Assignment 12

- 1. Let $f_n(x) := \frac{1}{nx}$, $x \in (0, \infty)$ and prove the following claims:
 - (i) $(f_n)_{n \in \mathbb{N}}$ converges to zero pointwise.
 - (ii) For any r > 0, $(f_n|_{[r,\infty)})_{n \in \mathbb{N}}$ converges uniformly.
 - (iii) $(f_n)_{n \in \mathbb{N}}$ does not converge uniformly.
- 2. Determine which of the following sequences $(f_n)_{n \in \mathbb{N}}$ converge uniformly on $(0, 1) \ni x$:
 - (i) $f_n(x) := x^{\frac{1}{n}}, n \in \mathbb{N}.$ (ii) $f_n(x) := \frac{1}{1+nx}, n \in \mathbb{N}.$
 - (iii) $f_n(x) := \frac{x}{1+nx}, n \in \mathbb{N}.$
- 3. Find a sequence of functions $(f_n)_{n \in \mathbb{N}}$ in $\mathcal{R}([0,1],\mathbb{R})$ which converges pointwise to zero but for which

$$\int_0^1 f_n(x) \, dx \not\to 0 \, (n \to \infty) \, .$$

Also find a sequence which does not converge to zero pointwise but for which

$$\int_0^1 f_n(x) \, dx \to 0 \, (n \to \infty)$$

4. For $\alpha \in (0,1)$ let

 $C^{\alpha}([0,1],\mathbb{K})$

$$:= \left\{ f \in \mathcal{C}([0,1],\mathbb{K}) \, \big| \, [f]_{\alpha} = \sup_{x \neq y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty \right\}$$

be the space of Hölder continuous real- or complex-valued functions defined on [0, 1]. Show that it is complete w.r.t. $\|\cdot\|_{\alpha} = \|\cdot\|_{\infty} + [\cdot]_{\alpha}$. In other words, prove that any sequence satisfying

$$\forall \varepsilon > 0 \ \exists M \in \mathbb{N} \text{ s.t. } \| f_n - f_m \|_{\alpha} \le \varepsilon, \ m, n \ge M \,.$$

converges to some limit $f \in C^{\alpha}([0,1], \mathbb{K})$.

5. Let $f \in C([0,1],\mathbb{R})$ and define the Bernstein polynomials by

$$p_n(f,x) = \sum_{k=0}^n \binom{n}{k} f(\frac{k}{n}) x^k (1-x)^{n-k}, \ x \in [0,1], \ n \in \mathbb{N}.$$

Show that

$$||p_n(f,\cdot) - f||_{\infty} \xrightarrow[n \to \infty]{} 0.$$

This means that any continuous function defined on a compact interval can be uniformly approximated by a sequence of polynomials. We shall see a generalization of this fact in class.

[*Hint: Use the identity*]

$$\sum_{k=0}^{n} (k - nx)^2 \binom{n}{k} x^k (1 - x)^{n-k} = nx(1 - x)$$

and split the sum into two parts according to whether $|x-\frac{k}{n}|\leq \delta$ or $|x-\frac{k}{n}|>\delta>0$.]

Homework due by Thursday, February 9 2006.