Assignment 15

1. Let $\alpha \in (0,1)$ and assume that $A \subset C^{\alpha}([0,1],\mathbb{K})$ be a bounded subset, that is, assume that

 $||f||_{\alpha} = ||f||_{\infty} + [f]_{\alpha} \le M, \ f \in A$

for some M > 0. Show that A is uniformly equicontinuous.

2. Let $f, g \in C_c(\mathbb{R}, \mathbb{K})$ and show that

 $\sup(f * g) \subset \sup(f) + \sup(g)$ $=: \left\{ x + y \, \big| \, x \in \operatorname{supp}(f) \,, \, y \in \operatorname{supp}(g) \right\}.$

3. Let $0 \leq f \in C_c(\mathbb{R}, \mathbb{R})$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. Show that $(f_n)_{n \in \mathbb{N}}$ defined through

 $f_n(x) = n f(n x), x \in \mathbb{R}, n \in \mathbb{N},$

is an approximate identity.

- 4. Let $a < b \in \mathbb{R}$ and $\varepsilon > 0$ be given. Show that the constant function with value 1 on [a, b] can be extended to a C^{∞}-function of the line which vanishes outside $[a \varepsilon, b + \varepsilon]$.
- 5. Give an example of a uniformly bounded and uniformly equicontinuous sequence of functions on the whole real line which does not possess a uniformly convergent subsequence.