Assignment 11

1. Let $a<c<b \in \mathbb{R}$ and $f \in \mathcal{R}([a, b], \mathbb{R})$. Show that

$$
\begin{gathered}
f \in \mathcal{R}([a, c], \mathbb{R}) \cap \mathcal{R}([c, b], \mathbb{R}) \text { and } \\
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{gathered}
$$

2. Let $a<b \in \mathbb{R}$ and $f \in \mathcal{R}([a, b], \mathbb{R})$. Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{a}^{x} f(y) d y, x \in[a, b]
$$

Prove that $F \in \mathrm{C}^{1-}([a, b], \mathbb{R})$. When is F differentiable?
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{m} for some $m \geq 1$. Then

$$
\begin{gathered}
x_{n} \underset{n \rightarrow \infty}{\longrightarrow} x_{\infty} \in \mathbb{R}^{m}: \Longleftrightarrow \\
{\left[\sum_{k=1}^{m}\left(x_{n}^{k}-x_{\infty}^{k}\right)^{2}\right]^{\frac{1}{2}}=:\left|x_{n}-x_{\infty}\right|_{2} \underset{n \rightarrow \infty}{\longrightarrow} 0}
\end{gathered}
$$

A function $f:[a, b] \rightarrow \mathbb{R}^{n}$ is said to be Riemann-integrable, or concisely $f \in \mathcal{R}\left([a, b], \mathbb{R}^{n}\right)$ iff

$$
\lim _{\triangle(P) \rightarrow 0} S(f, P) \in \mathbb{R}^{n}
$$

exists for every Cauchy sum.
3. Show that

$$
f \in \mathcal{R}\left([a, b], \mathbb{R}^{n}\right) \Longleftrightarrow f^{k} \in \mathcal{R}([a, b], \mathbb{R}), k=1, \ldots, n
$$

4. Let the function $f:[0,1] \rightarrow \mathbb{C}$ be given by

$$
f(x)= \begin{cases}x e^{2 i \pi / x}, & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that $f \in \mathrm{C}([0,1], \mathbb{C})$ and plot $f([0,1])$.
5. You ask a question.

The Homework is due on Friday January 31

