Assignment 3

1. Let $\left(k_{n}\right)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. For any $m \in \mathbb{N}$ define

$$
x_{m}=k_{1}+\frac{1}{k_{2}+\frac{1}{k_{3}+\frac{1}{\vdots}}} .
$$

Prove that $\left(x_{m}\right)_{m \in \mathbb{N}} \in C S(\mathbb{Q})$ and that any $x \in[0, \infty)$ is obtained as a limit of such a sequence.
2. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ with $x_{n} \leq x_{n+1} \leq c<\infty \forall n \in \mathbb{N}$ and show that there exists $x_{\infty} \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} x_{n}=x_{\infty}$.
[Hint: Show that it is a Cauchy sequence.]
3. Let $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ converge to the common limit x_{∞}. Prove that any sequence $\left(z_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ with

$$
x_{n} \leq z_{n} \leq y_{n} \forall n \geq m
$$

for some $m \in \mathbb{N}$ also converges to the same limit x_{∞}.
4. Construct sequences $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ such that
(i) $L P(x)=\mathbb{N}$.
(ii) $L P(x)=\{y\}$ for some $y \in \mathbb{R}$ but x is not convergent.
(iii) $L P(x)=[0,2]$.
5. Prove that \mathbb{R} is uncountable and has the same cardinality as $2^{\mathbb{N}}$.

