
Math 205 Winter Term 2006

Assignment 13

1. Determine the radius of convergence of the following power series
∞∑

n=0
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2. Assume that the power series
∞∑

n=0

anxn and
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have positive radii of convergence. Suppose that there exists a se-
quence (yj)j∈N with yj → 0 (j →∞) and yj 6= 0 such that
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Prove that an = bn , n ∈ N.

3. Assume D
o
⊂ R and let f : D → R be analytic. Show that, for every

x0 ∈ D, constants M, r, δ > 0 can be found such that

|f (k)(x)| ≤ Mk! rk , x ∈ (x0 − δ, x0 + δ) .

4. For α ∈ R define the (general) binomial coefficient(
α
n

)
:=

α(α− 1) · · · (α− n + 1)
n!

, n ∈ N ,
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)
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Show that the radius of convergence of the binomial series
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is 1 and determine what function it represents.
[Hint: Use the relations(
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to derive an ordinary differential equation satisfied by the power
series.]

5. Let ρ be the radius of convergence of the power series
∑∞

k=0 anxn.
Show that
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Homework due by Thursday, February 16 2006


