Assignment 6

1. Let $f \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ satisfy

$$
f(x+y)=f(x) f(y), x, y \in \mathbb{Q} \text { and } f(0)=1
$$

What is f and why?
2. Let $f \in \mathrm{C}(\mathbb{R}, \mathbb{R})$ be periodic with period $T>0$, that is,

$$
f(x+T)=f(x) \forall x \in \mathbb{R}
$$

Show that f is uniformly continuous.
3. Let $I \subset \mathbb{R}$ be an interval and assume that $f: I \rightarrow \mathbb{R}$ is monotone. Show that f is continuous if $f(I)$ is also an interval.
4. Let $f \in \mathrm{C}(K, \mathbb{R})$ for some compact set $K \subset \mathbb{R}$ and assume that $f>0$. Show that $1 / f$ is uniformly continuous.
5. Let $D_{f}, D_{g} \subset \mathbb{R}, f \in \mathrm{C}\left(D_{f}, \mathbb{R}\right), g \in \mathrm{C}\left(D_{g}, \mathbb{R}\right)$ and assume that $g\left(D_{g}\right) \subset D_{f}$. Show that $f \circ g \in \mathrm{C}\left(D_{g}, \mathbb{R}\right)$.

