Lecture 2. Series and Power Series

Motivation

Definition and Convergence Tests

Definition (Series)

With the symbol $\sum_{n=1}^\infty a_n$ we denote the sequence $(s_n)_{n\in\mathbb{N}}$ of partial sums $s_n=\sum_{k=1}^n a_k$ and call it series. We say that it converges to a finite number $s\in\mathbb{R}$ if the sequence of partial sums converges to it, i.e. if $$ s=\lim_{n \to \infty} s_n $$ If a series does not converge, we say it diverges.

Question

How can we test whether the series $\sum_{n=1}^\infty a_n$ converges or diverges?

Proposition (Necessary Condition for Convergence)

If the real series $\sum_{n=1}^\infty a_n$ converges, then $a_n \to 0$ as $n \to \infty$.

Proof

Example

Prove that $\sum_{n=1}^\infty \dfrac{(-1)^n + n}{n+ 100}$ diverges.

Discussion

Definition (Absolute Convergence)

We say that $\sum_{n=1}^\infty a_n$ converges absolutely if $\sum_{n=1}^\infty |a_n|$ converges.

Theorem (Cauchy Criterion)

The real (or complex) series $\sum_{n=1}^\infty a_n$ converges if and only if, for each $\epsilon>0$ there is $N\in \mathbb{N}$ such that $$ | \sum_{k=n}^m a_k |\leq\epsilon\text{ whenever }m\geq n \ge N\, . $$

Proof

Corollary

If the real (or complex) series $\sum_{n=1}^\infty a_n$ converges absolutely, then $\sum_{n=1}^\infty a_n$ converges. The converse is not true in general.

Proof

Series with Nonnegative Terms

Theorem (Comparison Test)

Assume that $0 \le b_n \le a_n \le c_n$ for $n\in \mathbb{N}$. Then

(i) If $\sum_{n=1}^\infty c_n$ converges, then $\sum_{n=1}^\infty a_n$ converges.

(ii) $\text{If }\sum_{n=1}^\infty b_n$ diverges, then $\sum_{n=1}^\infty a_n$ diverges.

Theorem (Comparison Test)

The series $ \sum_{n=1}^{\infty} \dfrac{1}{n^p} $ converges if $p>1$ and diverges (to $+\infty$) if $p \le 1$.

Proof

Example

Determine whether $\sum_{n=1}^\infty \dfrac{(-1)^n + n^2 }{n^4 +10n+1}$ converges.

Discussion

Theorem (Integral Test)

Assume that $f:[1,\infty)\to \mathbb{R}$ is a decreasing non-negative function. Then

(i) $0\le a_n \le f(n)$ and $\int_{1}^\infty f(x) dx < + \infty$ imply that $\sum_{n=1}^\infty a_n$ converges.

(ii) $a_n\ge f(n)$ and $\int_{1}^\infty f(x) dx =+ \infty$ imply that $\sum_{n=1}^\infty a_n$ diverges.

Proof

Example

$\sum_{n=1}^\infty \dfrac{1}{n\log^{\, p}(n+1)}$ converges if $p>1$ and diverges if $p\le 1$.

Discussion

Theorem (Ratio Test)

Let $a_n >0$, $n=1,2,\dots$ and assume that $\lim_{n \to \infty} \dfrac{a_{n+1}}{a_n} = r$. Then
(i) If $r<1$, $\sum_{n=1}^\infty a_n$ converges.

(ii) If $r>1$, $\sum_{n=1}^\infty a_n$ diverges.

(iii) When $r=1$ the test fails.

Examples

(a) Determine whether $\sum_{n=1}^\infty \dfrac{2^n}{n!}$ converges.

(b) Let $a_n=\frac{1}{n}$ and $b_n=\frac{1}{n^2}$. Then $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}=\frac{b_{n+1}}{b_n}=1$, but $\sum_{n=1}^\infty a_n$ diverges, while $\sum_{n=1}^\infty b_n$ converges.

Discussion

Theorem (Root Test)

If $\lim\sup_{n \to \infty} \sqrt[n]{|a_n|} = r$, then

(i) if $r<1$, $\sum_{n=1}^\infty |a_n|$ converges.

(ii) If $r>1$, $\sum_{n=1}^\infty a_n$ diverges.

(iii) For $r=1$ the test fails.

Example

Find the interval (for $x$) on which $\sum_{n=1}^\infty \dfrac{n^2}{8^n}x^{3n}$ converges.

Discussion

General Series

We now have criteria to determine whether a series with non-negative terms converges. The analysis of convergence of general series $\sum_{n=1}^\infty a_n$ is more involved because of cancellation effects between terms. The following identity is, however, a very useful tool.

Theorem (Abel's Summation Formula)

It holds that $$ \sum_{k=p}^q a_k b_k = \sum_{k=p}^q s_k (b_k - b_{k+1}) + s_q b_{q+1} - s_{p-1} b_p $$ where $s_k = \sum_{j=1}^k a_j$ for $k\geq 1$ and $s_0:=0$.

Proof

Theorem (Alternating Series Test)

Let $(b_k)_{k\in\mathbb{N}}$ be a decreasing sequence with $\lim_{n \to \infty} b_n =0$. Then $\sum_{n=1}^\infty (-1)^n b_n$ converges.

Proof

Theorem

Let $(a_k)_{k\in\mathbb{N}}$ and $(b_k)_{k\in\mathbb{N}}$ be two sequences of numbers such that

(i) $\bigl(s_n = \sum_{k=1}^n a_k\bigr)_{n\in \mathbb{N} }$ is bounded.

(ii) $b_n \ge b_{n+1}$ for $n \ge 1$ and $b_n \to 0$ as $n \to \infty$.

Then $\sum_{k=1}^\infty {a_k b_k}$ converges.

Proof

Example

Determine whether $\sum_{n=1}^\infty \dfrac{(-1)^n}{\ln(n+1)}$ converges.

Discussion

Power Series

Definition (Power Series and Radius of Convergence)

A series of the form $\sum_{n=0}^\infty a_n x^n$ for a sequence $(a_n)_{n\in\mathbb{N}}$ and the variable $x\in \mathbb{R}$ (or, more in general, $x\in\mathbb{C}$) is called power series. Its radius of convergence is defined by $$ R = \dfrac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}. $$

Theorem

The following statements hold

(i) $\sum_{n=0}^\infty a_n x^n$ converges absolutely for $x\in (-R,R)$.

(ii) For any $r< R$, $\sum_{n=0}^\infty a_n x^n$ converges absolutely and uniformly for $x\in [-r,r]$.

(iii) Let $r < R$ and define $f(x):=\sum_{n=0}^\infty a_n x^n$. Then $f$ is differentiable on $(-R,R)$ and integrable on $[-r, r]$ and $$ f'(x)=\sum_{n=1}^\infty n a_n x^{n-1},\quad x\in (-R, R) $$ and $$ \int_0^x f(x) dx=\sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}, \quad x\in (-R, R). $$

(iv) When $x=R$ and $x=-R$ nothing can be said in general about convergence.

Remark

When $x$ is allowed to be complex in the above theorem, then the interval $[-r,r]$ for $r\in[0,R]$, has to be replaces by the ball $[|x|\leq r]=\{ x\in \mathbb{C}\, :\, |x|\leq r\}$.

Example

(a) Determine the region of convergence of $\sum_{n=1}^\infty 2^{-n} x^{n^2}$.

(b) Determine where $\sum_{n=1}^\infty \dfrac{(-1)^n}{\sqrt{n} 2^n} x^{n}$ converges.

Discussion


We conclude this section with examples of common power series.