
Math 140c Spring Term 2004

Final Examination

Print your name:

Print your ID #:

You have 2 hours to solve the problems. Good luck!
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1. Let A and B be compact subsets of Rn. Prove that

A + B = {a + b | a ∈ A , b ∈ B}

is compact.
Solution:
Given an arbitrary sequence (cn)n∈N in A+B we need to show that it
has a convergent subsequence with limit in A + B. Since cn ∈ A + B
we can find an ∈ A and bn ∈ B such that

cn = an + bn for every n ∈ N .

We thus obtain two sequences (an)n∈N and (bn)n∈N in A and B, re-
spectively.
Since A is compact we find an index sequence (nk)k∈N such that
(ank

)k∈N has a limit a∞ ∈ A, but then, since B is also compact,
(bnk

)k∈N contains a convergent subsequence (bnkj
)j∈N which has a limit

b∞ ∈ B.
Finally the subsequence (cnkj

)j∈N of (cn)n∈N will converge to a∞+b∞ ∈
A + B which concludes the proof.

2. Let K ⊂ Rn be compact and f ∈ C(K, R) with f > 0. Show that 1/f
is uniformly continuous.
Solution:
Since f is a continuous function defined on a compact set, it is uni-
formly continuous and |f |, which is also continuous, attains both a
maximum M < ∞ and a minimum m > 0. The minimum is positive
since the function is assumed to be positive. Next we observe that

| 1
f(x)

− 1
f(y)

| ≤ 1
|f(x)f(y)|

|f(x)−f(y)| ≤ 1
m2
|f(x)−f(y)| , ∀x, y ∈ K .

Now, given ε > 0, it is possible to find δ > such that

|f(x)− f(y)| ≤ m2ε whenever |x− y| ≤ δ for x, y ∈ K .

since f is uniformly continuous. The claim follows combining the two
inequalities.

2



3. Let A ⊂ Rn be non compact. Show that there must exist an un-
bounded continuous function f : A → R.
Solution:
Two cases need to be considered. First the set A might be unbounded.
In this case

f : A → R , x 7→ ‖x‖

is a continuous function (triangle inequality) which is obviously un-
bounded. On the other hand, if A is bounded it can not be closed.
We therefore find x0 ∈ ∂A \A and the function

f : A → R , x 7→ 1
‖x− x0‖

is continuous (‖x− x0‖ does not vanish on A) and unbounded (there
are points in A which come arbitrarily close to x0).

4. Compute the limit:

lim
(x,y)→(0,0)

sin(x2 + y2)√
x2 + y2

.

Justify your answer.
Solution:
Introducing polar coordinates (x, y) = r

(
cos(θ), sin(θ)

)
, we see that

(x, y) → 0 ⇐⇒ r → 0 .

The problem reduces to computing limr→0
sin(r2)

r . By L’Hôpital, or
since sin(r2) = O(r2) (as r → 0), we see that the limit is 0.

5. For a given function f : Rn → R consider the following assertions:
(i) f is continuously differentiable .
(ii) f has directional derivatives in every direction at every point.
(iii) f has partial derivatives at every point.
Explain the implications between these assertions.
Solution:
(i) ⇒ (ii), (i) ⇒ (iii), (ii) ⇒ (iii)
(ii) 6⇒ (i), (iii) 6⇒ (ii), (iii) 6⇒ (i).
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6. Let f : Rn → Rn be differentiable and assume that Df(x) is invertible
for every x ∈ Rn. Prove that ‖f‖2 does not attain a maximum.
[Hint: Chain rule]
Solution:
By chain rule ∇

(
‖f‖2

)
(x) = 2Df(x)T f(x). At a point of maximum

we would have Df(x)T f(x) = 0. Since Df(x) is invertible, this can
only happen when f(x) = 0. Now, f cannot be constant, and thus,
when f(x) = 0 we have a minimum of ‖f‖2.

7. Let f ∈ C2(Rn, R). Assume that ∇f(x0) = 0 and that D2f(x0) is
positive definite for some x0 ∈ R2. Prove that there is δ > 0 such that

f(x0 + h)− f(x0) ≥ c‖h‖2 , ∀h with ‖h‖ ≤ δ .

Solution:
By a theorem in class

f(x0 + h) = f(x0) + hT D2f(x0)h + Rf,x0(h)

for Rf,x0(h) = o(‖h‖2) as h → 0. Now

hT D2f(x0)h ≥ α‖h‖2 , ∀h ∈ Rn

since D2f(x0) is positive definite. We also can find δ > 0 such that

Rf,x0(h) ≤ α

2
‖h‖2 whenever ‖h‖ ≤ δ .

Finally we see that

f(x0 + h)− f(x0) = hT D2f(x0)h + Rf,x0(h) ≥

α‖h‖2 − α

2
‖h‖2 =

α

2
‖h‖2 whenever ‖h‖ ≤ δ

which concludes the proof.
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8. Use the implicit function theorem to analyze solutions of{
a3 + a2b + sin(a + b + c) = 0
log(1 + a2) + 2a + (bc)4 = 0

about the point (0, 0, 0) in R3.
Solution:
After computing

DF (0, 0, 0) =
[
1 1 1
2 0 0

]
for

F (a, b, c) = (a3 + a2b + sin(a + b + c), log(1 + a2) + 2a + (bc)4) ,

we use the implicit function thereom to conclude that the system can
be solved for either (a, b) or (a, c) as functions of c or b, respectively,
in a neighborhood of the origin.
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