $\epsilon>0$, there exist $a_i\leq b_i$ for $i\in \mathbb{N}$ such that $$ D\subset \bigcup_{j=1}^\infty (a_j,b_j)\text{ and }\sum_{j=1}^\infty (b_j - a_j)\leq\epsilon. $$

Theorem

Let $f\in \operatorname{B}\bigl([a,b],\mathbb{R}\bigr)$. Then $f$ is integrable on $[a,b]$ iff $f^+$ and $f^-$ are integrable, where $$ f^+(x)=\begin{cases} f(x),&\text{if } f(x) \geq 0\\ 0,&\text{if }f(x) < 0\end{cases}\text{ and } f^-(x)=\begin{cases} f(x),&\text{if } f(x) \leq 0\\ 0,&\text{if }f(x) > 0\end{cases} $$

Corollary

If $f$ is integrable on $[a,b]$, then $|f|$ is integrable on $[a,b]$. The converse is not true in general.

Nexample

The function $f:[0,1]\to \mathbb{R}$ defined by $$ f(x)=\begin{cases} 1,&x\text{ is rational}\\ -1,&x\text{ is irrational}\end{cases} $$ is not integrable since $L(f,P)=-1$ and $U(f,p)=1$, while $|f|\equiv 1$ is integrable.

Improper Integrals

Next we consider the integrality of certain unbounded functions.

Definition

Let $f:(a,b)\to \mathbb{R}$ be a function (notice that such a function can be unbounded even if it is assume continuous). If $f\big |_{[c, d]}$ is integrable for any choice of $c,d$ with $a < c < d < b$, then it is called integrable iff $$ \int_a^b f(x) dx=:\lim_{c\to a, d\to b}\int_{c}^d f(x) dx\: \text{exists.} $$

Proposition

If $f:(a,b)\to \mathbb{R}$ is integrable on $[c_1, c_2]$ for any $a < c_1 < c_2 < b$ and $|f|$ is integrable on $(a,b)$, then $f$ is integrable on $(a,b)$. The converse is not true in general.

Nexample

Let $f(x) = \frac{1}{x^\alpha}$ for $x\in(0,1]$. Then
(i) $f$ is integrable when $\alpha<1$.
(ii) $f$ is not integrable when $\alpha\ge 1$.

Discussion

Theorem (Comparison)

Assume that $f,g:(a,b)\to \mathbb{R}$ are continuous and that $|g|$ is integrable. If $$ |f(x)|\leq |g(x)|,\: x\in (a,b), $$ then $|f|$ is integrable and so is $f$.

Examples

(a) Determine whether $\int_0^1 \frac{1}{\sqrt{x}} \sin(\frac{1}{x}) dx$ converges or not.
(b) Determine whether $\int_0^1 \frac{\sin (x)}{x^{3/2}}\, dx$ converges.
(c) What about $\int_{0}^1 \frac{\cos(x)}{x^{3/2}}\, dx$?

Discussion


Next we deal with unbounded interval of integration

Definition

Let $f:\mathbb{R}\to \mathbb{R}$ be such that $f\big |_{[a,b]}$ is integrable for any $a,b\in \mathbb{R}$ with $a < b$. Then
(i) $\int_a^\infty f(x)\, dx = \lim_{b \to +\infty} \int_a^b f(x)\, dx$ if the limit exists.
(ii) $\int_{-\infty}^b f(x) \, dx = \lim_{a \to -\infty} \int_a^b f(x) \, dx$ if the limit exists.
(iii) $\int_{\infty}^\infty f(x) \, dx = \lim_{a \to -\infty, b \to \infty} \int_a^b f(x) \, dx$ if the limit exists.

Examples

(a) If $\alpha\geq 0$ and $f(x) = \frac{1}{x^\alpha}$ for $x \in [1,\infty)$, then $$ \int_1^\infty \frac{1}{x^\alpha}\, dx= \begin{cases}\frac{1}{\alpha-1},&\alpha>1\\ \infty,&\alpha\le 1\end{cases} $$
(b) Determine whether $\int_0^\infty \frac{\sin (x) } { \ln (x+2)}\, dx$ converges.

Discussion


Next we look at some important techniques used to compute integrals. We begin with integration by parts (a consequence of the product rule) which reads $$ \int _a^bf(x)g'(x)\, dx = f(x)g(x) \Big |_a^b - \int_a^b f'(x) g(x)\, dx. $$ Substitution is a consequence of the chain rule and amounts to $$ \int_a^b f(\phi(x)) \phi'(x) \, dx = \int_c^d f(y)dy, $$ for an onto function $\phi: [a,b] \to [c,d]$ and by stipulating that $y=\phi(x)$.

Theorem (Newton-Leibniz)

If $f:[a,b]\to \mathbb{R}$ is integrable and $$ F(x):=\int_a^x f(t)\, dt\, ,\: x\in [a,b]\, , $$ then $F'(x_0) = f(x_0)$ whenever $f$ is continuous at $x_0$.

Observe that $F=\int_a^\cdot f(t)\, dt$ is an anti-derivative (or a primitive) of $f$.

Example

Let $F(x) = \int_{x- \cos(x)}^{x^2 - \sin(x)} e^{t^2} (t+2)\, dt$. Find $F'(x)$.

Discussion

Important inequalities

Theorem

Let $f,g\in\operatorname{B}\bigl([a,b],\mathbb{R}\bigr)$ be integrable. Then
(i) $f\cdot g$ is integrable on $[a,b]$
(ii) (Cauchy-Schwarz inequality) $$ \bigl( \int_a^b f(x)g(x) \, dx \bigr)^2 \leq \int_a^b f^2(x)\, dx\int_a^b g^2(x)\, dx. $$

Proof

Theorem (Hölder Inequality)

Let $f,g\in\operatorname{B}\bigl([a,b],\mathbb{R}\bigr)$ be integrable and assume that $1\leq p,q < \infty$ satisfy $\frac{1}{p}+\frac{1}{q} =1$. Then $f\cdot g$ is integrable and $$ \Big |\int_a^b f(x) g(x)\, dx\Big |\leq\Bigl(\int_a^b |f(x) |^p \, dx\Bigr)^{1/p}\Bigl(\int_a^b |g(x)|^q\, dx\Bigr)^{1/q}. $$

Proof

Reminder

For any $x,y\geq 0$ one has that $$ xy \leq\frac{1}{2}(x^2+y^2)\text{ and that } xy \leq\frac{x^p}{p} + \frac{y^q}{q} $$ whenever $\frac{1}{p}+\frac{1}{q} =1$ for $p,q\in(1,\infty)$. Latter follows from $$ xy =e^{\frac{1}{p} \ln x^p + \frac{1}{q} \ln y^q} \le \frac{1}{p} e^{\ln x^p}+\frac{1}{q} e^{\ln x^q}=\frac{1}{p}x^p + \frac{1}{q} y^q $$ and the convexity of the exponential function.