MATH 205 WINTER TERM 2006
Assignment 13

1. Determine the radius of convergence of the following power series
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2. Assume that the power series
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have positive radii of convergence. Suppose that there exists a se-
quence (y;);en with y; — 0 (j — o0) and y; # 0 such that
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Prove that a,, = b,, n € N.

3. Assume D C R and let f: D — R be analytic. Show that, for every
xg € D, constants M, 7,6 > 0 can be found such that

1F®)(2)) < ME!'r® | 2 € (zg — 8,20 +6).
4. For a € R define the (general) binomial coefficient
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Show that the radius of convergence of the binomial series
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is 1 and determine what function it represents.
[Hint: Use the relations
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to derive an ordinary differential equation satisfied by the power

series.|
5. Let p be the radius of convergence of the power series Y ;2 anz”.
Show that
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Homework due by Thursday, February 16 2006



