Assignment 4

1. Let $A = (a_{jk})_{j,k \in \mathbb{N}}$ be a double array of real numbers and let $d = (d_1, d_2, d_3, \dots) = (a_{11}, a_{21}, a_{12}, a_{31}, a_{22}, a_{13}, \dots)$

be the sequence obtained by concatenating the finite diagonals

 $d_m = (a_{m1}, a_{m-12}, \cdots, a_{1m}), \ m \in \mathbb{N}.$

Show that any limit point of any row $A_{j\bullet} = (a_{jk})_{k\in\mathbb{N}}$ or column $A_{\bullet k} = (a_{jk})_{j\in\mathbb{N}}$ of A is a also a limit point of the sequence d. Do we obtain all limit points of d this way?

2. Let $A \subset \mathbb{R}$. We say that $B \subset A$ is open in A, or, concisely $B \stackrel{o}{\subset} A$, iff there is an open set $\tilde{B} \subset \mathbb{R}$ with

$$B = A \cap B.$$

Show that (i) $\emptyset, A \overset{o}{\subset} A$. (ii) If $B_j \overset{o}{\subset} A$ for $j \in \mathbb{N}$, then $\bigcup_{j \in \mathbb{N}} B_j \overset{o}{\subset} A$. (iii) If $B_j \overset{o}{\subset} A$ for $j = 1, \dots, m$ $(m \in \mathbb{N})$, then $\bigcap_{1 \leq j \leq m} B_j \overset{o}{\subset} A$. Is [0, 1/2) open in [0, 1]? What about (0, 1/2]? Is $\{0\}$ open in \mathbb{N} ? Is it open in \mathbb{Q} ?

3. Let $x \in \mathbb{R}^{\mathbb{N}}$ and let

 $X = \{ y \in \mathbb{R} \mid y = x_j \text{ for some } j \in \mathbb{N} \}.$

What is the relation between the limit points of the sequence x and those of the set X?

4. Let $A \subset \mathbb{R}$. The sets \overline{A} , $\overset{\circ}{A}$ and LP(A) were defined in class. Let, in addition, $\partial A = \overline{A} \setminus \overset{\circ}{A}$. Prove or disprove the following:

$$\overrightarrow{A} \subset \overline{A}, \ \overline{A} = LP(A),$$

$$LP(A) \subset A, \ LP(LP(A)) \subset LP(A),$$

$$LP(A) \subset LP(LP(A)), \ \overline{\partial A} = \partial A,$$

$$\overline{A} = LP(A) \cup A, \ \partial(\partial A) = \partial A.$$

5. Let $x, y \in \mathbb{R}^{\mathbb{N}}$ be two sequences. Show that

 $\limsup_{k\to\infty}(x_k+y_k)\leq\limsup_{k\to\infty}x_k+\limsup_{k\to\infty}y_k\,.$

Homework due by Thursday, October 27 2005.