Assignment 1

1. Form the negation of the following statements:
(i) $\forall x \in A \exists y \in B:(x, y) \in G$.
(ii) $\forall x \in A \exists!y \in B:(x, y) \in G$.
(iii) $\exists y \in B:(x, y) \notin G \forall x \in A$.
(iv) $\forall n \in \mathbb{N} \exists m \in \mathbb{N}: m \geq n$ and m is prime.
2. Let A, B be non-empty sets. Then $G \subset A \times B$ determines a map

$$
f_{G}: A \rightarrow B, x \mapsto y
$$

iff

$$
(x, y) \in G,(x, \tilde{y}) \in G \Longrightarrow y=\tilde{y}
$$

If this is the case, we define

$$
\begin{aligned}
\operatorname{dom}(f) & :=\{x \in A \mid \exists y \in B \text { with }(x, y) \in G\}, \text { the domain of } f \\
\operatorname{im}(f) & :=\{y \in B \mid \exists x \in A \text { with }(x, y) \in G\}, \text { the range of } f
\end{aligned}
$$

Use quantifiers to formulate the following:
(i) The map is one-to-one.
(ii) The map is onto.
(iii) The map is bijective.
(iv) Given $\tilde{G}:=\{(y, x) \in B \times A \mid(x, y) \in G\}$, determine what $f_{\tilde{G}}$ is, if it exists.
3. Let $\mathbb{N}_{m}:=\{1,2, \ldots, m\}$. How many maps $f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ are there for $m, n \in \mathbb{N}$? How many are the bijections among them?
[Consider the cases $m<n, m=n$ and $m>n$, separately.]
4. Is the set

$$
\operatorname{Map}(\mathbb{N}, \mathbb{N}):=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f \text { is a } \operatorname{map}\}
$$

countable? What about

$$
\operatorname{Map}_{b}(\mathbb{N}, \mathbb{N}):=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f \text { is bijective }\} ?
$$

Justify your answers.
5. Consider the set of all finite subsets of \mathbb{N}. Is it countable?

Homework due by Tuesday, October 42005

