Assignment 7

1. Let a function $f \in \mathrm{BUC}((a,b),\mathbb{R})$ be given for $a < b \in \mathbb{R}$. Show that

$$\lim_{x \to a+} f(x) \,, \, \lim_{x \to b-} f(x)$$

exist. Thus, f can be uniquely extended to a uniformly continuous function of the closed interval [a,b].

2. Analyze the continuity and differentiability of the function

$$f(x) := \begin{cases} 0, & x \le 0, \\ \frac{1}{x}e^{-\frac{1}{x^2}}, & x > 0. \end{cases}$$

What can you say about higher order derivatives at x = 0?

3. Let $f: D \to \mathbb{R}$ be differentiable at $x_0 \in D \stackrel{o}{\subset} \mathbb{R}$. Prove or disprove:

(i) f is strictly increasing at x_0 implies that $f'(x_0) > 0$.

(ii) $f'(x_0) = 0$ implies that f has a local minimum or maximum at x_0

(iii) f is Lipschitz continuous at x_0 and has local minimum there implies that f is differentiable at x_0 .

4. Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \to \mathbb{R}$. Define

$$d^+ f(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}, \ x_0 \in [a, b),$$

$$d^{-}f(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}, \ x_0 \in (a, b],$$

the right and left derivative of f at x_0 , respectively, if the limit exists.

(i) Show that f is differentiable at $x_0 \in (a, b)$ if and only if $d^{\pm}f(x_0)$ exist and coincide.

(ii) Assume that f takes on a minimum or a maximum at a or b and is one-side differentiable there. What can you say about $d^+f(a)$ and $d^-f(b)$?

5. Let $f \in C^1(\mathbb{R}, \mathbb{R})$, $g \in C(\mathbb{R}, \mathbb{R})$ and assume that $f(x_0) = 0$ for some $x_0 \in \mathbb{R}$. Prove that $fg : \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)g(x)$ is differentiable at x_0 and compute $(fg)'(x_0)$. What can you say if g is only assumed to be bounded?