Final Examination

Print your name: \qquad
\qquad

Print your ID \#: \qquad

You have 2 hours to solve the problems. Good luck!

1. Let A and B be compact subsets of \mathbb{R}^{n}. Prove that

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

is compact.

Solution:

Given an arbitrary sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ in $A+B$ we need to show that it has a convergent subsequence with limit in $A+B$. Since $c_{n} \in A+B$ we can find $a_{n} \in A$ and $b_{n} \in B$ such that

$$
c_{n}=a_{n}+b_{n} \text { for every } n \in \mathbb{N} .
$$

We thus obtain two sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ in A and B, respectively.
Since A is compact we find an index sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that $\left(a_{n_{k}}\right)_{k \in \mathbb{N}}$ has a limit $a_{\infty} \in A$, but then, since B is also compact, $\left(b_{n_{k}}\right)_{k \in \mathbb{N}}$ contains a convergent subsequence $\left(b_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ which has a limit $b_{\infty} \in B$.
Finally the subsequence $\left(c_{n_{k_{j}}}\right)_{j \in \mathbb{N}}$ of $\left(c_{n}\right)_{n \in \mathbb{N}}$ will converge to $a_{\infty}+b_{\infty} \in$ $A+B$ which concludes the proof.
2. Let $K \subset \mathbb{R}^{n}$ be compact and $f \in \mathrm{C}(K, \mathbb{R})$ with $f>0$. Show that $1 / f$ is uniformly continuous.

Solution:

Since f is a continuous function defined on a compact set, it is uniformly continuous and $|f|$, which is also continuous, attains both a maximum $M<\infty$ and a minimum $m>0$. The minimum is positive since the function is assumed to be positive. Next we observe that

$$
\left|\frac{1}{f(x)}-\frac{1}{f(y)}\right| \leq \frac{1}{|f(x) f(y)|}|f(x)-f(y)| \leq \frac{1}{m^{2}}|f(x)-f(y)|, \forall x, y \in K .
$$

Now, given $\varepsilon>0$, it is possible to find $\delta>$ such that

$$
|f(x)-f(y)| \leq m^{2} \varepsilon \text { whenever }|x-y| \leq \delta \text { for } x, y \in K
$$

since f is uniformly continuous. The claim follows combining the two inequalities.
3. Let $A \subset \mathbb{R}^{n}$ be non compact. Show that there must exist an unbounded continuous function $f: A \rightarrow \mathbb{R}$.

Solution:

Two cases need to be considered. First the set A might be unbounded. In this case

$$
f: A \rightarrow \mathbb{R}, x \mapsto\|x\|
$$

is a continuous function (triangle inequality) which is obviously unbounded. On the other hand, if A is bounded it can not be closed. We therefore find $x_{0} \in \partial A \backslash A$ and the function

$$
f: A \rightarrow \mathbb{R}, x \mapsto \frac{1}{\left\|x-x_{0}\right\|}
$$

is continuous ($\left\|x-x_{0}\right\|$ does not vanish on A) and unbounded (there are points in A which come arbitrarily close to x_{0}).
4. Compute the limit:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}} .
$$

Justify your answer.

Solution:

Introducing polar coordinates $(x, y)=r(\cos (\theta), \sin (\theta))$, we see that

$$
(x, y) \rightarrow 0 \Longleftrightarrow r \rightarrow 0 .
$$

The problem reduces to computing $\lim _{r \rightarrow 0} \frac{\sin \left(r^{2}\right)}{r}$. By L'Hôpital, or since $\sin \left(r^{2}\right)=O\left(r^{2}\right)($ as $r \rightarrow 0)$, we see that the limit is 0 .
5. For a given function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ consider the following assertions:
(i) f is continuously differentiable
(ii) f has directional derivatives in every direction at every point.
(iii) f has partial derivatives at every point.

Explain the implications between these assertions.

Solution:

(i) \Rightarrow (ii), (i) \Rightarrow (iii), (ii) \Rightarrow (iii)
(ii) \nRightarrow (i), (iii) \nRightarrow (ii), (iii) \nRightarrow (i).
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be differentiable and assume that $D f(x)$ is invertible for every $x \in \mathbb{R}^{n}$. Prove that $\|f\|^{2}$ does not attain a maximum.
[Hint: Chain rule]

Solution:

By chain rule $\nabla\left(\|f\|^{2}\right)(x)=2 D f(x)^{T} f(x)$. At a point of maximum we would have $D f(x)^{T} f(x)=0$. Since $D f(x)$ is invertible, this can only happen when $f(x)=0$. Now, f cannot be constant, and thus, when $f(x)=0$ we have a minimum of $\|f\|^{2}$.
7. Let $f \in \mathrm{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Assume that $\nabla f\left(x_{0}\right)=0$ and that $D^{2} f\left(x_{0}\right)$ is positive definite for some $x_{0} \in \mathbb{R}^{2}$. Prove that there is $\delta>0$ such that

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right) \geq c\|h\|^{2}, \forall h \text { with }\|h\| \leq \delta
$$

Solution:

By a theorem in class

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h^{T} D^{2} f\left(x_{0}\right) h+R_{f, x_{0}}(h)
$$

for $R_{f, x_{0}}(h)=o\left(\|h\|^{2}\right)$ as $h \rightarrow 0$. Now

$$
h^{T} D^{2} f\left(x_{0}\right) h \geq \alpha\|h\|^{2}, \forall h \in \mathbb{R}^{n}
$$

since $D^{2} f\left(x_{0}\right)$ is positive definite. We also can find $\delta>0$ such that

$$
R_{f, x_{0}}(h) \leq \frac{\alpha}{2}\|h\|^{2} \text { whenever }\|h\| \leq \delta .
$$

Finally we see that

$$
\begin{aligned}
f\left(x_{0}+h\right)-f\left(x_{0}\right)= & h^{T} D^{2} f\left(x_{0}\right) h+R_{f, x_{0}}(h) \geq \\
& \alpha\|h\|^{2}-\frac{\alpha}{2}\|h\|^{2}=\frac{\alpha}{2}\|h\|^{2} \text { whenever }\|h\| \leq \delta
\end{aligned}
$$

which concludes the proof.
8. Use the implicit function theorem to analyze solutions of

$$
\begin{cases}a^{3}+a^{2} b+\sin (a+b+c) & =0 \\ \log \left(1+a^{2}\right)+2 a+(b c)^{4} & =0\end{cases}
$$

about the point $(0,0,0)$ in \mathbb{R}^{3}.

Solution:

After computing

$$
D F(0,0,0)=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 0
\end{array}\right]
$$

for

$$
F(a, b, c)=\left(a^{3}+a^{2} b+\sin (a+b+c), \log \left(1+a^{2}\right)+2 a+(b c)^{4}\right),
$$

we use the implicit function thereom to conclude that the system can be solved for either (a, b) or (a, c) as functions of c or b, respectively, in a neighborhood of the origin.

