Assignment 12

1. Determine the convergence of the following series:

$$
\sum_{k=1}^{\infty} \frac{e^{i \frac{\pi}{2} k}}{k}, \sum_{k=1}^{\infty}(-1)^{k}(\sqrt{k+1}-\sqrt{k}), \sum_{k=1}^{\infty} \frac{k!}{k^{k}}
$$

2. Give an example of $\left(a_{m n}\right)_{m, n \in \mathbb{N}}$ for which

$$
\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} a_{m n}\right) \neq \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} a_{m n}\right)
$$

3. Find a sequence of functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{R}([0,1], \mathbb{R})$ which converges pointwise to zero but for which

$$
\int_{0}^{1} f_{n}(x) d x \nrightarrow 0(n \rightarrow \infty)
$$

Also find a sequence which does not converge to zero pointwise but for which

$$
\int_{0}^{1} f_{n}(x) d x \rightarrow 0(n \rightarrow \infty)
$$

4. For $\alpha \in(0,1)$ let

$$
\begin{aligned}
& \mathrm{C}^{\alpha}([0,1], \mathbb{K}) \\
& \quad:=\left\{f \in \mathrm{C}([0,1], \mathbb{K}) \left\lvert\,[f]_{\alpha}=\sup _{x \neq y \in[0,1]} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty\right.\right\}
\end{aligned}
$$

be the space of Hölder continuous real- or complex-valued functions defined on $[0,1]$. Show that it is complete w.r.t. $\|\cdot\|_{\alpha}=\|\cdot\|_{\infty}+[\cdot]_{\alpha}$. In other words, prove that any sequence satisfying

$$
\forall \varepsilon>0 \exists M \in \mathbb{N} \text { s.t. }\left\|f_{n}-f_{m}\right\|_{\alpha} \leq \varepsilon, m, n \geq M
$$

converges to some limit $f \in \mathrm{C}^{\alpha}([0,1], \mathbb{K})$.
5. You ask a question.

The Homework is due Friday, February 7

