Math 140c

Spring Term 2004

Midterm Examination

Print your name:

Print your ID #: _____

You have 50 minutes to solve the problems. Good luck!

1. Prove that the closure \overline{O} of a convex set $O \subset \mathbb{R}^n$ is convex. Solution:

Take any $x, y \in \overline{O}$. Then there are sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in the set O such that

$$x_n \to x \text{ and } y_n \to y \text{ as } n \to \infty$$
.

Since O is convex, $(1-t)x_n + ty_n \in O$ for any $t \in [0,1]$. Therefore, for any $t \in [0,1]$, $(1-t)x + ty \in \overline{O}$ since

$$(1-t)x_n + ty_n \to (1-t)x + ty \text{ as } n \to \infty.$$

2. Prove that a Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R}^n which possesses a convergent subsequence is already convergent. Recall that a sequence $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence if

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ s.t. } \|x_n - x_m\| \leq \varepsilon \ \forall n, m \geq N.$$

Solution:

Fix $\varepsilon > 0$ and let x_{∞} be the limit of the convergent subsequence. By assumption there exists $N \in \mathbb{N}$ such that

$$||x_n - x_m|| \leq \varepsilon/2, \ m, n \geq N$$

There also is $N \leq M \in \mathbb{N}$ such that

 $\|x_M - x_\infty\| \le \varepsilon/2$

since x_{∞} is the limit of a subsequence. We therefore conlude that

 $||x_{n} - x_{\infty}|| = ||x_{n} - x_{M} + x_{M} - x_{\infty}|| \le ||x_{n} - x_{M}|| + ||x_{M} - x_{\infty}|| \le \varepsilon, n \ge N$

and the claimed convergence is established.

3. For a sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R}^m define $X = \{x_n \mid n \in \mathbb{N}\}$. Is every accumulation point of $(x_n)_{n \in \mathbb{N}}$ a limit point of X? Is every limit point of X an accumulation point of $(x_n)_{n \in \mathbb{N}}$? If your answer is yes, prove it. If your answer is no, give a counterexample.

Solution:

The answer to the first question is **no**. Just take the sequence $(x_n)_{n \in \mathbb{N}}$ given by $x_n = x_{\infty}, n \in \mathbb{N}$ for some fixed $x_{\infty} \in \mathbb{R}^m$. In this case

 $X = \{x_{\infty}\}$ is a set without limit points but x_{∞} is certainly an accumulation point of the sequence.

The converse is **true**. In fact, if x_{∞} is a limit point of X, then, by definition, there is a sequence $(x_{n_k})_{k\in\mathbb{N}}$ in $X \setminus \{x_{\infty}\}$ which converges to x_{∞} making it an accumulation point of $(x_n)_{n\in\mathbb{N}}$.

- 4. Let f ∈ C(ℝⁿ, ℝ). Is it possible that f(ℝⁿ) = {0,1}? Motivate your answer.
 Solution: The answer is no. In fact continuous functions map connected sets to connected sets. Since ℝⁿ is convex and therefore connected, the range
- **5.** For $U \stackrel{o}{\subset} \mathbb{R}^n$ let $f: U \to \mathbb{R}$ be differentiable at $x \in U$ with f(x) = 0and $g: U \to \mathbb{R}$ be continuous at x. Prove that fg is differentiable at x and compute $\nabla(fg)(x)$.

of the continuous function f cannot be the disconnected set $\{0, 1\}$.

Solution:

Notice that

$$f(x+h) = \nabla f(x) \cdot h + o(||h||)$$
 as $h \to 0$

since f is differentiable at x and f(x) = 0. Also

$$\lim_{h \to 0} \left(g(x+h) - g(x) \right) = 0$$

since g is assumed to be continuous at x. Therefore

$$f(x+h)g(x+h) - g(x)\nabla f(x) \cdot h = [f(x+h) - \nabla f(x) \cdot h]g(x+h) + [g(x+h) - g(x)]\nabla f(x) \cdot h = o(||h||) \text{ as } h \to 0$$

which gives differentiability and $\nabla(fg)(x) = g(x)\nabla f(x)$.