Assignment 13

1. Determine the radius of convergence of the following power series

$$
\sum_{n=0}^{\infty} \frac{\sqrt{n 2^{n}}}{(n+1)^{5}} x^{n}, \sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{n^{n}} x^{n}
$$

2. Assume that the power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n} \text { and } \sum_{n=0}^{\infty} b_{n} x^{n}
$$

have positive radii of convergence. Suppose that there exists a sequence $\left(y_{j}\right)_{j \in \mathbb{N}}$ with $y_{j} \rightarrow 0(j \rightarrow \infty)$ and $y_{j} \neq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} y_{j}^{n}=\sum_{n=0}^{\infty} b_{n} y_{j}^{n} .
$$

Prove that $a_{n}=b_{n}, n \in \mathbb{N}$.
3. Assume $D \stackrel{o}{\subset} \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$ be analytic. Show that, for every $x_{0} \in D$, constants $M, r, \delta>0$ can be found such that

$$
\left|f^{(k)}(x)\right| \leq M k!r^{k}, x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

4. For $\alpha \in \mathbb{R}$ define the (general) binomial coefficient

$$
\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}, n \in \mathbb{N},\binom{\alpha}{0}:=1 .
$$

Show that the radius of convergence of the binomial series

$$
\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

is 1 and determine what function it represents.
[Hint: Use the relations

$$
\binom{\alpha}{n}=\binom{\alpha-1}{n}+\binom{\alpha-1}{n-1} \text { and } \alpha\binom{\alpha-1}{n}=(n+1)\binom{\alpha}{n+1}
$$

to derive an ordinary differential equation satisfied by the power series.]
5. Let ρ be the radius of convergence of the power series $\sum_{k=0}^{\infty} a_{n} x^{n}$.

Show that

$$
\liminf _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \leq \rho \leq \limsup _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

Homework due by Thursday, February 162006

