Assignment 2

1. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in C S(\mathbb{Q})$ and consider the polynomial function defined through

$$
p(x)=\sum_{j=1}^{m} p_{j} x^{j}, x \in \mathbb{Q}
$$

with rational coefficients $p_{j} \in \mathbb{Q}, j=1, \ldots, m$. Prove that the sequence $\left(p\left(x_{n}\right)\right)_{n \in \mathbb{N}} \in C S(\mathbb{Q})$, too.
2. Describe the set $C S(\mathbb{N})$ and determine whether it is countable or not. [Hint: Prove first that the countable union of countable sets is countable.]
3. Prove that \mathbb{R} is uncountable and has the same cardinality as $2^{\mathbb{N}}$.
4. Prove that

$$
|x-y| \geq||x|-|y|| \forall x, y \in \mathbb{R} .
$$

5. Show that convergent sequences are Cauchy.
