Math 140c

Spring Term 2004

Final Examination

Print your name:

Print your ID #: _____

You have 2 hours to solve the problems. Good luck!

1. Let A and B be compact subsets of \mathbb{R}^n . Prove that

$$A + B = \{a + b \mid a \in A, b \in B\}$$

is compact.

Solution:

Given an arbitrary sequence $(c_n)_{n \in \mathbb{N}}$ in A + B we need to show that it has a convergent subsequence with limit in A + B. Since $c_n \in A + B$ we can find $a_n \in A$ and $b_n \in B$ such that

$$c_n = a_n + b_n$$
 for every $n \in \mathbb{N}$.

We thus obtain two sequences $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ in A and B, respectively.

Since A is compact we find an index sequence $(n_k)_{k\in\mathbb{N}}$ such that $(a_{n_k})_{k\in\mathbb{N}}$ has a limit $a_{\infty} \in A$, but then, since B is also compact, $(b_{n_k})_{k\in\mathbb{N}}$ contains a convergent subsequence $(b_{n_{k_j}})_{j\in\mathbb{N}}$ which has a limit $b_{\infty} \in B$.

Finally the subsequence $(c_{n_{k_j}})_{j\in\mathbb{N}}$ of $(c_n)_{n\in\mathbb{N}}$ will converge to $a_{\infty}+b_{\infty}\in A+B$ which concludes the proof.

2. Let $K \subset \mathbb{R}^n$ be compact and $f \in C(K, \mathbb{R})$ with f > 0. Show that 1/f is uniformly continuous. Solution:

Since f is a continuous function defined on a compact set, it is uniformly continuous and |f|, which is also continuous, attains both a maximum $M < \infty$ and a minimum m > 0. The minimum is positive since the function is assumed to be positive. Next we observe that

$$|\frac{1}{f(x)} - \frac{1}{f(y)}| \le \frac{1}{|f(x)f(y)|} |f(x) - f(y)| \le \frac{1}{m^2} |f(x) - f(y)|, \forall x, y \in K$$

Now, given $\varepsilon > 0$, it is possible to find $\delta >$ such that

 $|f(x) - f(y)| \le m^2 \varepsilon$ whenever $|x - y| \le \delta$ for $x, y \in K$.

since f is uniformly continuous. The claim follows combining the two inequalities.

3. Let $A \subset \mathbb{R}^n$ be non compact. Show that there must exist an unbounded continuous function $f : A \to \mathbb{R}$.

Two cases need to be considered. First the set A might be unbounded. In this case

$$f: A \to \mathbb{R}, x \mapsto \|x\|$$

is a continuous function (triangle inequality) which is obviously unbounded. On the other hand, if A is bounded it can not be closed. We therefore find $x_0 \in \partial A \setminus A$ and the function

$$f: A \to \mathbb{R}, \ x \mapsto \frac{1}{\|x - x_0\|}$$

is continuous $(||x - x_0||$ does not vanish on A) and unbounded (there are points in A which come arbitrarily close to x_0).

4. Compute the limit:

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{\sqrt{x^2+y^2}} \, .$$

Justify your answer.

Solution:

Introducing polar coordinates $(x, y) = r(\cos(\theta), \sin(\theta))$, we see that

 $(x,y) \to 0 \iff r \to 0.$

The problem reduces to computing $\lim_{r\to 0} \frac{\sin(r^2)}{r}$. By L'Hôpital, or since $\sin(r^2) = O(r^2)$ (as $r \to 0$), we see that the limit is 0.

5. For a given function $f : \mathbb{R}^n \to \mathbb{R}$ consider the following assertions: (i) f is continuously differentiable.

(ii) f has directional derivatives in every direction at every point.

(iii) f has partial derivatives at every point.

Explain the implications between these assertions. Solution:

 $(i) \Rightarrow (ii), (i) \Rightarrow (iii), (ii) \Rightarrow (iii)$

(ii) $\not\Rightarrow$ (i), (iii) $\not\Rightarrow$ (ii), (iii) $\not\Rightarrow$ (i).

- 6. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be differentiable and assume that Df(x) is invertible for every $x \in \mathbb{R}^n$. Prove that $||f||^2$ does not attain a maximum. [Hint: Chain rule] Solution: By chain rule $\nabla(||f||^2)(x) = 2Df(x)^T f(x)$. At a point of maximum we would have $Df(x)^T f(x) = 0$. Since Df(x) is invertible, this can only happen when f(x) = 0. Now, f cannot be constant, and thus, when f(x) = 0 we have a minimum of $||f||^2$.
- **7.** Let $f \in C^2(\mathbb{R}^n, \mathbb{R})$. Assume that $\nabla f(x_0) = 0$ and that $D^2 f(x_0)$ is positive definite for some $x_0 \in \mathbb{R}^2$. Prove that there is $\delta > 0$ such that

$$f(x_0 + h) - f(x_0) \ge c ||h||^2$$
, $\forall h \text{ with } ||h|| \le \delta$.

Solution:

By a theorem in class

$$f(x_0 + h) = f(x_0) + h^T D^2 f(x_0) h + R_{f,x_0}(h)$$

for $R_{f,x_0}(h) = o(||h||^2)$ as $h \to 0$. Now

$$h^T D^2 f(x_0) h \ge \alpha \|h\|^2, \ \forall h \in \mathbb{R}^n$$

since $D^2 f(x_0)$ is positive definite. We also can find $\delta > 0$ such that

$$R_{f,x_0}(h) \le \frac{lpha}{2} \|h\|^2$$
 whenever $\|h\| \le \delta$.

Finally we see that

$$f(x_0 + h) - f(x_0) = h^T D^2 f(x_0) h + R_{f,x_0}(h) \ge \alpha \|h\|^2 - \frac{\alpha}{2} \|h\|^2 = \frac{\alpha}{2} \|h\|^2 \text{ whenever } \|h\| \le \delta$$

which concludes the proof.

8. Use the implicit function theorem to analyze solutions of

$$\begin{cases} a^3 + a^2b + \sin(a+b+c) &= 0\\ \log(1+a^2) + 2a + (bc)^4 &= 0 \end{cases}$$

about the point (0, 0, 0) in \mathbb{R}^3 . Solution: After computing

$$DF(0,0,0) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix}$$

for

$$F(a,b,c) = (a^3 + a^2b + \sin(a+b+c), \log(1+a^2) + 2a + (bc)^4),$$

we use the implicit function thereom to conclude that the system can be solved for either (a, b) or (a, c) as functions of c or b, respectively, in a neighborhood of the origin.