Assignment 6

1. Let $f \in C(\mathbb{R}, \mathbb{R})$ satisfy

$$f(x+y) = f(x)f(y)$$
, $x, y \in \mathbb{Q}$ and $f(0) = 1$.

What is f and why?

2. Let $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ be periodic with period T > 0, that is,

 $f(x+T) = f(x) \,\forall \, x \in \mathbb{R} \,.$

Show that f is uniformly continuous.

- 3. Let $I \subset \mathbb{R}$ be an interval and assume that $f : I \to \mathbb{R}$ is monotone. Show that f is continuous if f(I) is also an interval.
- 4. Let $f \in C(K, \mathbb{R})$ for some compact set $K \subset \mathbb{R}$ and assume that f > 0. Show that 1/f is uniformly continuous.
- 5. Let D_f , $D_g \subset \mathbb{R}$, $f \in \mathcal{C}(D_f, \mathbb{R})$, $g \in \mathcal{C}(D_g, \mathbb{R})$ and assume that $g(D_g) \subset D_f$. Show that $f \circ g \in \mathcal{C}(D_g, \mathbb{R})$.

Homework due by Thursday, November 10 2005.