Math 205b

WINTER TERM 2002

Final Examination

Print your name:	
Print your ID $#$:	

You have 2 hours to solve the problems. Good luck!

1. Let $\alpha \geq 0$ and define $f_{\alpha} \in \mathcal{C}([0,1],\mathbb{R})$ by

$$f_{\alpha}(x) = \frac{1}{1 + \alpha x}, \ x \in (0, 1).$$

For A > 0 consider the set $S_A = \{f_\alpha \mid \alpha \in [0, A)\}$. Is it equicontinuous? What if $A = \infty$? Motivate your answers.

2. Show that

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{\cos(x) - 1}{x^2}$$

is analytic at x = 0.

3. Consider

$$f_n(x) = e^{-nx}, x \in (0,\infty), n \in \mathbb{N}.$$

What is $\sum_{n=0}^{\infty} f_n$? Is the convergence uniform? Motivate your answers.

4. Determine the function which is represented by the following power series

$$\sum_{n=1}^{\infty} n \, x^n$$

in the interval (-1, 1). Justify your answer.

5. Let $(b_n)_{n \in \mathbb{N}}$ be a positive decreasing sequence. Show that $\sum_{n=0}^{\infty} a_n$ converges absolutely if

$$|a_n| \le b_n - b_{n+1}, \ n \in \mathbb{N}.$$

6. Consider the following spaces of functions

$$\begin{split} &\mathrm{BC}(\mathbb{R},\mathbb{R}) = \left\{ f \in \mathrm{C}(\mathbb{R},\mathbb{R}) \ \Big| \ \|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)| < \infty \right\}, \\ &\mathrm{C}_0(\mathbb{R},\mathbb{R}) = \left\{ f \in \mathrm{C}(\mathbb{R},\mathbb{R}) \ \Big| \ \lim_{|x| \to \infty} f(x) = 0 \right\}. \end{split}$$

Show that $C_0(\mathbb{R}, \mathbb{R})$ is a closed subset of $(BC(\mathbb{R}, \mathbb{R}), \|\cdot\|_{\infty})$.

7. Let $M_1 = (M, d_1)$ and $M_2 = (M, d_2)$ be metric spaces and assume that $d_2 \leq c d_1$ for some positive c > 0. Prove that

$$O \stackrel{o}{\subset} M_2 \Rightarrow O \stackrel{o}{\subset} M_1$$
.

8. Fix $N \ge 1$ and show that the set

$$C_N = \left\{ \sum_{n=1}^N a_n \cos(n\pi x) \mid \sup_{1 \le n \le N} |a_n| \le 1 \right\} \subset \mathcal{C}(\mathbb{R}, \mathbb{R})$$

is uniformly bounded and uniformly equicontinuous.

9. Let $(x_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in a metric space (M, d) and assume it possesses a convergent subsequence. Show that the whole sequence converges.