Assignment 9

1. Let $\alpha \in \mathrm{B}([a, b])$ be increasing and $f, g \in \mathcal{R} \mathcal{S}([a, b])$. Prove that $f g \in \mathcal{R S}([a, b])$.
2. Let $\alpha \in \mathrm{B}([a, b])$ be increasing and $c \in(a, b)$. Assume that f and α are discontinuous from the right (or the left) at $x=c$ and prove that $\int_{a}^{b} f d \alpha$ cannot exist.
3. Let $\alpha \in \mathrm{B}([a, b])$ be increasing and compute

$$
\int_{a}^{b} \mathbf{1}_{\{c, d\}} d \alpha
$$

for $a \leq c \leq d \leq b$ where $\{=[$, (and $\}=]$,) and $\mathbf{1}_{\{c, d\}}$ is the characteristic function of the corresponding interval.
4. Assume that $f \in \mathrm{~B}([a, b])$ is increasing and $\alpha \in \mathrm{C}([a, b])$. Show that there is $c \in[a, b]$ such that

$$
\int_{a}^{b} f d \alpha=f(a) \int_{a}^{c} d \alpha+f(b) \int_{c}^{b} d \alpha .
$$

[Hint: Mean Value Theorem.]
5. Prove the validity of Remarks 6.7 .5 (c) and (d).

