Assignment 9

- 1. Let $\alpha \in B([a,b])$ be increasing and $f,g \in \mathcal{RS}([a,b])$. Prove that $fg \in \mathcal{RS}([a,b])$.
- 2. Let $\alpha \in B([a, b])$ be increasing and $c \in (a, b)$. Assume that f and α are discontinuous from the right (or the left) at x = c and prove that $\int_a^b f \, d\alpha$ cannot exist.
- 3. Let $\alpha \in B([a, b])$ be increasing and compute

$$\int_{a}^{b} \mathbf{1}_{\{c,d\}} \, d\alpha$$

for $a \le c \le d \le b$ where $\{= [, (and \} =],)$ and $\mathbf{1}_{\{c,d\}}$ is the characteristic function of the corresponding interval.

4. Assume that $f \in B([a, b])$ is increasing and $\alpha \in C([a, b])$. Show that there is $c \in [a, b]$ such that

$$\int_{a}^{b} f \, d\alpha = f(a) \int_{a}^{c} d\alpha + f(b) \int_{c}^{b} d\alpha \, .$$

[Hint: Mean Value Theorem.]

5. Prove the validity of Remarks 6.7.5 (c) and (d).

Homework due by Thurday, January 19 2006