Assignment 1

1. Form the negation of the following statements:
(i) $\forall x \in A \exists y \in B:(x, y) \in G$.
(ii) $\forall x \in A \exists!y \in B:(x, y) \in G$.
(iii) $\exists y \in B:(x, y) \notin G \forall x \in A$.
(iv) $\forall n \in \mathbb{N} \exists m \in \mathbb{N}: m \geq n$ and m is prime.
2. Let A, B be non-empty sets. Then $G \subset A \times B$ determines a map $f_{G}: A \rightarrow B, x \mapsto y$ iff

$$
(x, y) \in G,(x, \tilde{y}) \in G \Rightarrow y=\tilde{y}
$$

If this is the case, then $\operatorname{dom}(f):=\{x \in A \mid \exists y \in B$ with $(x, y) \in G\}$, the domain of f, $\operatorname{im}(f):=\{y \in B \mid \exists x \in A$ with $(x, y) \in G\}$, the range of f.
For $x \in \operatorname{dom}(f)$ we write $y=f_{G}(x)$ if $(x, y) \in G$. Use quantifiers to describe the following:
(i) The map is one-to-one.
(ii) The map is onto.
(iii) The map is bijective.
(iv) $\widetilde{G}=\{(y, x) \in B \times A \mid(x, y) \in G\}$ defines a set. What is $f_{\widetilde{G}}$ when it exists?
3. Let $\mathbb{N}_{m}:=\{1,2, \ldots, m-1, m\}$. How many maps $f: \mathbb{N}_{m} \rightarrow \mathbb{N}_{n}$ are there for $m, n \in \mathbb{N}$? How many are the bijections among them?
[Consider the cases $m<n, m=n, m>n$ separately.]
Is the set $\operatorname{map}(\mathbb{N}, \mathbb{N}):=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f$ is a map $\}$ countable? What about $\operatorname{map}_{b}(\mathbb{N}, \mathbb{N}):=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f$ is a bijection $\}$?
Justify your answers.
4. In class we proved that $\mathbb{N} \times \mathbb{N}$ is countable. Can you construct a bijective $\operatorname{map} \varphi: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ explicitly? Also prove the more general statement that $M \times N$ is countable if M and N are and conclude that \mathbb{N}^{m} is countable for any $m \in \mathbb{N}$.

