Assignment 1

- 1. Form the negation of the following statements: (i) $\forall x \in A \exists y \in B : (x, y) \in G$. (ii) $\forall x \in A \exists ! y \in B : (x, y) \in G$.
 - (iii) $\exists y \in B : (x, y) \notin G \forall x \in A$.
 - (iv) $\forall n \in \mathbb{N} \exists m \in \mathbb{N} : m \ge n \text{ and } m \text{ is prime.}$
- 2. Let A, B be non-empty sets. Then $G \subset A \times B$ determines a map $f_G : A \to B, x \mapsto y$ iff

$$(x,y) \in G, \ (x,\tilde{y}) \in G \Rightarrow y = \tilde{y}.$$

If this is the case, then

$$\operatorname{dom}(f) := \{ x \in A \mid \exists y \in B \text{ with } (x, y) \in G \}, \text{ the domain of } f,$$

 $\operatorname{im}(f) := \left\{ y \in B \, | \, \exists \, x \in A \text{ with } (x, y) \in G \right\}, \text{ the range of } f \, .$

For $x \in \text{dom}(f)$ we write $y = f_G(x)$ if $(x, y) \in G$. Use quantifiers to describe the following:

- (i) The map is one-to-one.
- (ii) The map is onto.
- (iii) The map is bijective.

(iv) $G = \{(y, x) \in B \times A | (x, y) \in G\}$ defines a set. What is $f_{\tilde{G}}$ when it exists?

- 3. Let $\mathbb{N}_m := \{1, 2, \dots, m-1, m\}$. How many maps $f : \mathbb{N}_m \to \mathbb{N}_n$ are there for $m, n \in \mathbb{N}$? How many are the bijections among them? [Consider the cases m < n, m = n, m > n separately.] Is the set $map(\mathbb{N}, \mathbb{N}) := \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ is a map}\}$ countable? What about $map_b(\mathbb{N}, \mathbb{N}) := \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ is a bijection}\}$? Justify your answers.
- 4. In class we proved that $\mathbb{N} \times \mathbb{N}$ is countable. Can you construct a bijective map $\varphi : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ explicitly? Also prove the more general statement that $M \times N$ is countable if M and N are and conclude that \mathbb{N}^m is countable for any $m \in \mathbb{N}$.

The Homework is due Friday, October 11