Fall Term 2005

Assignment 3

1. Let $(k_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$. For any $m \in \mathbb{N}$ define

$$x_{m} = k_{1} + \frac{1}{k_{2} + \frac{1}{k_{3} + \frac{1}{\vdots}}}$$

$$\vdots$$

$$k_{m-1} + \frac{1}{k_{m}}$$

Prove that $(x_m)_{m \in \mathbb{N}} \in CS(\mathbb{Q})$ and that any $x \in [0, \infty)$ is obtained as a limit of such a sequence.

- 2. Let $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ with $x_n\leq x_{n+1}\leq c<\infty$ $\forall n\in\mathbb{N}$ and show that there exists $x_\infty\in\mathbb{R}$ such that $\lim_{n\to\infty}x_n=x_\infty$. [Hint: Show that it is a Cauchy sequence.]
- 3. Let $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ converge to the common limit x_{∞} . Prove that any sequence $(z_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ with

$$x_n \le z_n \le y_n \,\forall \, n \ge m$$

for some $m \in \mathbb{N}$ also converges to the same limit x_{∞} .

- 4. Construct sequences x = (x_n)_{n∈N} ∈ ℝ^N such that
 (i) LP(x) = N.
 (ii) LP(x) = {y} for some y ∈ ℝ but x is not convergent.
 (iii) LP(x) = [0, 2].
- 5. Prove that \mathbb{R} is uncountable and has the same cardinality as $2^{\mathbb{N}}$.

Homework due by Thursday, October 20 2005.